
Journal of Information Security, 2013, 4, 7-11
http://dx.doi.org/10.4236/jis.2013.41002 Published Online January 2013 (http://www.scirp.org/journal/jis)

A j-Lanes Tree Hashing Mode and j-Lanes SHA-256

Shay Gueron1,2
1Department of Mathematics, University of Haifa, Haifa, Israel

2Intel Corporation, Israel Development Center, Haifa, Israel
Email: shay@math.haifa.ac.il

Received August 19, 2012; revised September 20, 2012; accepted October 12, 2012

ABSTRACT

j-lanes hashing is a tree mode that splits an input message to j slices, computes j independent digests of each slice, and
outputs the hash value of their concatenation. We demonstrate the performance advantage of j-lanes hashing on SIMD
architectures, by coding a 4-lanes-SHA-256 implementation and measuring its performance on the latest 3rd Generation
Intel® Core™. For messages whose lengths range from 2 KB to 132 KB, we show that the 4-lanes SHA-256 is between
1.5 to 1.97 times faster than the fastest publicly available implementation that we are aware of, and between ~2 to ~2.5
times faster than the OpenSSL 1.0.1c implementation. For long messages, there is no significant performance difference
between different choices of j. We show that the 4-lanes SHA-256 is faster than the two SHA3 finalists (BLAKE and
Keccak) that have a published tree mode implementation. Finally, we explain why j-lanes hashing will be faster on the
coming AVX2 architecture that facilitates using 256 bits registers. These results suggest that standardizing a tree mode
for hash functions (SHA-256 in particular) could be useful for performance hungry applications.

Keywords: Tree Mode Hashing; SHA-256; SHA3 Competition; SIMD Architecture; Advanced Vector Extensions

Architectures; AVX; AVX2

1. Introduction

The performance of hash functions plays an important
role in various situations (e.g., for SSL/TLS connections
that use HMAC for authenticated encryption). In par-
ticular, the performance of SHA-256 on high end proc-
essors is a performance baseline for the SHA3 competi-
tion [1].

Recently, [2] published a “Simultaneous Hashing” (S-
HASH) method, for using SIMD architectures to speed
up the computations of SHA-256 (and other hashes) over
multiple messages. In this paper, we apply this technique
to accelerate SHA-256 for a single message, using a tree
mode that we call j-lanes hashing. We show that the re-
sulting “j-lanes SHA-256” is significantly faster than the
standard (“linear” hereafter) SHA-256. This demon-
strates the performance benefits that applications could
gain if a tree mode for hash functions (in particular,
SHA-256 and SHA-512) is standardized. It is interesting
to compare our results to the two SHA3 finalists that
already have a j-lanes tree mode (j = 2) implementation
(see [3]): BLAKE and Keccak. We offer this comparison
in Section 3.

2. j-Lanes Hashing and the Special Case of
4-Lanes SHA-256

Tree hashing is a well known concept for efficient com-

putations of hash functions, and is an efficient way for
updating a hash value when only a portion of the mes-
sage is changed. Some relevant references are [4-8]. We
focus here on a specific tree construction, which is de-
fined in the following section.

2.1. j-Lanes Hashing

Definition 1 (message j-Slicing): given a message m, its
associated j-Sliced message is obtained by applying a
permutation to the bits of m, followed by slicing the re-
sulting message into consecutive disjoint slices. We de-
note this by m = permutation (m1ǁm2ǁm3ǁ…ǁmj) under
some agreed convention on how each slice is defined,
and what the permutation is (for simplicity we assume
that m has at least j bits, to avoid degenerate “null”
slices).

Definition 2 (j-lanes-hash): Let h = h (MESSAGE) be
a hash function. Its associated j-lanes-hash, is a hash
scheme that operates as follows:

1) j-Slicing the message to m = permutation (m1ǁm2ǁ
m3ǁ…ǁmj).

