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ABSTRACT 

In [1], I. N. Vekua propose the Poincaré problem for some second order elliptic equations, but it can not be solved. In 
[2], the authors discussed the boundary value problem for nonlinear elliptic equations of second order in some bounded 
domains. In this article, the Poincaré boundary value problem for general nonlinear elliptic equations of second order in 
unbounded multiply connected domains have been completely investigated. We first provide the formulation of the 
above boundary value problem and corresponding modified well posed-ness. Next we obtain the representation theorem 
and a priori estimates of solutions for the modified problem. Finally by the above estimates of solutions and the 
Schauder fixed-point theorem, the solvability results of the above Poincaré problem for the nonlinear elliptic equations 
of second order can be obtained. The above problem possesses many applications in mechanics and physics and so on. 
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1. Formulation of the Poincaré Boundary 
Value Problem 

Let D be an  -connected domain including the  1N 

0

N
infinite point with the boundary jj

   
2 0C 

 in ,  

where  . Without loss of generality, we 
assume that D is a circular domain in 

1 
1z  , where the 

boundary consists of circles 1  N  0 1 1N z     , 
 z z r    , 1 , , Nj j j  and . In this 

article, the notations are as the same in References [1-8]. 
We consider the second order equation in the complex 
form  
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    (1.1) 

satisfying the following conditions. 
Condition C. 1) ,  

are continuous in  for almost every point 
 and Q A  for .z D

 , , ,Q z u w U , ,jA z u
,u w  

, 0 1jj 
z D

 
2) The above functions are measurable in   for 

all continuous functions  in   ,u z  w z D , and satisfy  

 
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p jL A z u w D k j

w D k
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 0 0, 2 < ,p p p p 0 1,k k


2 ,U

,2pL A3 , ,z u
      (1.2) 

in which   are non-negative 

constants. 
3) The Equation (1.1) satisfies the uniform ellipticity 

condition, namely for any number u  and w, U1, 
  the inequality  

   F 1 2 0 1 2, , , , , , ,z u w U F z u w U q U U  

z D

 

 0 1q  holds, where for almost every point   is 
a non-negative constant. 

 4) For any function  u z C D    1
,2pw z W D , , 

 , ,G z u w

 
 satisfies the condition  

1 2, , , 0 , ,z zG z u u B u B u
         

  , , 1, 2j j zB B z u u j   satisfy the condition  in which 

,2 0, , 1, 2,p jL B D k j      

k

       (1.3) 

with a non-negative constant . 0

Now, we formulate the Poincaré boundary value 
problem as follows. 

Problem P. In the domain D, find a solution u z  of 
Equation (1.1), which is continuously differentiable in 
D , and satisfies the boundary condition  

   

     

1 2

1 2

1
,

2

. . Re , ,z

u
c z u c z

i e z u c z u c z z




 


 


 

   (1.4) 
   

Din which   is any unit vector at every point on   , 
     cos , cos , ,z x i y     1c z  and  2c z  are 
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known functions satisfying the conditions  

     0 1 0, , , ,C k C c      2 2, ,k C c k     (1.5) 

where ,  0   1 2 1   0k 2k

cos 0c 

, ,  are non-negative 
constants. 

If  and 1  on  , where n is the 
outward normal vector on 

 , 0n 
 , then Problem P is the 

Dirichlet boundary value problem (Problem D). If 
 and 1a  on  ,ncos  1 0  , then Problem P is the 

Neumann boundary value problem (Problem N), and if 
, and 1  on  , then Problem P is the 

regular oblique derivative problem, i.e. the third bound-
ary value problem (Problem III or O). Now the direc-
tional derivative may be arbitrary, hence the boundary 
condition is very general. 

 , ncos  0 0c

The integer  
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2
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is called the index of Problem P. When the index   
Problem P may not be solvable, and when  the 
solution of Problem P is not necessarily unique. Hence 
we consider the well-posedness of Problem P with modi-
fied boundary conditions. 

