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ABSTRACT

In this paper, the problem of optimum allocation of repairable and replaceable components in a system is formulated as
a Bi-objective stochastic non linear programming problem. The system maintenance time and cost are random variable
and has gamma and normal distribution respectively. A Bi-criteria optimization technique, weighted Tchebycheff is
used to obtain the optimum allocation for a system. A numerical example is also presented to illustrate the computa-

tional details.
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1. Introduction

We consider a system which requires performing a se-
quence of identical production runs after every given
(fixed) period. A production run in the system consists of
several subsystems where each subsystem can work pro-
perly if at least one of its components is operational. The
following assumptions are also made:

1) all the components can be repaired if deteriorated or
failed;

2) all component states are independent.

We assume that the system comprises two types of
subsystem. One is the type of subsystems in which the
components are very sensitive to the functioning of the
whole system and, therefore, on deterioration these
should be replaced by new ones. Let these subsystems
range from 1 to s. The other type of subsystems is those
in which the components after deterioration can be re-

paired and then replaced. Let such subsystems range
from s+1 to m. In Figure 1 the Group X consists of
the s subsystems with sensitive components which on
failure are replaced by new ones and Y the remaining
(m—s) subsystems in which the components can be
repaired (see Ali et al. [1]).

Ideally, all the failed components in all the subsystem
of Group X are replaced by new ones prior to the begin-
ning of the next mission/ run. In a similar way, ideally all
the failed components in subsystem of Group Y are re-
paired and then replaced prior to the beginning of the
next mission/run. However, due to the constraints on the
cost and time it may not be possible to repair and replace
all the failed components in Groups X and Y. For this a
mathematical programming frame-work is established
for assisting decision-makers in determining the optimal
subset of maintenance activities to perform prior to begin-
ning of the next mission. This decision-making process

Figure 1. Parallel components in repairable and replaceable subsystem.
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is referred to as selective maintenance. The selective
maintenance models presented allow the decision-maker
to consider limitations on maintenance time and budget,
as well as the reliability of the system. Selective mainte-
nance is an open research area that is consistent with the
modern industrial objective of performing more intelli-
gent and efficient maintenance.

For this let us suppose a, be the total failed compo-
nents in the subsystems and d;, be the number of com-
ponents in the i"™ subsystem, which can be repaired and
replaced prior to the beginning of the next mission (See
Rice et al. [2]). Thus under the selective maintenance the
number of components available for the next mission in
the i" subsystem will be

(n—k)+d;,i=12--,m 1)

Therefore the reliability of the subsystems range from
1to S foraproduction run is given by

R(8)={[1[2-0-1 ] @

i=1
and the reliability of the subsystems range from s+1
tom for a production run is given by

R(@)=| 1]~ @

i=S+1

The maintenance time constraint for the system is
given as

Dotd <T, 4)
i=1
and the maintenance cost constraint for the system is
given as

m
2.6d; <G, (®)
i=1

However, in the event the reliability of the subsystems
of Groups X and Y time are of equally serious concern. Let
us consider, for instance, the following multi-objective
problem (please see the Equation (6) below).

Secondly, a Bi-objective programming problem in
which time and the cost spent on system maintenance is
minimized simultaneously for the required reliability
R"(d;) (say). The mathematical model of the problem
is given as Equation (7) below.

Recently many authors have discussed the allocation
problem of repairable components. Among them are
Rice et al. [2], Schneider and Cassady [3], Rajaopalan
and Cassady [4], Schneider et al. [5], lyoab et al. [6], Ali
et al. ([1,7-10]), Faisal and Ali [11] and many others.

In this paper, we have formulated stochastic system
maintenance problem as a multi-objective programming

»

Maximize R(di)z{
i=1
and Maximize R(d; ) = {
Subject to itidi <T,
i=1

icidi <C,
i=1

0<d, <a,Vd, areinteger

n>a,i=12,---,m

m
Minimize T =) t,d,

i=1

and Minimize C =) ¢,d,C,

i=1

el
H[l‘(l—ﬁ)""a”di}} (ii)

i=S+1

(i) (6)

Subject to {f[[l—(l—ri)”i‘ai“‘i J}z RO(d) (i) @)

i=1

i=S+1

0<d, <a,Vvd, are int eger

n>a,i=142---,m

Copyright © 2013 SciRes.
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problem. We have discussed components repairable and
replaceable time and cost as a random variable in the
constraint and has Gamma and Normal distribution re-
spectively. The Probabilistic constraints function is then
converted into an equivalent deterministic non-linear
programming form by using chance constrained pro-
gramming.

2. The Chance Constrained Programming

In many practical situations the constraint Equations (iii)
and (iv) are not fixed and taken as probabilistic. Thus the
above problem (6) can be written in the following chance
constrained programming form as Equation (8) below,
where p,,0< p, <1 is a specified probability.

In the above problem (8), let us assume that t; and
c, are independently gamma and normally distributed
random variables.

