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ABSTRACT 

In real world decision making problems, the decision maker has to often optimize more than one objective, which might 
be conflicting in nature. Also, it is not always possible to find the exact values of the input data and related parameters 
due to incomplete or unavailable information. This work aims at developing a model that solves a multi objective dis-
tribution programming problem involving imprecise available supply, forecast demand, budget and unit cost/profit co-
efficients with triangular possibility distributions. This algorithm aims to simultaneously minimize cost and maximize 
profit with reference to available supply constraint at each source, forecast demand constraint at each destination and 
budget constraint. An example is given to demonstrate the functioning of this algorithm. 
 
Keywords: Decision Making Problems; Multi Objective Distribution Programming Problem; Fuzzy Set Theory 

1. Introduction 

The distribution planning decision (DPD) problem in- 
volves optimizing the distribution plan for transporting 
goods from a set of sources to a set of destinations in a 
supply chain. With a variety of distributing routes, the 
aim of the DPD problem is to determine how many units 
should be shipped from one source to one destination so 
that the available supply at each source and the forecast 
demand at each destination are satisfied. In most real- 
world DPD problems, the decision maker (DM) must 
simultaneously handle conflicting objectives like mini- 
mizing total distribution costs, number of rejected items 
and delivery time/distance, and maximizing total profits, 
relative safety and customer service level. 

When any of the ordinary linear programming (LP) 
method or the existing solution algorithms is used to 
solve DPD problems, the objectives and model inputs are 
generally assumed to be precisely given (crisp). However, 
in practical DPD problems, input data and related pa- 
rameters, such as available supply, forecast demand and 
related cost/time/profit coefficients, are often imprecise 
(fuzzy) because of incomplete or (and) unavailable in- 
formation. So, conventional LP method and solution al- 
gorithms cannot solve the imprecise (fuzzy) DPD pro- 
gramming problems. 

Fuzzy set theory was presented by Zadeh [1] and has 
been applied extensively in various fields. His study 
showed that the importance of the theory of possibility is 
based on the fact that much of the information, on which 
human decisions are based, is possibilistic rather than 

probabilistic in nature. In 1976, Zimmermann [2] first  
introduced fuzzy set theory into an ordinary LP problem 
with fuzzy objective and constraints. Following, the 
fuzzy decision making method proposed by Bellman and 
Zadeh [3] confirmed the existence of an equivalent ordi- 
nary LP form. Subsequently, Chanas et al. [4] presented 
a fuzzy linear programming (FLP) method to solve DPD 
problems with crisp cost coefficients and fuzzy supply 
and demand. Furthermore, Zimmermann [5] extended his 
FLP method to a multi-objective linear programming 
(MOLP) problem. In addition, researchers have devel- 
oped several FGP methods to solve multi-objective DPD 
problems. Li and Lai [6] designed a fuzzy compromise 
programming method to obtain a non-dominated com- 
promise solution for multi-objective DPD problems in 
which various objectives were synthetically considered 
with the marginal evaluation for individual objectives and 
the global evaluation for all objectives. Related studies 
on solving DPD problems with multiple fuzzy objectives 
included Hussein [7] and Abd El-Wahed [8]. Moreover, 
Lai and Hwang [9] developed an auxiliary MOLP model 
for solving PLP problems with imprecise objective 
and/or constraint coefficients with triangular distributions. 
Tien-Fu Liang [10] integrated the available concepts to 
solve multi-objective DPD problems involveing impre- 
cise available supply, forecast demand and unit cost/time 
coefficients with triangular possibility distributions. 

In this article, we aim to solve a multi objective dis- 
tribution programming problem which simultaneously 
minimizes cost and maximizes profit with reference to 
available supply constraint at each source, forecast de- 
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mand constraints at each destination and the total budget 
constraint. We have assumed the available supply, fore- 
cast demand, budget and related cost and profit coeffi- 
cients to be imprecise with triangular possibility distribu- 
tions. Also, the interactive PLP method provides a sys- 
tematic framework that facilitates the decision making 
process, enabling a DM to interactively modify the im- 
precise data and related parameters until a satisfactory 
solution is obtained. The proposed methodology can be 
applied to various real world multi objective problems 
such as assignment problems, transportation problems 
and many more such problems in which the information 
is given in the form of triangular possibility distributions. 

2. Problem Description 

A general multi objective distribution programming 
problem aims to determine the right plan for distributing 
a homogeneous commodity from m sources to n destina-
tions. Each source has an available supply of the com-
modity to distribute to various destinations, and each 
destination has a forecast demand of the commodity to be 
received from various sources. The available supply for 
each source, the forecast demand for each destination, 
and related cost/profit coefficients are generally impre-
cise over the planning horizon due to incomplete and/or 
unobtainable information. The proposed PLP method 
aims to simultaneously minimize the total distribution 
costs and maximize the total profit with reference to 
available supply constraint at each source, forecast de-
mand constraint at each destination and the total budget 
constraint. This work focuses on developing an interac-
tive PLP method for optimizing the distribution plan in 
uncertain environments. 