0,K 

 Problem Q. Find a continuous solution  ,w z u z    
of the complex equation  
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satisfying the boundary condition  
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where j  are appropriate real constants 
such that the function determined by the integral in (1.8) 
is single-valued in , and the undetermined function 

 is as stated in   h z
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in which 0,1, ,h j N   1, , 1, 0h m K K    

0K 

j , m  
are unknown real constants to be determined appropri- 
ately. In addition, for  the solution  w z

 

 is as- 
sumed to satisfy the point conditions  
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are distinct points, and 0b j J j  are all real con- 
stants satisfying the conditions  

 3, 0 ,jb k j J  

3k

 

         (1.10) 

for a non-negative constant . 

2. Estimates of Solutions for the Poincaré 
Boundary Value Problem 

First of all, we give a prior estimate of solutions of 
Problem Q for (1.6). 

Theorem 2.1. Suppose that Condition C holds and ε = 
0 in (1.6) and (1.7). Then any solution  ,w z u z    of 
Problem Q for (1.6) satisfies the estimates  

    1, , ,C w z D C u z D M k 
             (2.1) 

0 ,2 2, ,p z zL w w D M k           (2.2) 
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     1 2 3 0 , , .k k k k k C w D C u D
            
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Proof. Noting that the solution   of Prob- 
lem Q satisfies the equation and boundary conditions  
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    0Im , , 1 ,j j ja w a b j J u b      
    (2.5) 

according to the method in the proof of Theorem 4.3, 
Chapter II, [2] or Theorem 2.2.1, [5], we can derive that 
the solution  w z  satisfies the estimates  

  3, ,C w z D M k               (2.6) 

0 ,2 4, ,p z zL w w D M k            (2.7) 
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 , , 3, 4K D j 

   ,w z u z

013 SciRes.                                                                                 

where  

0 0 0, , , ,j jM M q p k    

and  

1 2k k k    3 , .pk L G D      

From (1.8), it follows that 

   5 3, ,w z D k    ,C u z D M C        (2.8) 
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  (2.9) 

in which 5 5 0M M p D  is a non-negative constant. 
Moreover, it is easy to see that  
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Combining (2.6)-(2.10), the estimates (2.1) and (2.2) 
are obtained. 

Theorem 2.2. Let the Equation (1.6) satisfy Condition 
C and   in (1.6)-(1.7) be small enough. Then any solu- 

tion     of Problem Q for (1.6) satisfies the 
estimates  
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Proof. It is easy to see that  satisfies 
the equation and boundary conditions  
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If the positive constant   is small enough such that Combining (2.8) and (2.18), we obtain  

0 3 51 1 2k M M  , then the first inequality in (2.17) 
implies that  
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which is the estimate (2.11). As for (2.12), it is easily 
derived from (2.9) and the second inequality in (2.17), 
i.e.  
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3. Solvability Results of the Poincaré  

Boundary Value Problem 
ed in Condition C, then the nonlinear mapping G:  


We first prove a lemma. 

Lemma 3.1. If  satisfies the condition stat-  , ,G z u w

    ,2pC D C D L D   

   , ,z u z w zG Gdefined by     is continuous and 
bounded  
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, , , , Re ,

V z L , th

F z u w V F z u w V A w w A u u

G z u w G z u w B w w B u u





        


      

 

 
                 (3.4) 

 



where  

,2 ,2 0, , , , 1, 2,p jA D L B D k j         
   p jL

  is a sufficiently small positive constant, th  the 

above solution of Problem Q is unique.  
ation for t is as 

en
Proof. 1) In this case, the algebraic equ

follows  
 

  6 7 ,2 3 ,2 1 ,2 2 2
{0}

, , , , ,p p p j
j J

M M L A D L B D t L B D t L a b t 


 

                 
 

             (3.5) 

 stated in (2.11) and (2.12). 