2) Computing t1 = h (m1), t2 = h (m2), …, tj = h (mj).
3) Computing t* = h (t1ǁt2ǁ…ǁtj).
4) Returning the digest t*.
(hereafter we call Step 3 the “Wrapping” step).
j-lanes-hash is a special form of a tree mode (not a bi-

Copyright © 2013 SciRes. JIS

S. GUERON 8

nary tree), where the number of nodes is j + 1 and the
height of the tree is 2. As a special case of a tree mode,
the security properties of this construction follow from
the more general theory on tree hashing (e.g., [5,6] dis-
cuss the security properties of a tree hash in the context
of indifferentiability from an ideal hash function).

Note that the above definition is flexible enough to
cover several useful setups. One example is “interleav-
ing” segments of a given message (which we use here,
for directly taking advantage of SIMD architectures).
Another case is when the data is consumed from j loca-
tions (e.g., j pointers) of a message. This can occur, for
example, in an application that hashes a file system (or a
directory) where j is the number of files (and each file is
a node in the tree).

Hereafter, we assume that the processed messages are
sufficiently long to gain performance from the j-lanes
tree mode (and ignore trivially short message).

2.2. Applying j-Lanes Hashing to Derive a
4-Lanes SHA-256

We use SHA-256 as the underlying hash algorithm, and
generate a “j-lanes SHA-256”. Our motivation is to check
the potential performance advantage of the paralleliza-
tion supported by SIMD architectures (or multithreaded
implementations).

By splitting the message into j independent slices, the
hash computations are reduced to the problem of hashing
multiple independent messages, supplemented by the
fixed-cost Wrapping step. With this, we can apply the
techniques for utilizing SIMD architectures to hash mul-
tiple independent messages (of different lengths). These
techniques, and their resulting performance, are de-
scribed in detail in [2].

SHA-256 operates on 32-bit words. Therefore, on
processors that support the AVX (or SSE) architecture
that has 128-bit registers and the necessary integer in-
structions, a natural choice for j-lanes (SHA-256) hash-
ing is j = 4, with the obvious convention for slicing the
message: consecutive 128-bit chunks of the message are
treated as 4 consecutive 32-bit words, each one belongs
to a different slice. These 4 words can then be viewed as
4 “elements” of a single AVX register (xmm), and the
SHA-256 computations can be parallelized using the
SIMD architecture (see [2] for details). If the byte-length
of the message is divisible by 256, we set the slices to
have equal lengths. Otherwise, (at least) one of slice has
a different length. This situation requires different han-
dling in the last Update (with negligible performance
cost).

j-lanes hashing involves some overhead, and therefore,
the performance gains are expected to be (fully) mani-
fested only for sufficiently long messages.

To illustrate, we note that the performance of SHA-
256 is closely proportional to the number of invocations
of its compression function (“Update” hereafter). Con-
sider a message whose byte-length l is divisible by 256,
and write l = 256x for some integer x. Hashing (with
SHA-256) such a message requires 4x + 1 Updates,
where the last one due to the padding block. On the other
hand, 4-lanes SHA-256 for this message requires 4 (x + 1)
+ 3 Updates, accounting for 1 padding block for each
slice, and 3 Updates for the Wrapping step which re-
quires hashing of a 128 bytes message. Comparing the
linear (i.e., serial) SHA-256 to the 4-lanes SHA-256, we
see that the latter involves 6 additional Updates. How-
ever, from the total of 4x + 7 Updates, 4x can be paral-
lelized, in particular by using the AVX architecture. This
is the reason why the overall performance is expected to
improve.

3. Performance Studies

This section discusses some performance studies for of
j-lanes SHA-256. We first describe the measurement
methodology.
 Each measured function was isolated, run 25,000

times (warm-up), followed by 100,000 iterations that
were timed (using the RDTSC instruction) and aver-
aged.

 To minimize the effect of background tasks running
on the system, each experiment was repeated five
times, and the minimum result was recorded.

 All the runs were carried out on a system where the
Intel® Hyper-Threading Technology, the Intel® Turbo
Boost Technology, and the Enhanced Intel Speed-
step® Technology, were disabled.

 The runs were executed on the 3rd Generation Intel®
Core™ i7-3770 processor (previously known as “Ar-
chitecture Code name Ivy Bridge”).

 In all cases, the reported performance numbers ac-
count for the full computations (i.e., including the
padding and, when relevant. the final hashing of the j
digests).

