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ABSTRACT 

j-lanes hashing is a tree mode that splits an input message to j slices, computes j independent digests of each slice, and 
outputs the hash value of their concatenation. We demonstrate the performance advantage of j-lanes hashing on SIMD 
architectures, by coding a 4-lanes-SHA-256 implementation and measuring its performance on the latest 3rd Generation 
Intel® Core™. For messages whose lengths range from 2 KB to 132 KB, we show that the 4-lanes SHA-256 is between 
1.5 to 1.97 times faster than the fastest publicly available implementation that we are aware of, and between ~2 to ~2.5 
times faster than the OpenSSL 1.0.1c implementation. For long messages, there is no significant performance difference 
between different choices of j. We show that the 4-lanes SHA-256 is faster than the two SHA3 finalists (BLAKE and 
Keccak) that have a published tree mode implementation. Finally, we explain why j-lanes hashing will be faster on the 
coming AVX2 architecture that facilitates using 256 bits registers. These results suggest that standardizing a tree mode 
for hash functions (SHA-256 in particular) could be useful for performance hungry applications. 
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1. Introduction 

The performance of hash functions plays an important 
role in various situations (e.g., for SSL/TLS connections 
that use HMAC for authenticated encryption). In par- 
ticular, the performance of SHA-256 on high end proc- 
essors is a performance baseline for the SHA3 competi- 
tion [1].  

Recently, [2] published a “Simultaneous Hashing” (S- 
HASH) method, for using SIMD architectures to speed 
up the computations of SHA-256 (and other hashes) over 
multiple messages. In this paper, we apply this technique 
to accelerate SHA-256 for a single message, using a tree 
mode that we call j-lanes hashing. We show that the re- 
sulting “j-lanes SHA-256” is significantly faster than the 
standard (“linear” hereafter) SHA-256. This demon- 
strates the performance benefits that applications could 
gain if a tree mode for hash functions (in particular, 
SHA-256 and SHA-512) is standardized. It is interesting 
to compare our results to the two SHA3 finalists that 
already have a j-lanes tree mode (j = 2) implementation 
(see [3]): BLAKE and Keccak. We offer this comparison 
in Section 3. 

2. j-Lanes Hashing and the Special Case of  
4-Lanes SHA-256 

Tree hashing is a well known concept for efficient com-  

putations of hash functions, and is an efficient way for 
updating a hash value when only a portion of the mes- 
sage is changed. Some relevant references are [4-8]. We 
focus here on a specific tree construction, which is de- 
fined in the following section.  

2.1. j-Lanes Hashing 

Definition 1 (message j-Slicing): given a message m, its 
associated j-Sliced message is obtained by applying a 
permutation to the bits of m, followed by slicing the re- 
sulting message into consecutive disjoint slices. We de- 
note this by m = permutation (m1ǁm2ǁm3ǁ…ǁmj) under 
some agreed convention on how each slice is defined, 
and what the permutation is (for simplicity we assume 
that m has at least j bits, to avoid degenerate “null” 
slices). 

Definition 2 (j-lanes-hash): Let h = h (MESSAGE) be 
a hash function. Its associated j-lanes-hash, is a hash 
scheme that operates as follows:  

1) j-Slicing the message to m = permutation (m1ǁm2ǁ 
m3ǁ…ǁmj). 

2) Computing t1 = h (m1), t2 = h (m2), …, tj = h (mj).  
3) Computing t* = h (t1ǁt2ǁ…ǁtj).  
4) Returning the digest t*. 
(hereafter we call Step 3 the “Wrapping” step).  
j-lanes-hash is a special form of a tree mode (not a bi-  
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nary tree), where the number of nodes is j + 1 and the 
height of the tree is 2. As a special case of a tree mode, 
the security properties of this construction follow from 
the more general theory on tree hashing (e.g., [5,6] dis- 
cuss the security properties of a tree hash in the context 
of indifferentiability from an ideal hash function).  