 

 

here M6, M7 are constants asw
Because 0  , 1  , the Equation (3.5) has a unique 
solution 10   Now we introduce a bounded, 
closed and convex subset B* of the Banach space 

0.t M
 C D  

  ,C D  whose elements are of the form    ,u z w z  
s g the condition  

   
atisfyin

      10  
 (3.6

se a pair of functions    ,w z u z B

, ,w z u z C D C   , , .w z D C u z D M     

We choo
) 

   
ositions of  

 and 
substitute it into the appropriate p
 , , , zF z u w w ,  , ,G z u w  in (1.6) and the bou con- ndary 

dition (1.7), a ain nd obt

 , , , ,zw F z u w    , , , ,zu w w G z u w         (3.7) 

         1 2Re ,z w z c z u c z h z z        

where  

,  (3.8) 

     
   

1

2 3

, , , Re , , , , ,

, , , , .

z z z, ,F z u w u w w Q z u w w w A z u w w

A z u w u A z u w

   
 

     

   
 

In accordance with the method in the proof of Theo-
re



m 1.2.5, [5], we can prove that the boundary value 
problem (3.7), (3.8) and (1.6) has a unique solution 

   ,w z u z   . Denote by      , ,w u T w z u z      the 
map  ping from    ,w z u z    oting 
that  

 to    ,w z u z   . N

 ,2 2p 10 0 1 10 0, , , .A u D M k C c u M k           

provided that the positive number 

L

  is sufficiently 

 

small, and noting that the coefficients of complex Equa-
tion (3.7) satisfy the same conditions as in Condition C, 
from Theorem 2.2, we can obtain  

   

   
 

  
 

0 0,2 ,2

6 7 9 ,2 1 10 ,2 2 1

, , , ,

,

,

, ,

p z z p z

p

p p

C w z D L w w D C u z D L u D

D

M M M L B D M L B D M

6 7 ,2 3 2 ,2
0

6 7 9 ,2 1 ,2 2

, ,

, , ,

p j
j J

p p

M M L A D C c b L G D

M M M L B D C w D L B D C u



 



                 
  

 

          
  

                



  

          0 10.M 

                   (3.9) 
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This shows that T maps B* onto a compact subset in B*. 

Next, we verify that T in B* is a continuous operator. In 
fact, we arbitrarily select a s  equence   ,n nw z u z   in 
B*, such that  

   0 0, ,n nC w w D C u u D      0 as .n    (3.10) 

By Lemma 3.1, we can see that  

  
 

,2 0 0

1, 2,3 as .

p j n n j

j n

 
 

  (3.11) 

Moreover, from  

, , ,L A z u w A z u   , , 0w D  

   , ,n nT w u   ,  n nw u

   0 0w u 0 0


, ,T w u   , 

it is clear that 0 0n n lution of Problem 
 equation  

,w w u u   is a so
Q for the following

   
 

 
0

0

, , , , ,

, , , , ,

, , in ,

n n n n n nzz

z

n n

w w F z u w u w w

z u w u w w

G z u w G z D

 

 

  

 

  
(3.12) 

 

0

0 0 0 0

0, ,u w
F 

  
  

0Re nz w w  
 1 0 on ,nc z u u h z     

     (3.13) 

   
   0

Im

, 1 1

j n j

n

a w a

j J u u



 

  0 0,

0.

jw a    


   (

In accordance with the method in proof of Theorem 
2.2, we can obtain the estimate  

3.14) 

   

 
   

   
   
   

0

0

0 ,2 0

0 ,2 0

11 ,2 2 2 0 0

0 0

1 0

, ,

, ,

, , , ,

, ,

, ,

n p n nz z

n p n z

p n n n

n

C w w D L w w w

C u u D L u u D

M L A z u w u A z u w

w D

C c z u u





       
        

   



    

    

 

 

 

(3.15) 
 0 , , , .

0w D

0 ,u D

,2 3 3 0 0

,2

, , , , ,

, , ,

p n n

p n n

L A z u w A z u w D

L G z u w G z u

   
 

   

 

in which 11 11 0 0, ,M M q p
(3.11) and the above estimate

k K D  From (3.10), 
, we obtain  

0 0, , 0u D     as .n   

int theorem, there  

ex  

n nC w w D C u   
On the basis of the Schauder fixed-po

ists a function         u z C D  such  

, and from Th  

, ,w z u z w z  
at        , ,w z u z T w z u z      th

sy to see t

eorem 

2.2, it is ea hat  w z ,    
0

1
,2pW D , and  

   ,w z u z    is a solution of Problem Q

u z 

 for the Equa-
tion (1.6) and the relation (1.8) with tion 0 the condi  , 

1 . 

