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ABSTRACT

In [1], I. N. Vekua propose the Poincaré problem for some second order elliptic equations, but it can not be solved. In
[2], the authors discussed the boundary value problem for nonlinear elliptic equations of second order in some bounded
domains. In this article, the Poincaré boundary value problem for general nonlinear elliptic equations of second order in
unbounded multiply connected domains have been completely investigated. We first provide the formulation of the
above boundary value problem and corresponding modified well posed-ness. Next we obtain the representation theorem
and a priori estimates of solutions for the modified problem. Finally by the above estimates of solutions and the
Schauder fixed-point theorem, the solvability results of the above Poincaré problem for the nonlinear elliptic equations
of second order can be obtained. The above problem possesses many applications in mechanics and physics and so on.
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1. Formulation of the Poincaré Boundary
Value Problem

Let D be an (N +1)-connected domain including the
. .. . . N .
infinite point with the boundary I’ :Uj:OF ; in C,
where ' e C,(0< u<1). Without loss of generality, we
assume that D is a circular domain in |z|>1, where the
boundary consists of N+1 circles I', =T, ={|z|=1},
r, ={|z—zj|=r/.},j=1,---,N and z=weD . In this
article, the notations are as the same in References [1-8].
We consider the second order equation in the complex
form

u_ =F(z,u,uz,uz_,)+G(z,u,uz),
F= Re[QuZZ + Au, ] +edu+ 4,
G=G(z,u,u_,),Q=Q(z,u,u2,uz_,),
Aj :Aj (z,u,uz),j:1,2,3,

(1.1)

satisfying the following conditions.

Condition C. 1) Q(z,u,w,U), 4, (zou,w)(j=1,2,3)
are continuous in u€R, weC for almost every point
zeD,UeC, and 0=0, A; :O(j:1,2,3) for z ¢ D.

2) The above functions are measurable in ze D for
all continuous functions u (z), w(z) in D,and satisfy

L,,[ 4 (zuw).D]|<k,j=12,

_ (1.2)
L,,[ 4 (zuw).D]<k,

in which pg, p(2<p,<p), ko, k are non-negative
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constants.

3) The Equation (1.1) satisfies the uniform ellipticity
condition, namely for any number u€R and w, U,
U, €C, the inequality

|F (z.0,w,U,) = F (z,u,w,U, )| < ,|U, = U,
for almost every point z e D holds, where g, (< 1) is
a non-negative constant.

4) For any function u(z)e C(E) , w(z)ew,,(D),
G(z,u, w) satisfies the condition

G(zu,u,)=B,

u,|”+B,Ju,0< 0,7 <00,

z

in which B, =B, (z,u,u_)(j=12) satisfy the condition

Ll’,2 |:B/’5:|Sk0 <009j=1929 (13)

with a non-negative constant &, .

Now, we formulate the Poincaré boundary value
problem as follows.

Problem P. In the domain D, find a solution u(z) of
Equation (1.1), which is continuously differentiable in
D, and satisfies the boundary condition

1 Ou
EE"I‘SCI(Z)M—CQ(Z), (14)

ie. Re[@u2}+gcl (z)u =c, (z),z el,

in which v is any unit vector at every pointon I'=0D,
A(z)=cos(v,x)—icos(v,y), ¢(z) and ¢, (z) are
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known functions satisfying the conditions
C,[AT]<ky, C,[c,, T]<ky, C, [y, T]<ky,  (1.5)

where £(>0), a(l/2<a<l), k, k, are non-negative
constants.

If cos(v,n)=0 and ¢, =0 on I', where n is the
outward normal vector on I', then Problem P is the
Dirichlet boundary value problem (Problem D). If
cos(v,n):l and @, =0 on I', then Problem P is the
Neumann boundary value problem (Problem N), and if
cos(v,n) >0,and ¢, 20 on I, then Problem P is the
regular oblique derivative problem, i.e. the third bound-
ary value problem (Problem III or O). Now the direc-
tional derivative may be arbitrary, hence the boundary
condition is very general.

The integer

K= 21_7tAr arg A(z)

is called the index of Problem P. When the index K <0,
Problem P may not be solvable, and when K >0, the
solution of Problem P is not necessarily unique. Hence
we consider the well-posedness of Problem P with modi-
fied boundary conditions.

