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ABSTRACT 

In this paper the new modification of Laplace Adomian decomposition method (ADM) to obtain numerical solution of 
the regularized long-wave (RLW) equation is presented. The performance of the method is illustrated by solving two 
test examples of the problem. To see the accuracy of the method, L2 and L∞ error norms are calculated. 
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1. Introduction 

The regularized long wave (RLW) equation which can be 
shown in the form 

0t x x xxtu u uu u   



           (1) 

where ,   are positive parameters, is an important 
nonlinear wave equation. This equation plays a major 
role in the study of nonlinear dispersive waves. The 
RLW equation particularly describes the behavior of the 
undular bore [1-3], it has also been derived from the 
study of water waves and ion acoustic plasma waves.  

The RLW equation has been solved analytically only 
for restricted set of boundary and initial conditions. There- 
fore, the numerical solution of this equation has been the 
subject of many papers [4-7]. Recently a great deal of 
interest has been focused on application of Adomian de- 
composition method (ADM) to solve a wide variety of 
nonlinear problems [8,9]. In this paper, we will apply the 
new modification of Laplace ADM to the RLW Equation 
(1). The soliton solution of RLW equation has the form 

    2
0sech p x vt x , 3u x t c          (2) 
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, and c  is a constant [10]. In this 
work, a new modification of Laplace ADM is used to 
solve the RLW equation with the initial condition 

               (3) 

x  is a localized disturbance inside the con-

sidered interval. 

where 

2. Description of Method  

We begin by consider Equation (1) in an operator form 

    0t xL u u R u N u

f

             (4) 

where tL
t
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 is a linear operator and R its remainder  

of the linear operator. The nonlinear term is represented 
by  N u
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. Thus we get 

         (5) 

We represent solution as an infinite series given be-
low, 

            (6) 

The nonlinear term Nu can be decomposed into infi-
nite series of polynomial given by: 
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where An are Adomian polynomials [11] of 0 1  
and it can be calculated by formula given below: 

u u u u u u


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A

and so on. The rest of the polynomials can be constructed 
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in a similar manner. 
By applying the Laplace transform to both sides of 

Equation (5), we obtain 

    t xL u u        Ru Nu      (8) 

Thus 
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, ,0 xu x t u x u R   u Nu

s s
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(9) 

In the new modification of ADM [12], Wazwaz re-
placed the initial condition  ,0u x

 0,
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 by a series of infi-
nite components i.e., 

 ,0u x            (10) 

and the new recursive relationship can be expressed in 
the form 
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where  

    , ,u x t U x s       (12) 

Now, by applying inverse Laplace transformation we 
get: 
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Using (13) the series solution follows immediately. 

3. Numerical Examples and Results  

In this section, the new modification of Laplace ADM 
will be demonstrated on illustrative examples and we 
compare the approximate solution obtained for our RLW 
equation with known exact solutions. We define  to be 
m-term approximate solution, i.e. 

 

e  the exact solution and m  the absolute error between 
the exact solution and the approximate solution 

m e me u u   

In order to show how good the numerical solutions are 
in comparison with the exact ones, we will use the L2 and 
L∞ error norms defined by 
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Example (1) 
We consider Equation (1) with the initial condition  

    2
0,0 3 sechu x c p x x   

The exact solution of this problem is given by Equation 
(2). This solution corresponds to the motion of a single 
solitary wave with amplitude 3c and width p, initially 
centered at 0x , where 1v c 

1

 is the wave velocity. We 
use the new modification of Laplace ADM to solve this 
equation, all computations are done for the parameters 

0 0x ,  1   and  . 
0.1cWe consider  , as in [13], so the initial condition 

 ,0u x  can expressed as a series of infinite components 
i.e. 
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Using recursive relation (11) yield the components 
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And so on, in this manner the rest of components of 
the decomposition series were obtained. The results are 
given in Table 1. The error norms for (c = 0.1) are re-
corded in Table 2 for different value of m.  

Also in Figure 1 we show the exact solution and nu-
merical solution with new modification of Laplace ADM 
for t = 0.1 and t = 0.5. Figure 2 shows the exact solution 
and numerical solution with new modification for t = 0.5 
at the interval 5 ≤ x ≤ 5. 

Example (2) 
In the second test problem [14], a smaller solitary wave 

of amplitude 0.109 (c = 0.05), has been modeled. 
The initial condition ,0u x  can expressed as a se-

ies of infinite components i.e. r 
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Table 1. Absolute errors for Example (1) with c = 0.1 and m = 10. 

x/t 0.01 0.02 0.03 0.04 0.05 

0.1 4.60152 × 10−7 4.29123 × 10−7 9.14459 × 10−8 1.09975 × 10−6 2.59382 × 10−6 

0.2 1.15346 × 10−6 1.8112 × 10−6 1.97626 × 10−6 1.65183 × 10−6 8.41272 × 10−7 

0.3 1.82435 × 10−6 3.1446 × 10−6 3.96518 × 10−6 4.29071 × 10−6 4.12595 × 10−6 

0.4 2.4624 × 10−6 4.40862 × 10−6 5.84456 × 10−6 6.77623 × 10−6 7.20981 × 10−6 

0.5 3.05691 × 10−6 5.58214 × 10−6 7.58301 × 10−6 9.06702 × 10−6 1.00418 × 10−5 

 
Table 2. L2 and L∞ errors for Example (1) with m = 4, 6 and 10. 