 In our studies, we used two SHA-256 and three j-
lanes-SHA-256 (j = 4, 8, 16) implementations as fol-
lows:

 OpenSSL (1.0.1c) linear: standard hashing using
OpenSSL function.

 4-SMS linear: standard hashing using the n-SMS (n =
4) method (see [9,10]; we used here an improved ver-
sion of this implementation).

 j-lanes using OpenSSL: using OpenSSL’s (1.0.1c)
SHA-256 function to implement j-lanes-SHA-256.

 j-lanes using the n-SMS: using the n-SMS SHA-256
implementation ([9,10]) to implement j-lanes SHA-
256.

Copyright © 2013 SciRes. JIS

S. GUERON 9

 AVX j-lanes hashing (j-lanes hashing for short): an
optimized implementation of j-lanes SHA 256, using
the S-HASH implementation of [2], and the AVX ar-
chitecture.

The results are illustrated in Figures 1-3.
Figure 1 compares the different implementations for

an 8 KB message and j = 4. Without parallelizing the
hashing of the slices (as in j-lanes using OpenSSL and
j-lanes using the n-SMS), the 4-lanes SHA-256 is slower
than the linear implementation. This is due to the over-
heads of the j-lanes method. For example, OpenSSL
(1.0.1c) uses 129 Updates and performs at 12.87 Cy-
cles/Byte, while the 4-lanes SHA-256 implementation
that simply calls the OpenSSL functions, uses 135 Up-
dates, and performs at 13.57 Cycles/Bye. On the other
hand, the optimized (using AVX) 4-lanes SHA-256 im-
plementation is 2.45 times faster than OpenSSL.

Figure 2 illustrates the effect of the choice of j (= 4, 8,
16). Obviously, increasing j involves additional overhead
to the j-lanes hashing. For example, 16-lanes SHA-256
for an 8 KB message involves 153 Updates, and is there-
fore slower than the 4-lanes SHA-256 that uses only 135
Updates (see top panel). However, both 8-lanes and 16-
lanes SHA-256 are still significantly faster than the best
performing linear implementation. For long messages
(see bottom panel), the relative impact of the overheads
decreases, and we obtain roughly the same performance
for j = 4, 8, 16.

Figure 3 shows the performance advantage of the
4-lanes SHA-256 for messages of lengths varying from 2
KB to 128 KB: 4-lanes SHA-256 is between 1.55 to 2
times faster than the best serial implementation (and 1.97
- 2.53 times faster than OpenSSL 1.0.1c).

Figure 4 shows the performance advantage of the 4-
lanes SHA-256 for a long message of 1 MB, measured on

12.87

10.18

5.46 5.78
6.44

0

2

4

6

8

10

12

14

OpenSSL (linear) n-SMS (linear) j-lanes hashing

Cy
cl

es
 p

er
 b

yt
e

8,192 bytes message

j=4

j=8

j-16

12.87

10.18

13.57

10.81

0

2

4

6

8

10

12

14

OpenSSL
(linear)

n-SMS
(linear)

4-lane
using n-S

Cy
cl

es
 p

er
 b

yt
e

8,192 bytes message

5.46

s
MS

4-lanes
hashing

4-lanes
using OpenSSL

Figure 1. Performance of different implementations of 4-
lanes SHA-256, compared to linear SHA-256, for a 8192-
byte message. Measurements taken on the 3rd Generation
Intel® Core™ Processor.

j=16

(a)

12.78

10.09

5.05 5.07 5.11

0

2

4

6

8

10

12

14

OpenSSL (linear) n-SMS (linear) 4-lanes hashing

Cy
cl

es
 p

er
 b

yt
e

131,072 bytes message

j=4

j=8

j-16j=16

(b)

Figure 2. Performance of j-lanes-SHA-256 for j = 4, 8, 16,
compared to linear SHA-256. The message length is 8192
bytes (top panel) and 131,072 bytes (bottom panel). Mea-
surements taken on the 3rd Generation Intel® Core™ Proc-
essor.