Problem Q. Find a continuous solution [w(z),u(z)}
of the complex equation

w, = F(z,u,w, w, )+ G(z,u, w),
F =Re[Ow, + Aw]+edu+ A4, G=B, |W|G+B2 |u|r ,
(1.6)
satisfying the boundary condition
Re[/l(z)w(z)]+gc1 (z)u=c,(z)+h(z),zel, (1.7)
and the relation

w(z) N idjzj

u(z)=-2Re lz[ -3

2
z j:lz(z—zj

)dz]+b0, (1.8)

where d; ( j=L---,N ) are appropriate real constants
such that the function determined by the integral in (1.8)
is single-valued in D, and the undetermined function
h(z) is as stated in

O,ZGF, KZN:
h/,ZEF/,jZI,"',N—K,

h(z)=1 ' 0<K<N,
O,zeF/,ij—K+l,-~,N+l

hzel,,j=1-N,

-K-1 K <0,
hy+Re Y. (hy+ih,)z" z€T, )

m=1
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in which hj(j:O,l,u-,N), h(m=1,--,-K-1,K <0)
are unknown real constants to be determined appropri-
ately. In addition, for K >0 the solution w(z) is as-
sumed to satisfy the point conditions

Im[l(a‘/.)w(aj)]:bj,
[l 2K =N
/€ _{N—K+1,~--,N+1,

KN, (1.9)
0<K<N,
where

a,eT,(j=1N),

a,eTy(j=N+1-,2K-N+1,K >N)
are distinct points, and b, (j e J +{0}) are all real con-
stants satisfying the conditions

[b,| <k, j e +{0}, (1.10)

for a non-negative constant ;.

2. Estimates of Solutions for the Poincaré
Boundary Value Problem

First of all, we give a prior estimate of solutions of
Problem Q for (1.6).

Theorem 2.1. Suppose that Condition C holds and ¢ =
0 in (1.6) and (1.7). Then any solution [w(z),u(z)} of
Problem Q for (1.6) satisfies the estimates

Cy[w(z),D]+C,[u(z).D]< MK, 2.1)

Lﬁol |:

we|+|w.|, D] < Mk, 2.2)
in which
S =min(a,1-2/p,),
M, =M (g, po-ky-a.K,D),j=1,2,
k' =k, +k, +k,+k, {[C(W,D)]” +[C(u,5)]’}.

Proof. Noting that the solution [w(z),u (z)] of Prob-
lem Q satisfies the equation and boundary conditions

w.—Re[Ow, + Aw]= 4, + G(z,u,w)in D, (2.3)

Re| 2(z)w]=c,(z)+h(z)onT, (2.4)
Im[mw(a,ﬂ =b.jesu(l)=h, (@25
according to the method in the proof of Theorem 4.3,

Chapter II, [2] or Theorem 2.2.1, [5], we can derive that
the solution w(z) satisfies the estimates

Cy[w(z),D]< Mk, 2.6)
L, o [[w:|+w.|, D)< M k., 2.7)
APM
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where
M, =M (q,,py-ky.a,K,D), j=3,4
and
k, =k +k,+k+L,[G.D].
From (1.8), it follows that

Cylu(z),D|<MCy[w(z).D]+ky,  (2.8)

LPOsZ I:

in which M =M, (p,,D) is a non-negative constant.
Moreover, it is easy to see that

u;

+u|. D] <M Cy[w(z).D]+ky, (2.9)

L,,[G.D]<L,,[B,D][C(wD)]

tion [w(z),u(z)] of Problem Q for (1.6) satisfies the
estimates

Cy[w(z).D]+Cylu(z).D]< Mk,

LPo 2 [

here B, p,, k" are as stated in Theorem 2.1,

@.11)

w.|+w.|.D]+L, ,[u..D]|<Mk", (2.12)
M]. :Mj (qo,po,ko,a,K,D),j =6,7.

