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ABSTRACT 
nRIn this paper, we discuss the integral equation on a half space    
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                    (0.1) 

where    1 1, , ,n n, x x x
  nR is the reflection of the point x about the x  . We study the regularity for the 

positive solutions of (0.1). A regularity lifting method by contracting operators is used in proving the boundedness of 
solutions, and the Lipschitz continuity is derived by combinations of contracting and shrinking operators introduced by 
Ma-Chen-Li ([1]). 
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1. Introduction 

Let  be the upper half Euclidean space  nR
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n nR x x x x R x    
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In this paper we consider the regularity of positive 
solution of the following integral equation in    
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where . It relates closely to the higher-order PDEs 
with Navier boundary conditions in :  
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D. Li and R. Zhuo proved the following result: 
Proposition 1.1. ([2]) Let   be an even number and  
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. If  is the smooth solution of the inte-  u x

gral Equation (1.1), then  satisfies the PDEs (1.2).  

In particular, when    and 
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n
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, Chen and  

Li ([3]) showed the equivalence between the integral 
Equation (1.1) and partial differential Equation (1.2). For 
more results concerning integral equations, see [4-6]. 

Firstly, in this paper we have the boundedness for the 
positive solutions of (1.1) by using the contracting op-
erators.  

Theorem 1.1. Let u be a solution of (1.1). If 
n

p
n




, 

and 
 

 
1n p

nu L R


   , then u is in r n nL R L R
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 for 

any   .  
Remark 1. In [2], the authors proved that Theorem 1.1 

is true for the critical case 
n

p
n








. While our result 

also covers subcritical case 
n n

p
n n


 


 

 
 and super 

critical case 
n

p
n


. 


Then we employ the brand new method which is the 

combinations of contracting and shrinking operators in-
troduced by Ma-Chen-Li ([1]) to derive the Lipschitz 
continuity of solutions.  
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Theorem 1.2. Under the same conditions of Theorem 
1.1, u is Lipschitz continuous in .  nR

L

L
2.  Estimate by Contracting Operators 

In this section, we obtain  estimate for positive solu-
tions to the equation (0.1) by using the contracting op-
erators. To prove the Theorem 1.1, we need the follow-
ing equivalent form of Hardy-Littlewood-Sobolev ine-
quality.  

Lemma 2.1. Let  
nr
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Proof of Theorem 1.1: The proof is divided into two 
steps. 

Step 1. We first show that ,  u x L R   
n

, 
x R 

    .a x u x

. Define  
1p

 

Then  

     da y u y y
1 1

n n nR
u x

x y x y
 


 

 
  
   

  

For a positive number A, define  

     , if

0, elsewherA

a x a x
a x

 
 


,or

e.

A x A

   .B Aa x a x 

 

Let  

 a x  

Obviously,  B , and  vanishes outside 
the ball 

a x A  Ba x
 0AB . 

Define  

      d .y v y y
1 1

nA An nR
T v x a

x y x y
  

 
  
   

  

     d .
1 1

nA Bn nR
F x a

x y x y
 


 

 
  
   

 y u y y

   .A Ax F x 

1 r  
n

 

The Equation (0.1) can be rewritten as  

  u x T u  

We will show that, for any , 
1) TA is a contracting map from  to rL R  r nL R  

for A large, and 
 r nL R 2) AF x  is in  . 
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lev inequality and Hölder inequality to obtain  
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If , we are done. If , repeat the above 
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process and after a few steps, we arrive at  
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n
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Step 2. In this step we will show that  .nL R
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We conclude that  
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3. Lipschitz Continuity by Combinations of 
Contracting Operators and Shrinking 
Operators 

In the previous section we showed that the solution 
 of (0.1) is in . In this section, we will use 

the regularity lifting by combinations of contracting and 
shrinking operators to prove  , the space 
of Lipschitz continuous functions with norm  

 
   

 0,1 supn nC R L R
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To prove the Theorem 1.2, we need introduce the fol-
lowing definition, property and a more general Regular-
ity Lifting Theorem on the combined use of contracting 
and shrinking operators. 

Let V be a Hausdorff topological vector space. Sup-
pose there are two extented norms (i.e. the norm of an 
element in V might be infinity) defined on V,  

   : : and : : .
X Y

X v V v Y v V v         

Definition. (“XY-pair”) Suppose X, Y are two normed 
subspaces described above, X and Y are called “XY-pair”, 
if whenever the sequence  nu X nu u with  in X 
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with the norm defined in (3.1).  

Theorem 3.1. (Regularity Lifting Theorem) Suppose 
Banach spaces X, Y are an “XY-pair”, and let  and 
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 is a contraction: 

, , for some 0 1;
X X

Tf Tg f g f g       X

:T YY

 

and  is shrinking:  

, , for some 0 1.
Y Y

Tg g g       Y

for some .Sf Tf F F
Define  

   X Y

: .S  X Y X Y

inu Tu F
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The proof and some applications of Theorem 3.1 can 
be found in [1,7,8]. 

nProof of Theorem 1.2: For any x R
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It follows that the solution of (0.1) only differs by a 
constant multiple from the solution of the following 
equation  
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Hence, for convenience of argument, we prove that 
every positive solution u of (3.2) is Lipschitz continuous. 
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Again  choosing   sufficiently small, we derive   by
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 1), 2) and 3), by the The
3.1 and Remark 2, we conclude that the solutio
is Lipschitz continuous. This completes the pro
Th . 

Usually, contracting operators are used to lift reg
ties. For a linear operator, if it is “shrinking”, then it is 
contracting. While for nonlinear problems, as were seen 
in Section 3, sometimes it is very difficult or even im-
possible to prove that it is contracting in a given functio
space. However, one can show that it is “shrinking”, a
can still lift the regularity of solutions in many cases. The 
ge la

4. Acknowledgements 

enxiong Chen for his 
 discussions.  

 Society, Vol. 
138, 2010, pp. 2779-2791.  
doi:10.1090/S

 (b  
e can guarantee (3.8). 
So far we have verified orem 

n u of (0.1) 
of of the 

eorem 1.2
ulari- 

 
n 

nd 

neral Regu rity Lifting Theorem is applied for inte- 
gral equations and system of integral equations associ- 
ated with Bessel potentials and Wolff potentials (see [1] 
and [7]), and therefore arrive at higher regularity as 
Lipschitz continuity of solutions.  
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