Figure 3. Performance of 4-lanes SHA-256, compared to
linear SHA-256, for different message lengths. Measure-
ments taken on the 3rd Generation Intel® Core™ Processor.

the two processors: the 2nd Generation and the 3rd Gene-
ration Intel® Core™ Processors. We can see that the 4-
lanes SHA-256 is 2.27x faster than the best linear im-
plementation of SHA-256, when measured on the 2nd
Generation Intel processor, and 2x faster when measured

Copyright © 2013 SciRes. JIS

S. GUERON 10

17.41

11.41

5.01

12.76

10.1

5.03

0

2

4

6

8

10

12

14

16

18

20

OpenSSL (linear) n-SMS (linear) 4-lanes hashi

Cy
cl

es
 p

er
 b

yt
e

1MB message

12.87

10.18

5.46

7.55
5.93 5.82

11.03

7.04

0

2

4

6

8

10

12

14

ng

2nd
Generation
Intel
Processor

3rd
Generation
Intel
Processor

Cy
cl

es
 p

er
 b

yt
e

8192 bytes message

Figure 4. Performance of 4-lanes SHA-256, compared to
linear SHA-256, for a 1 MB message. Measurements taken
on the 2nd Generation and on the 3rd Generation Intel®
Core™ Processor.

on the 3rd Generation Intel processor.

A Comment on the SHA3 Finalists

We expect that the SHA3 finalists [1] could also gain
from using the j-lanes-hash, at least to some extent, and
the performance gains will further increase when the
AVX2 architecture becomes available. However, at this
point, it is hard to tell if these algorithms would outper-
form the j-lanes-SHA-256 and/or j-lanes-SHA-512, and
by what margin.

Since the two finalists BLAKE and Keccak already
have a tree mode implementation (j = 2 for BLAKE and
Keccak; see [3]), we show the performance comparisons
of SHA-256, BLAKE, and Keccak in linear and in j-
lanes mode in Figure 5. Although we tried a 4-lanes
BLAKE512, we could not get it to perform better than
the underlying hash function. This is due to the fact that
the optimized BLAKE512 implementation already ex-
ploits the parallelism offered by the AVX architecture.

As expected, the j-lanes (tree mode) implementation
improves the performance of all three algorithms. The
results show that the j-lanes SHA-256 implementation is
the fastest one of these three.

Recalling that SHA-256 (and SHA-512) is the per-
formance baseline for SHA3, we conclude (from the
currently available information) that considering the j-
lanes mode still does not offer a performance advantage
for SHA3 over SHA-256. This is consistent with the
findings of [6]: migration to a new SHA3 standard could
not be motivated by performance advantages on the high
end platforms1.

Figure 5. Performance of SHA-256, BLAKE256, and Kec-
cak, in “linear” mode and in tree mode (for a 8192-byte
message). BLAKE512 is brought here only for comparison
(4-lanes BLAKE512 is not shown because we could not gain
good performance from this implementation). Measure-
ments taken on the 3rd Generation Intel® Core™ Processor.

4. Conclusions

We demonstrated the performance gains of j-lanes hash-
ing, using SHA-256 as the underlying hash algorithm.
On the 3rd Generation Intel® Core™ Processor (with
AVX architecture) selecting j = 4, gives speedup factors
between 1.55x to 2x, compared to the best available im-
plementation (up to 2.53x when comparing to OpenSSL
1.0.1c). We focused on j = 4, as the natural choice for the
current AVX (and SSE) architectures. Interestingly, al-
though j = 4 yields the best results (the Wrapping over-
head is the smallest among the tested cases), we note that
the performance with all the studies choices j = 4, 8, 16
is roughly the same for long messages.

We also comment that with the near future AVX2 ar-
chitecture [11], a natural choice would be j = 8 for
SHA-1, SHA-256 and j = 4 for SHA-512, and the j-lanes
implementations will be significantly faster. Therefore, if
a j-lanes hashing mode is adopted, and the ecosystem
would prefer to support only a single value of j (to reduce
the interoperability complexities), it seems that selecting
j = 8 would be a good choice.