Proof. It is easy to see that [w(z),u(z)} satisfies
the equation and boundary conditions

w. —Re[Ow, |+ Aw=eAu+4,+G,zeD, (2.13)

Re| 2(z2w(z) |=—acu+c, () +h(z), €T, (2.14)

2, [ D] (uD)] 210 | 2(a,Jo(a,) | =y, je u()=,  @15)
<k, {[C(W,E)T + [C(u,ﬁ)]r}. Moreover from (2.6) and (2.7), we have
Combining (2.6)-(2.10), the estimates (2.1) and (2.2) s [W(Z)’DJ <M, {k kG [u,DJ} ’ (2.16)
are obtained. L, o[ wo|+w.|.D] <M, {k* +ek,C, [u,ﬁ]} .
Theorem 2.2. Let the Equation (1.6) satisfy Condition
Cand ¢ in (1.6)-(1.7) be small enough. Then any solu- and from (2.8)-(2.10), it follows that
C, |:W(Z),5:| <M, {k* + &k, [MSCﬂ [w(z),ﬁ} +k3J}, 217
L, | |w- +|wz|,5] <M, {k* + ¢k, [MSCﬂ I:W(Z),[_):| +k3J}.
If the positive constant ¢ is small enough such that Combining (2.8) and (2.18), we obtain
1-eck,M, M, >1/2, then the first inequality in (2.17) = =
implieos tliat5 / R s [W(Z)’D}Lcﬂ [u(z),D] (2.19)

[w(z) 5]< (1+eky) M,
’ AT gk MM,

5

(2.18)
<2(1+&k,) ) Mk" = Mk,

+|w,

LPO:Z I:

Wz

<M, {k* + ¢k, |:M5Cﬂ [w(z),5]+k3]} +MC, [w(z),5}+k3

.D]+L, ,[u.D]

<[1+(1+ M) M K =Mk,

which is the estimate (2.11). As for (2.12), it is easily
derived from (2.9) and the second inequality in (2.17),
ie.

(2.20)

<[1+M, (1+eky)+ MM, (1+ kM, ) | k" = M k"

3. Solvability Results of the Poincaré
Boundary Value Problem

We first prove a lemma.
Lemma 3.1. If G(z,u,w) satisfies the condition stat-

ed in Condition C, then the nonlinear mapping G:
C(D)xc(D)-L,,(D)

defined by G:G[z,u(z),w(z)] is continuous and
bounded

L, [G(z,u (z),w(z)),ﬁ] <L, I:BI,E:H:C(W,B)]U+LP)2 [BZ,E][C(u,E)]T s 3.1
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where p=p,>2.
Proof. In order to prove that the mapping G :

C(D)c(B)> 1,0 (D)
Defined by G:G[z,u(z),w(z)] is continuous, we

choose any sequence of functions [ w, (z),u,(z)]

(wn (z),un (z) € C(l_)),n =0,1,2,-- )
such that
C[Wn - W0,5:|+ C[un —u0,5] -0
as n—oo. Similarly to Lemma 2.2.1, [5], we can prove
that

C = G(z,un,wn)—G(z,uO,wo)

And the inequality (3.1) is obviously true.

Theorem 3.2. Let the complex Equation (1.1) satisfy
Condition C, and the positive constant & in (1.6) and
(1.7) is small enough.

1) When 0<o, <1, Problem Q for (1.6) has a
solution [w(z),u(z)} , where w(z), u(z)eW}iﬂv2 (D),
Po(2< p, < p) isa constant as stated before.

2) When min(a,r:f>1, Problem Q for (1.6) has a

solution [w(z),u(z) , where w(z)eWp'oy2 (D), pro-
vided that
My =L,,[ 4,D]+C,[c,.T]+ Y |p] (3.3)

jeJ+{0}
is sufficiently small.
3)If F(z,u,w,w,),G(z,u,w) satisfy the conditions,

possesses the property i.e. Condition C and for any functions w, (z),
Lpﬂz[Cn,5]—>0 as n— oo (3.2) uj(z)eC<5)(j=l,2) and V(z)el, , (5),there are
F(z,ul,wl,V)—F(z,uz,wz,V) = Re[;ll (w1 —wz)]—i-g;lz (“1 —uz),
. - 3.4
G(zu;,w)—G(z,uy,w,) = Re[B1 (w—w, )}+832 (u1 ~u,),
where o o above solution of Problem Q is unique.
Lp,2 EAj,D], Lp,2 [Bj,DJ <ky<ow, j=1,2, Proof. 1) In this case, the algebraic equation for ¢ is as
¢ 1is a sufficiently small positive constant, then the follows
(M6+M7){Lp)2 [4,,D)+L,,[B.D]t" +L,,[ B, Dt +L,[a,T]+ ¥ |b,|} =1, 3.5)
jeJ+{0}