Note that the above definition is flexible enough to 
cover several useful setups. One example is “interleav- 
ing” segments of a given message (which we use here, 
for directly taking advantage of SIMD architectures). 
Another case is when the data is consumed from j loca- 
tions (e.g., j pointers) of a message. This can occur, for 
example, in an application that hashes a file system (or a 
directory) where j is the number of files (and each file is 
a node in the tree).  

Hereafter, we assume that the processed messages are 
sufficiently long to gain performance from the j-lanes 
tree mode (and ignore trivially short message).  

2.2. Applying j-Lanes Hashing to Derive a  
4-Lanes SHA-256 

We use SHA-256 as the underlying hash algorithm, and 
generate a “j-lanes SHA-256”. Our motivation is to check 
the potential performance advantage of the paralleliza- 
tion supported by SIMD architectures (or multithreaded 
implementations).  

By splitting the message into j independent slices, the 
hash computations are reduced to the problem of hashing 
multiple independent messages, supplemented by the 
fixed-cost Wrapping step. With this, we can apply the 
techniques for utilizing SIMD architectures to hash mul- 
tiple independent messages (of different lengths). These 
techniques, and their resulting performance, are de- 
scribed in detail in [2].  

SHA-256 operates on 32-bit words. Therefore, on 
processors that support the AVX (or SSE) architecture 
that has 128-bit registers and the necessary integer in- 
structions, a natural choice for j-lanes (SHA-256) hash- 
ing is j = 4, with the obvious convention for slicing the 
message: consecutive 128-bit chunks of the message are 
treated as 4 consecutive 32-bit words, each one belongs 
to a different slice. These 4 words can then be viewed as 
4 “elements” of a single AVX register (xmm), and the 
SHA-256 computations can be parallelized using the 
SIMD architecture (see [2] for details). If the byte-length 
of the message is divisible by 256, we set the slices to 
have equal lengths. Otherwise, (at least) one of slice has 
a different length. This situation requires different han- 
dling in the last Update (with negligible performance 
cost). 

j-lanes hashing involves some overhead, and therefore, 
the performance gains are expected to be (fully) mani- 
fested only for sufficiently long messages.  

To illustrate, we note that the performance of SHA- 
256 is closely proportional to the number of invocations 
of its compression function (“Update” hereafter). Con- 
sider a message whose byte-length l is divisible by 256, 
and write l = 256x for some integer x. Hashing (with 
SHA-256) such a message requires 4x + 1 Updates, 
where the last one due to the padding block. On the other 
hand, 4-lanes SHA-256 for this message requires 4 (x + 1) 
+ 3 Updates, accounting for 1 padding block for each 
slice, and 3 Updates for the Wrapping step which re- 
quires hashing of a 128 bytes message. Comparing the 
linear (i.e., serial) SHA-256 to the 4-lanes SHA-256, we 
see that the latter involves 6 additional Updates. How- 
ever, from the total of 4x + 7 Updates, 4x can be paral- 
lelized, in particular by using the AVX architecture. This 
is the reason why the overall performance is expected to 
improve. 

3. Performance Studies 

This section discusses some performance studies for of 
j-lanes SHA-256. We first describe the measurement 
methodology. 
 Each measured function was isolated, run 25,000 

times (warm-up), followed by 100,000 iterations that 
were timed (using the RDTSC instruction) and aver- 
aged.  

 To minimize the effect of background tasks running 
on the system, each experiment was repeated five 
times, and the minimum result was recorded.  

 All the runs were carried out on a system where the 
Intel® Hyper-Threading Technology, the Intel® Turbo 
Boost Technology, and the Enhanced Intel Speed- 
step® Technology, were disabled.  

 The runs were executed on the 3rd Generation Intel® 
Core™ i7-3770 processor (previously known as “Ar- 
chitecture Code name Ivy Bridge”).  

 In all cases, the reported performance numbers ac- 
count for the full computations (i.e., including the 
padding and, when relevant. the final hashing of the j 
digests). 