Thus, all the objectives are imprecise thereby incorpo-
rating the variations in the decision maker’s judgments 
relating to the solutions of the multi objective optimiza-
tion problems in a framework of fuzzy aspiration levels. 
The pattern of triangular possibility distribution is adopted 
to represent the imprecise objective functions and related 
imprecise numbers. All of the objective functions and the 
constraints are linear and the cost and profit on a given 
route are directly proportional to the units distributed. 

3. Notations 

3.1. Index Sets 

 i index for source, for all 1,2, ,i m  ; 
 j index for destination, for all 1,2, , ; j n
 g index for objectives, for 1, 2g  . 

3.2. Decision Variables 

 ijx  units distributed from source i to destination j 
(units). 

3.3. Objective Functions 

 
1Z  total distribution costs ($); 

 
2Z  total profit ($). 

3.4. Parameters 

 ijc  distribution cost per unit delivered from source i 
to destination j ($/unit); 

 
ijp  profit per unit delivered from source i to destina-

tion j ($/unit); 

 iS  total available supply for each source i (units); 

 
jD  total forecast demand of each destination j 

(units); 
 B  total budget ($). 

4. Problem at a Glance 

The aim of the problem is to minimize total cost of dis-
tribution and maximize profit (where cost and profit co-
efficients are fuzzy numbers with triangular possibility 
distributions) with reference to imprecise available sup-
ply constraint at each source, forecast demand constraint 
at each destination and the total budget constraint. 
Mathematically, 

 
1

1 1

min
m n

ij ij
i j
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        (4.5) 

5. Methodology 

This work assumes the DM to have already adopted the 
pattern of triangular possibility distribution for all impre-
cise numbers. For instance, the triangular possibility dis-
tribution of imprecise cost coefficient (given in Figure  

 , ,o m p
ij ij ij ijc c c c m

ijc

o

, where  is the most possible  1), 

value that definitely belongs to the set of available values 
(degree of association = 1, if normalized), ijc  is the 
most optimistic value that has a very low likelihood of 
belonging to the set of available values (degree of asso-
ciation = 0) and p

ij  is the most pessimistic value that 
has a very low likelihood of belonging to the set of 
available values (degree of association = 0). 

c
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Figure 1. Triangular possibility distribution of .  ijc



 
Similarly, triangular possibility distribution of impre-  

cise profit coefficient,  , ,p m o
ijp pij  ij ijp p m

ijp

op

, where  is  

the most possible value that definitely belongs to the set 
of available values ( degree of association = 1, if nor-
malized), ij  is the most optimistic value that has a 
very low likelihood of belonging to the set of available 
values ( degree of association = 0) and p

ij  is the most 
pessimistic value that has a very low likelihood of be-
longing to the set of available values ( degree of associa-
tion = 0). 

p

Geometrically, these imprecise objective functions are 
fully defined by three prominent points    ,1 , ,0m oz z

  and ,0pz

mz
 m oz z



. The imprecise cost objective can be mini-
mized by pushing the three prominent points of triangu-
lar possibility distribution towards left and the imprecise 
profit objective can be maximized by pushing these 
points to the right. Because of the vertical coordinates of 
the prominent points being fixed at either 1 or 0, the 
three horizontal coordinates are the only considerations. 
Thus we aim to simultaneously minimize the most possi-
ble objective value of the imprecise cost objective func-
tion, 1 , maximize the possibility of obtaining lower 
objective value, 1 1  (region I of the possibility 
distribution in Figure 2), and minimize the risk of ob-
taining higher objective value, 


 1 1

p mz z

 2 2
m pz z

 (region II of 
the possibility distribution in Figure 2) and maximize the 
most possible objective value of the imprecise profit ob-
jective function, 2 , minimize the possibility of obtain-
ing lower objective value,  (i.e. region I) and 
maximize the possibility of obtaining higher objective 
value,  (i.e. region II). 

mz

 oz z2 2

Therefore, the above two fuzzy objectives are broken 
down into the following six crisp objectives 

m
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n m
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Figure 2. Strategy involved. 
 

             (5.3) 

                  (5.4) 

            (5.5) 

            (5.6) 

,iS at each  Further, the imprecise available supply 
source and the imprecise forecast demand, jD

S

, at each  

destination have triangular possibility distributions with 
the most and least possible values. i  and jD are con-
verted to crisp numbers by applying the weighted sum 
approach. Let the minimum acceptable possibility,  , 
be given by the DM. Then the corresponding auxiliary 
inequality constraints can be represented as follows 
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x w D w D w D j n  


     

1w w w

  (5.8) 

where, 1 2 3   , andw w w, 1 2 3  represent the 
weights of the most possible values, most optimistic val-
ues and the most pessimistic values of the imprecise sup-
ply demand, respectively. Related methods and algo-
rithms for determining weights include the analytic hier-
archy process (AHP) and direct assessment methods. In 
real-world DPD problems, detailed study of the effects of 
various weighting methods should be based on a DM’s 
experience and knowledge. 