where Mg, M, are constants as stated in (2.11) and (2.12).
Because 0<o, 7<I1, the Equation (3.5) has a unique
solution 7=M,,>0. Now we introduce a bounded,
closed and convex subset B" of the Banach space C(D x
C(D), whose elements are of the form [w(z),u(z }
satisfying the condition
w(z),u(z) € C(E), C[W(Z),D:I-f— C[u(z),ﬁ] <M,,.
(3.6)
We choose a pair of functions [Vv(z),d(z)} € B and
substitute it into the appropriate positions of
F(z,u,w,w,), G(z,u,w) in (1.6) and the boundary con-
dition (1.7), and obtain
wf:ﬁ'(z,u,w,ﬁ,ﬁ/,wz)+G(z,ﬁ,ﬂ/), (3.7)

Re[mw(z)] =—¢cc,(z)ii+c,(z)+h(z),zel, (3.8)

+

C[w(z),5]+LPO,2 [ wo|+(w,

(MM, ){Lp,2 [4.D]+C,[e,.T]+ Jz{o;|b"| +L,, [G,E]}
jeJ+

IN

IN
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(Mg+M,){M,y+L,,[ B, DM +L

where
F(z,u,w,ﬂ,w,wz) = Re[Q(z,ft,v?/,wz)wz+A1 (z,zl,ﬁ/)w]
+ed, (z,0,W)u+4,(z,a,w).

In accordance with the method in the proof of Theo-
rem 1.2.5, [5], we can prove that the boundary value
problem (3.7), (3.8) and (1.6) has a unique solution
[w(z),u(z)]. Denote by [W,u]:T[W(z),ﬁ(z)] the
mapping from [fv(z),ﬁ(z)] to [w(z),u(z)]. Noting
that

L,,[eAu,D]|<eM ik, C,[-£cu.T] < eM,k,.
provided that the positive number & is sufficiently
small, and noting that the coefficients of complex Equa-

tion (3.7) satisfy the same conditions as in Condition C,
from Theorem 2.2, we can obtain

,5}+C[u(z),5:|+Lp0,2 [uZ,DJ

(3.9)

(MM, ){Mg +L,,[B.D]C[W,D] +L,,[B,.D] C[ﬁ,D]T}

(B, DM} =M,

p.2
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This shows that 7 maps B" onto a compact subset in B".
Next, we verify that 7 in B is a continuous operator. In
fact, we arbitrarily select a sequence { w, (z),ﬁn (z)} in
B’, such that

C(W, =Wy, D)+C(ii,~ii,,D) >0 asn—>o0. (3.10)

By Lemma 3.1, we can see that

L,,[ 4, (z,.7,)~ 4, (z.d,%,),D ] >0 G
(j=1,2,3)as n—> .

Moreover, from
[w”,un]:T[ﬂ/”,ﬁn],
[wo,uo] =T[v~vo,ﬁo] ,

it is clear that [w, —w,,u, —u,] is a solution of Problem
Q for the following equation

(Wn_WO)?=ﬁ(zjun)wn9ﬁl1’wl1’wl1z)
—ﬁ(Z,Uogwo,ﬁoaw09W0z)
+G(Z,L~ln,ﬂ/n)—G(Z,l;09wo)in Dv

Re[/l(z)(wn—wo)]

=—¢c,(z)(a,—t,)+h(z)on T,

Im[@(w” (aj)— w, (a‘/.))} =0,

jed,u,(1)-u,(1)=0.

(3.12)

(3.13)

(3.14)

In accordance with the method in proof of Theorem
2.2, we can obtain the estimate

C[wn —wo,l_)]+Lp0’2 U(Wn —WO)?|+|(Wn —WO)Z|,5:|
+C|:”n _”0’5]+Lp0,2 |:(”n _uo)z ’5]

£M11{5Lp,2[Az(z,ﬁ i, )it, — Ay (2., W, )iy, D |

no

(3.15)
in which M, =M, (q,,p, k., K,D). From (3.10),
(3.11) and the above estimate, we obtain

C[w,, —w0,5J+C[un —uo,ﬁ] —0 as n—> o

On the basis of the Schauder fixed-point theorem, there
exists a function [w(z),u(z)}(w(z),u(z)eC(l_))) such
that [w(z),u(z)]=T[w(z),u(z)], and from Theorem
2.2, it is easy to see that w(z), u(z)eW;O’2 (D), and
[w(z),u(z)] is a solution of Problem Q for the Equa-

tion (1.6) and the relation (1.8) with the condition 0< o,
r<l.