 In our studies, we used two SHA-256 and three j- 
lanes-SHA-256 (j = 4, 8, 16) implementations as fol- 
lows:  

 OpenSSL (1.0.1c) linear: standard hashing using 
OpenSSL function.  

 4-SMS linear: standard hashing using the n-SMS (n = 
4) method (see [9,10]; we used here an improved ver- 
sion of this implementation).  

 j-lanes using OpenSSL: using OpenSSL’s (1.0.1c) 
SHA-256 function to implement j-lanes-SHA-256.  

 j-lanes using the n-SMS: using the n-SMS SHA-256 
implementation ([9,10]) to implement j-lanes SHA- 
256. 
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 AVX j-lanes hashing (j-lanes hashing for short): an 
optimized implementation of j-lanes SHA 256, using 
the S-HASH implementation of [2], and the AVX ar- 
chitecture.  

The results are illustrated in Figures 1-3.  
Figure 1 compares the different implementations for 

an 8 KB message and j = 4. Without parallelizing the 
hashing of the slices (as in j-lanes using OpenSSL and 
j-lanes using the n-SMS), the 4-lanes SHA-256 is slower 
than the linear implementation. This is due to the over-
heads of the j-lanes method. For example, OpenSSL 
(1.0.1c) uses 129 Updates and performs at 12.87 Cy- 
cles/Byte, while the 4-lanes SHA-256 implementation 
that simply calls the OpenSSL functions, uses 135 Up- 
dates, and performs at 13.57 Cycles/Bye. On the other 
hand, the optimized (using AVX) 4-lanes SHA-256 im-
plementation is 2.45 times faster than OpenSSL. 

Figure 2 illustrates the effect of the choice of j (= 4, 8, 
16). Obviously, increasing j involves additional overhead 
to the j-lanes hashing. For example, 16-lanes SHA-256 
for an 8 KB message involves 153 Updates, and is there- 
fore slower than the 4-lanes SHA-256 that uses only 135 
Updates (see top panel). However, both 8-lanes and 16- 
lanes SHA-256 are still significantly faster than the best 
performing linear implementation. For long messages 
(see bottom panel), the relative impact of the overheads 
decreases, and we obtain roughly the same performance 
for j = 4, 8, 16. 

Figure 3 shows the performance advantage of the 
4-lanes SHA-256 for messages of lengths varying from 2 
KB to 128 KB: 4-lanes SHA-256 is between 1.55 to 2 
times faster than the best serial implementation (and 1.97 
- 2.53 times faster than OpenSSL 1.0.1c).  

Figure 4 shows the performance advantage of the 4- 
lanes SHA-256 for a long message of 1 MB, measured on  
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Figure 1. Performance of different implementations of 4- 
lanes SHA-256, compared to linear SHA-256, for a 8192- 
byte message. Measurements taken on the 3rd Generation 
Intel® Core™ Processor. 
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Figure 2. Performance of j-lanes-SHA-256 for j = 4, 8, 16, 
compared to linear SHA-256. The message length is 8192 
bytes (top panel) and 131,072 bytes (bottom panel). Mea- 
surements taken on the 3rd Generation Intel® Core™ Proc- 
essor. 
 

 

Figure 3. Performance of 4-lanes SHA-256, compared to 
linear SHA-256, for different message lengths. Measure- 
ments taken on the 3rd Generation Intel® Core™ Processor. 
 
the two processors: the 2nd Generation and the 3rd Gene- 
ration Intel® Core™ Processors. We can see that the 4- 
lanes SHA-256 is 2.27x faster than the best linear im- 
plementation of SHA-256, when measured on the 2nd 
Generation Intel processor, and 2x faster when measured  
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Figure 4. Performance of 4-lanes SHA-256, compared to 
linear SHA-256, for a 1 MB message. Measurements taken 
on the 2nd Generation and on the 3rd Generation Intel® 
Core™ Processor. 
 
on the 3rd Generation Intel processor. 