In addition, if   1 2, , ReG z u w B w B u
   in D ,  

where ,2 00 1, , , 1, 2,p jL B D k j          then the  

above solvability result still
similar method. 

2) Secondly, we discuss the case: 

 hold by using the above 

 min , 1.    In 
this case, (3.5) has the solution 10t M  provided that 
M9 in (3.3) is small enough. Now we consider a closed 
and convex subset B  in the Banach space  
    ,C D C D  i.e.  

     , , .B w z u M    10   , ,z C D C w D C u D    
(3.16) 

Applying a   method similar as before, we can verify
that there exists a solution  

       
0 0,2 ,2, p pw z u z W D W D     

) with the condition 

1 1

 , .    of Problem Q for (1.6 min

over, if  
1

More



1 2, , ReG z u w B w B u


n D, where     i

1   , ,2 ,pL B D k  0j    , j = 1, 2. Under the same   

co vability resulndition, we can derive the above sol t by 
the similar method. 

3) When  , ,G z u w  satisfies the condition (3.4), we 
can verify the uniqu ess of solutions in this ten heorem. In 
fact, if    ,u z1 1w z ,    2 2,w z u z        are two solu- 
tions of Problem Q for the Equation (1.6), then  

           1 2 1 2, ,w z u z w z w z u z u z       
sa

  

tisfies the equation and boundary conditions  

 1 1Rez zw Qw A B w    
   2 2 , ,A B u z D    (3.17) 

     Re , ,z w z c u h z z    1       (3.18) 

 
 

  0, .j ja w a j J     
 

in which

Im       (3.19) 

 0 1Q q  . Similarly to Theorem 2.2, we can  

derive the following estimates of the solution  
   w ,z u z   plex Equation (3.17):   r cofo m

    12, , ,C w z D C u z D M k 
            (3.20) 

0 ,2 13, ,p z zL w w D M k           (3.21) 

where  

 0min ,1 2 ,p    

   0 0 0, , , , , , 12,13j jM M q p k K D j   

are two non-negative constants, 02 ,k k C u 
over the estimate  

.D  More- 

     0 13, 1 2C w z D k M C u z    , 0D    

can be derived. Provided that the positive constant 

  (3.22) 

  is 
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small enou   0 131 2 0k M  , from (3.22) it gh such that
follows      1 2 0u z u z u z   , i.e.    1u z 
D. Th e proof of the theorem. 

bove theorem, the next result can 

2u z  in 

be de- 

itions as in

 for (1.1) has N 
of Problem P 
stants. 

is co
From

rived.  

rem 3.2, t

depends o
2) Whe

mpletes th
 the a

Theorem 3.3. Under th
he following statem
en the index K > N
y conditions, and 
n 2 2K N   arb
n 0 ,

e same cond
ents hold. 
, Problem P
the solution 
itrary real con

 Theo-

1) Wh
solvabilit

K N   Problem P for (1.1) is solvable, 

if 2N K  solvability conditions are satisfied, and the 
solution of Problem P depends on 2K   arbitrary real 
co

is solvable under 
2

nstants. 
3) When K < 0, Problem P for (1.1) 

2 1N K   conditions, and the solution of Problem P 
depends on 1 arbitrary real constant. 

Moreover rite down the solvability , we can w condi-
tio lem P for a

L
dary 

tion (1.8). If the function   0,h z z  , i.e.  

1, ,

0,1, , , 0,j m

N

N h m


 




ns of Prob ll other cases.  
Proof. et the solution    ,w z u z    of Problem Q 

for (1.6) be substituted into the boun condition (1.7) 
and the rela

 

 

0,

0,
jh j

h j

 
 

,K


if 0 ,

1, , 1, if 0,

K N

K K

 
  

 

and 0jd  , 1, ,j N  , then we have   zw z u   D 
and the function  w z   of Problem P 
for (1.1). Hence the t r of above equalities is 
just the number of solvability conditions as s this 
heorem. Also note that the real constants b0

in
n

tated in 
 in (1.8) and 

 This shows that 
.1) includes the 

stated in the theo-
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