Copyright © 2013 SciRes.

In addition, if G(z,u,w)=ReBw+B,[u[ in D,
where 0<7<1, L [B/,5]§k0<oo,j:1,2, then the

] p‘Q
above solvability result still hold by using the above
similar method.

2) Secondly, we discuss the case: min(o,7)>1. In
this case, (3.5) has the solution ¢=M,, provided that
My in (3.3) is small enough. Now we consider a closed
and convex subset B, in the Banach space
C(D)x C(D), ie.

B.={w(z),u(z)e C(D),C[w,D]+C[u,D] < M,}.

(3.16)

Applying a method similar as before, we can verify
that there exists a solution

[w(z),u(z)] ew, ,(D)xw, ,(D)
of Problem Q for (1.6) with the condition min (0', z’) >1.
Moreover, if G(z,u,w)=ReBw+B, |u|T in D, where
l<z<o, L,, [Bj,DJ <k, <, j=1, 2. Under the same

condition, we can derive the above solvability result by
the similar method.

3) When G(z,u,w) satisfies the condition (3.4), we
can verify the uniqueness of solutions in this theorem. In
fact, if [w (z).1,(z)], [wy(z).u,(2)] are two solu-
tions of Problem Q for the Equation (1.6), then

[W(z),u (z)] = [wl (z)-wy(2).u,(2)—u, (z)}

satisfies the equation and boundary conditions

W, —Re[sz +</~11 +l§’1)w} 28(;12 +l§’2)u,z eD, (3.17)

Re| 2(z)w(z)|=-acu+h(z),zeT,  (3.18)
Im[mw(aj)] =0,jeJ.

in which |Q| <¢q, <1. Similarly to Theorem 2.2, we can

(3.19)

derive the following estimates of the solution
[w(z),u (z)} for complex Equation (3.17):

C, [w(z),5]+Cﬂ [u(z),ﬁ} <Mk,

LPO»Q |:

(3.20)

+

we|+|w.|.D]< M k', (3.21)

where
B =min(a,1-2/p,),

M (=M ;(qy: pysky-2. K. D), j =12,13)

J

are two non-negative constants, k* = 2¢k,C (u,l_)). More-
over the estimate

Cy[w(z).D]+(1-26kM ;) C,u(2),D]|<0 (3.22)

can be derived. Provided that the positive constant & is
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small enough such that (1-2¢k,M ;)>0, from (3.22) it
follows u(z)=u,(z)-u,(z)=0, i.e. u;(z)=u,(z) in
D. This completes the proof of the theorem.

From the above theorem, the next result can be de-
rived.

Theorem 3.3. Under the same conditions as in Theo-
rem 3.2, the following statements hold.

1) When the index K > N, Problem P for (1.1) has N
solvability conditions, and the solution of Problem P
depends on 2K — N +2 arbitrary real constants.

2) When 0<K <N, Problem P for (1.1) is solvable,

{h/:O,jzl,---,N—K,

if 2N —-K solvability conditions are satisfied, and the
solution of Problem P depends on K +2 arbitrary real
constants.

3) When K < 0, Problem P for (1.1) is solvable under
2N —-2K —1 conditions, and the solution of Problem P
depends on | arbitrary real constant.

Moreover, we can write down the solvability condi-
tions of Problem P for all other cases.

Proof. Let the solution [w(z),u(z)] of Problem Q
for (1.6) be substituted into the boundary condition (1.7)
and the relation (1.8). If the function h(z) =0,zel,ie

if 0SK<N,

h=0,j=01-Nht=0m=1--K-1, if K<O0,

and d,=0, j=1,--,N,then we have w(z)=u, inD
and the function w(z) is just a solution of Problem P
for (1.1). Hence the total number of above equalities is
just the number of solvability conditions as stated in this
theorem. Also note that the real constants b, in (1.8) and
b,(jeJ) in(1.9) are arbitrarily chosen. This shows that
the general solution of Problem P for (1.1) includes the
number of arbitrary real constants as stated in the theo-
rem.
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