A Comment on the SHA3 Finalists  

We expect that the SHA3 finalists [1] could also gain 
from using the j-lanes-hash, at least to some extent, and 
the performance gains will further increase when the 
AVX2 architecture becomes available. However, at this 
point, it is hard to tell if these algorithms would outper- 
form the j-lanes-SHA-256 and/or j-lanes-SHA-512, and 
by what margin.  

Since the two finalists BLAKE and Keccak already 
have a tree mode implementation (j = 2 for BLAKE and 
Keccak; see [3]), we show the performance comparisons 
of SHA-256, BLAKE, and Keccak in linear and in j- 
lanes mode in Figure 5. Although we tried a 4-lanes 
BLAKE512, we could not get it to perform better than 
the underlying hash function. This is due to the fact that 
the optimized BLAKE512 implementation already ex- 
ploits the parallelism offered by the AVX architecture. 

As expected, the j-lanes (tree mode) implementation 
improves the performance of all three algorithms. The 
results show that the j-lanes SHA-256 implementation is 
the fastest one of these three.  

Recalling that SHA-256 (and SHA-512) is the per- 
formance baseline for SHA3, we conclude (from the 
currently available information) that considering the j- 
lanes mode still does not offer a performance advantage 
for SHA3 over SHA-256. This is consistent with the 
findings of [6]: migration to a new SHA3 standard could 
not be motivated by performance advantages on the high 
end platforms1. 

 

Figure 5. Performance of SHA-256, BLAKE256, and Kec- 
cak, in “linear” mode and in tree mode (for a 8192-byte 
message). BLAKE512 is brought here only for comparison 
(4-lanes BLAKE512 is not shown because we could not gain 
good performance from this implementation). Measure- 
ments taken on the 3rd Generation Intel® Core™ Processor. 
 
4. Conclusions 

We demonstrated the performance gains of j-lanes hash- 
ing, using SHA-256 as the underlying hash algorithm. 
On the 3rd Generation Intel® Core™ Processor (with 
AVX architecture) selecting j = 4, gives speedup factors 
between 1.55x to 2x, compared to the best available im- 
plementation (up to 2.53x when comparing to OpenSSL 
1.0.1c). We focused on j = 4, as the natural choice for the 
current AVX (and SSE) architectures. Interestingly, al- 
though j = 4 yields the best results (the Wrapping over- 
head is the smallest among the tested cases), we note that 
the performance with all the studies choices j = 4, 8, 16 
is roughly the same for long messages.  

We also comment that with the near future AVX2 ar- 
chitecture [11], a natural choice would be j = 8 for 
SHA-1, SHA-256 and j = 4 for SHA-512, and the j-lanes 
implementations will be significantly faster. Therefore, if 
a j-lanes hashing mode is adopted, and the ecosystem 
would prefer to support only a single value of j (to reduce 
the interoperability complexities), it seems that selecting 
j = 8 would be a good choice. 

In general, the j-lanes-hash can be useful in other sce- 
narios, and with different values of j. One example men- 
tioned about is hashing a file system, where j is the 
number of files (and each file is a node in the tree). Such 
computations can be accelerated not only by using SIMD 
architectures, but also by using the processing power of 
multi-cores systems.  

We conclude that the j-lanes-hash could alleviate com- 
putational bottlenecks, and recommend that this mode (or 
a general tree mode) should be standardized. To this end, 
we comment that standardization of a j-lanes (or any tree) 
mode should also properly define different initialization  

1Since the paper was submitted, NIST has announced Keccak as the 
winner of the SHA3 competition. The performance analysis (and com-
parison) that is provided here is still useful for assessing the implica-
tions of this selection (from the performance viewpoint). vectors (depending also on the value of j) in order to dis- 
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tinguish the resulting digests from outputs of the linear 
SHA-256 (analogously to the how a digest truncation 
(e.g., SHA-224) is defined). 
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