n 4 6 10 

x L2 L∞ L2 L∞ L2 L∞ 

0.1 7.08453 × 10−7 5.4329 × 10−6 2.30062 × 10−7 2.44677 × 10−7 1.88979 × 10−6 2.59382 × 10−6 

0.2 1.71987 × 10−6 1.8958 × 10−5 9.54522 × 10−7 5.43345 × 10−6 9.42236 × 10−7 8.41272 × 10−7 

0.3 2.7237 × 10−6 3.2340 × 10−5 1.70526 × 10−6 1.05194 × 10−5 9.18072 × 10−7 4.12595 × 10−6 

0.4 3.71444 × 10−6 4.5525 × 10−5 2.43975 × 10−6 1.54669 × 10−5 1.73297 × 10−6 7.20981 × 10−6 

0.5 4.6877 × 10−6 5.8456 × 10−5 3.15018 × 10−6 2.02399 × 10−5 2.61274 × 10−6 1.00418 × 10−5 

 

    
(a)                                                           (b) 

Figure 1. The exact solution and numerical solution with new modification of Laplace ADM for Example (1), for t = 0.1 and 
(b) for t = 0.5. 
 

      
(a)                                                     (b) 

Figure 2. (a) The exact solution for t = 0.5 and −5 ≤ x ≤ 5; (b) Numerical solution with new modification for t = 0.5 and −5 ≤ x 
 5. ≤  
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And so on, in this manner the rest of components of 
the decomposition series were obtained. 

The results are given in Table 3 and the error norms for 
(c = 0.05) are recorded in Table 4 for different value of m. 
Also in Figure 3 we show the exact solution and nu-
merical solution with new modification of Laplace ADM 
for t = 0.1 and t = 0.5. Figure 4 show the exact solution 
and numerical solution with new modification for t = 0.5 
at the interval 10 ≤ x ≤10. 

4. Conclusion 

In this paper, we use the new modification of Laplace  
 

Table 3. Absolute errors for Example (2) with c = 0.05, k = 0.109 and m = 10. 

x/t 0.01 0.02 0.03 0.04 0.05 

0.1 5.68488 × 10−9 2.48779 × 10−9 9.54769 × 10−9 3.03715 × 10−8 5.99272 × 10−8 

0.2 1.56382 × 10−8 2.23134 × 10−8 2.01032 × 10−8 9.09157 × 10−9 1.06314 × 10−8 

0.3 2.52853 × 10−8 4.14523 × 10−8 4.86129 × 10−8 4.6885 × 10−8 3.63928 × 10−8 

0.4 3.44902 × 10−8 5.96351 × 10−8 7.55814 × 10−8 8.2482 × 10−8 8.04953 × 10−8 

0.5 4.31131 × 10−8 7.65863 × 10−8 1.00602 × 10−7 1.15349 × 10−7 1.21020 × 10−7 

 
Table 4. L2 and L∞ errors for Example (2) with m = 4, 6 and 10. 

n 4 6 10 

x L2 L∞ L2 L∞ L2 L∞ 

0.1 4.34078 × 10−6 1.3424 × 10−6 1.37871 × 10−6 4.32171 × 10−7 4.61577 × 10−7 1.48914 × 10−7 

0.2 4.97100 × 10−6 1.70414 × 10−6 1.59318 × 10−6 5.56933 × 10−7 5.4413 × 10−7 1.98079 × 10−7 

0.3 5.60954 × 10−6 2.0710 × 10−6 1.80913 × 10−6 6.83084 × 10−7 6.26085 × 10−7 2.47459 × 10−7 

0.4 6.26191 × 10−6 2.4466 × 10−6 2.0284 × 10−6 8.11842 × 10−7 7.08138 × 107 2.97527 × 10−7 

0.5 6.93387 × 10−6 2.8344 × 10−6 2.25293 × 10−6 9.44397 × 10−7 7.91008 × 10−7 3.48733 × 10−7 

 

    
(a)                                                           (b) 

Figure 3. The exact solution and numerical solution with new modification of Laplace ADM for Example (1), (a) for t = 0.1 
and (b) for t = 0.5. 
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(a)                                                      (b) 

Figure 4. (a) The exact solution for t = 0.5 and −10 ≤ x ≤ 10; (b) Numerical solution with new modification for t = 0.5 and −10 
≤ x ≤ 10. 
 
ADM to solve the RLW equation. The decomposition 
series solutions are converge very rapidly in real physical 
problems. The numerical results we obtained justify the 
advantage of this methodology, even in the few terms 
approximation is accurate. The method is tested on the 
problem of single solitary motion and high accuracy was 
achieved with the L2 and L∞ error norms. The new 
Laplace ADM presented here is for the RLW equation, 
but it can be implemented to a large number of physically 
important nonlinear wave problems.  
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