Additionally, in the total budget constraint, the given 
imprecise budget has triangular possibility distribution 
with the most possible and least possible values. The 
imprecise inequality corresponding to the total budget is 
defuzzified using fuzzy ranking concept. Accordingly, if 
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the minimum acceptable possibility is specified by the 
DM, the corresponding auxiliary crisp inequality can be 
represented as 
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The auxiliary MOLP problem developed above can be 
converted into an equivalent ordinary LP form using 
Zimmermann’s linear membership functions [2] to rep-
resent all of the fuzzy objectives of the DM, together 
with the fuzzy decision-making concept of Bellman and 
Zadeh [3]. First, obtain the corresponding positive ideal 
solutions (PIS) and negative ideal solutions (NIS) of all 
the crisp objective functions of the auxiliary MOLP 
problem, as follows 
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Furthermore, the corresponding linear membership 
function for each of the new objective functions of the 
auxiliary MOLP problem is defined by 
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Linear membership functions for objective functions 
(5.3) and (5.5) are similar to the linear membership func-
tion for objective function (5.1) given by the Equation 
(5.12) and the linear membership function for objective 
functions (5.4) and (5.5) are similar to the linear mem-
bership function for objective function (5.2) given by the 
Equation (5.13). 

Finally, aggregate all fuzzy sets using the minimum 
operator of fuzzy decision making concept. Let λ be the  

 0 1  , which represents the de-  auxiliary variable 

gree of satisfaction of the decision maker. Then, the cor-
responding single objective linear programming problem 
is max λ 
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The above problem is a crisp single objective linear 
programming problem which can easily be solved using 
MATLAB. 

6. Numerical Illustration 

Consider the problem given in Table 1. 
Also, the total budget,  

 
Table 1. Problem in consideration. 

 A B C D Supply (in thousand) 

1 
(0.6,0.8,0.9)* 
(0.1,0.3,0.4)** 

(2.4,3.0,3.5) 
(1.0,1.5,2.0) 

(1.8,2.1,2.3) 
(1.0,1.4,1.6) 

(1.5,1.8,2.0) 
(0.7,0.9,1.0) 

(17.2,18.0,19.2) 
 

2 
(1.1,1.3,1.4) 
(0.4,0.6,0.7) 

(3.1,3.6,4.1) 
(1.5,1.8,2.1) 

(1.4,1.6,1.7) 
(0.8,0.9,1.1) 

(2.2,2.5,2.7) 
(1.0,1.4,1.8) 

(22.6,24.0,25.8) 
 

3 
(1.5,1.8,2.0) 
(0.6,0.9,1.1) 

(3.1,3.5,3.9) 
(1.4,1.8,2.2) 

(2.1,2.4,2.7) 
(1.3,1.5,1.7) 

(0.8,1.0,1.1) 
(0.2,0.3,0.4) 

(12.6,13.0,13.6) 
 

Demand in thousand (11.2,12.0,12.6) (5.4,6.0,6.4) (14.8,16.0,16.8) (19.0,20.0,20.8)  

*
    
Denotes the cost coefficient; **Denotes the profit coefficient. 
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 $ 132000,14B  0000,148000 . 

First, formulate the original multi-objective fuzzy 
problem using Equations (4.1) to (4.5). Then, develop the 
new objective functions for the new crisp multi-objective 
problem using Equations (5.1) to (5.6). Further, defuzzify 
fuzzy constraints to get crisp constraints using Equations 
(5.7) to (5.11) at 0.5   assuming 1 3 1 4w w   and 

2w
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00001;

13018
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x


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;

1 2 .  
Get the PIS and NIS values (given in Table 2 below) 

corresponding to all the crisp objectives.  
Additionally, the corresponding linear membership 

function for each of the fuzzy objectives in the auxiliary 
MOLP can be defined using Equations (5.12) and (5.13). 
Finally, the auxiliary MOLP can be converted to an 
equivalent LP model using the minimum operator to ag-
gregate all fuzzy sets. This LP is then solved using 
MATLAB. 

The solutions are imprecise and have triangular possi-
bility distribution, and overall degree of decision maker 
satisfaction is 0.9861. Thus, the optimal plan by the 
above method is as follows: 
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;

 

7. Conclusions 

This work develops an interactive method for solving 
multi-objective problems with imprecise available supply, 
forecast demand and unit cost/profit coefficients with 
triangular possibility distributions. The model designed 
here aims to simultaneously minimize the total distribu- 
 

Table 2. PIS and NIS values of the objectives. 

Objective PIS values NIS values 

11z  81985 129630 

 18297 13263 

 8472.50 13297 

 73447 39128 

 8475 20780 

 17187 8177.50 

tion costs and maximize the total profit with reference to 
available supply at each source, as well as forecast de-
mand constraints at each destination and the total budget 
constraint. 

The method developed can be easily applied to any 
real world problem with triangular distributions such as 
distribution planning decision problems, assignment 
problems, job allocation problem and more such prob-
lems. It provides a systematic framework that facilitates 
the decision-making process, enabling a DM to interac-
tively modify the imprecise data and related parameters 
until a set of satisfactory solutions is obtained. 
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