In general, the j-lanes-hash can be useful in other sce-
narios, and with different values of j. One example men-
tioned about is hashing a file system, where j is the
number of files (and each file is a node in the tree). Such
computations can be accelerated not only by using SIMD
architectures, but also by using the processing power of
multi-cores systems.

We conclude that the j-lanes-hash could alleviate com-
putational bottlenecks, and recommend that this mode (or
a general tree mode) should be standardized. To this end,
we comment that standardization of a j-lanes (or any tree)
mode should also properly define different initialization

1Since the paper was submitted, NIST has announced Keccak as the
winner of the SHA3 competition. The performance analysis (and com-
parison) that is provided here is still useful for assessing the implica-
tions of this selection (from the performance viewpoint). vectors (depending also on the value of j) in order to dis-

Copyright © 2013 SciRes. JIS

S. GUERON

Copyright © 2013 SciRes. JIS

11

tinguish the resulting digests from outputs of the linear
SHA-256 (analogously to the how a digest truncation
(e.g., SHA-224) is defined).

5. Acknowledgements

I thank Jean-Philippe Aumasson, Bart Preneel, and Jesse
Walker for helpful discussions.

REFERENCES
[1] National Institute of Standards and Technology, “Cryp-

tographic Hash Algorithm Competition,” 2005.
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

[2] S. Gueron and V. Krasnov, “Simultaneous Hashing of Mul-
tiple Messages”, Journal of Information Security, Vol. 3,
2012, pp. 319-325. doi:10.4236/jis.2012.34039

[3] Virtual Applications and Implementations Research Lab，
“SUPERCOP,” 2012.
http://bench.cr.yp.to/supercop.html

[4] G. Bertoni, J. Daemen, M. Peeters and G. Van Assche,
“Keccak Sponge Function Family Main Document,” 2009.
http://cuda-keccak.googlecode.com/svn/trunk/docs/Kecca
k-main-2.1.pdf

[5] G. Bertoni, J. Daemen, M. Peeters and G. Van Assche,
“Sufficient Conditions for Sound Tree and Sequential
Hashing Modes,” 2009. http://eprint.iacr.org/2009/210

[6] Y. Dodis, L. Reyzin, R. L. Rivest and E. Shen, “Indiffe-
rentiability of Permutation-Based Compression Functions
and Tree-Based Modes of Operation, with Applications to
MD6,” Proceedings of FSE 2009, Lecture Notes in Com-
puter Science, Leuven, 22-25 February 2009, pp. 104-
121.

[7] R. C. Merkle, “A Certified Digital Signature,” Advances
in Cryptology—Proceedings of CRYPTO’89, Lecture
Notes in Computer Science, Santa Barbara, 20-24 August
1989, pp. 218-238.

[8] P. Sarkar and P. J. Schellenberg, “A Parallelizable Design
Principle for Cryptographic Hash Functions,” 2002.
http://eprint.iacr.org/2002/031

[9] S. Gueron and V. Krasnov, “Parallelizing Message Sche-
dules to Accelerate the Computations of Hash Functions,”
Journal of Cryptographic Engineering, Vol. 4, No. 4,
2012, pp. 241-253.

[10] S. Gueron and V. Krasnov, “[PATCH] Efficient Imple-
mentations of SHA256 and SHA512, Using the Simul-
taneous Message Scheduling method,” 2012.
http://rt.openssl.org/Ticket/Display.html?id=2784&user=
guest&pass=guest

[11] M. Buxton, “Haswell New Instruction Descriptions Now
Available!” 2011.
http://software.intel.com/en-us/blogs/2011/06/13/haswell-
new-instruction-descriptions-now-available/

http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://dx.doi.org/10.4236/jis.2012.34039
http://eprint.iacr.org/2009/210
http://eprint.iacr.org/2002/031
http://rt.openssl.org/Ticket/Display.html?id=2784&user=guest&pass=guest
http://rt.openssl.org/Ticket/Display.html?id=2784&user=guest&pass=guest
http://software.intel.com/en-us/blogs/2011/06/13/haswell-new-instruction-descriptions-now-available/
http://software.intel.com/en-us/blogs/2011/06/13/haswell-new-instruction-descriptions-now-available/