Let us assume that t,i=1.--,m are independent

Gamma distributed random variables in the constraint 8
(iii), i.e., t, ~G(ai, i).

19

P(f(d)<To)> P, ©)

Since number of components within the system are
assumed to be large we have from Liapounoff’s central
limit theorem

f(d)~N(E{f(d)}.V{f(d)}).

Thus (9) is equivalent to

f(d)-E{f(0)} _T,-E{f (d)}
M@y Wy

f(d)-E{f(d

()—{()} is a standard normal variate
{1 ()

with mean zero and variance one. Thus the probability of

realizing {f(d)} less than or equal to T, can be writ-
ten as

2 Py

where

TO_E{f(d)}

Then the, P(f(d)<T,)=¢| ———="1|. (10)
f(d
Mean (ti):ﬁ, Variance(ti):ﬂ2 t@)y
% % where ¢(z) represents the cumulative density function
Now let of the standard normal variable evaluated at Z. If K,
m represents the value of the standard normal variable at
f(d)=> td which ¢(K, )= p,, then the constraint (10) can be writ-
=1 ten as
Then mean is {f(d)}
T,-E
- B 2T I>4(K,). (11)
E{f(d)i=>dE(t)=>~d @
U@} =2dB () =274 (f(d)}
Further, as t;are independently distributed, we have The inequality will be satisfied only if
m m ﬁl
V{f(d)}:;tizv(di):;?di TO_E{f(d)} > K
) s fd)y |
Now the constraints 8 (iii) can be written as { ( )}
Maximize R(di)z{ S [1—(1—ri)"‘7ai+di J} (i)
i=1
and Maximize R(d; ) = { ﬁ [1—(1 ) J} (ii)
i=S+1
Subject to P(Zm:tidi sTojz Bo (iii) ®
i=1
P(icidi scojz P, (iv)
i=1
0<d, <a,Vd, are int eger (v)
n>a,i=12--,m (vi)
Copyright © 2013 SciRes. AJOR
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or equivalently,

Thus an equivalent deterministic constraint to the sto-
chastic constraint is given by

(12)

Now we consider the case whenc; are independently
normally distributed random variables in the constraint 8

(iv).ie. ¢ ~N(z4.07)
The constraint P(f(c)<C, )2 p,, is equivalent to

Maximize R {

and Maximize R(d {H 1 (1-r)" 3+,
1

=S+1

Subject to [Zﬁ' d, j +K, /Zﬁz
i-1 &, -1 Q
[Zm:,uidij+ K, /Zm:aizdiz <C,

0<d, <a,Vd, areint eger
n>a,i=42---,m

3. Modified E-Model

Consider the situations in which the time taken and cost
spent on maintenance are not fixed and taken as prob-

Minimize T = p(zm:tidi]
i=1

and Minimize C = p(Zcidij

i=1

Subject to {ﬁ[l—(l— ) J}x {I

i=1
0<d, <a,Vvd, areint eger

n>a,i=42,---,m

Copyright © 2013 SciRes.

and

V{f(c)}= i}ldfv (c,)= Zm;afdf

i=1

Therefore, the deterministic equivalent of 8 (iv) in this

case is
(ZﬂidiJ+ Kaﬁfzo-izdiz <G
i=1 i=1

The equivalent deterministic non-linear programming
problem (8) to the stochastic programming problem is
given by

o J}

(14)

()
J} (i

(iii)

(15)

abilistic in the objective function in Equations (i) and (ii).
Thus the above problem (7) can be written in the follow-
ing probabilistic objective function form as:

.Ql[l—(l—ri)n‘_a”d‘ ]} SR(d) (i) (16)
(v)
(vi)
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Using Modified E-model technique, the problem (16) is formulated as

$hg

i=1 &

Minimize T = kl(

J+ k, }iﬂzdf
i-1 &
Zm:,uidi j"‘ kz«/zm:o'izdiz

ey

i=1
0<d; <a,Vd, are int eger
n>a,i=12,---,m

and Minimize C = kl(

i=S+1

Subject to{

where k;, and k, are non-negative constants, and their see Rao
values show the relative importance of the expectation

and the variance. Some authors suggest that k +k, =1,

[1[1-a-n)"

(i)
(ii)
W+t ]} >R(d,) (i) (17)
(iv)
(v)
[12].

The two others Bi-objective programming models in
different prospects for the decision-makers are

Model 1:
Minimize T :kl(iﬁdij+k2 55 g (i)
i=1 & i=1 &
and Maximize Rz(di)z{ﬁ [1—(1—ri)”ifa'+di }} (ii)
i=S+1
Subject to(iyidij+ K, /iaﬁdf <C, (iii) (18)
i1 i=1
{ﬁ[l_(l_ri)"'a'“- J}x{ [T [1-(n) }} SR (d,) (iv)
i=1 i=S+1
0<d, <a,Vd, are int eger (v)
n>a,i=12--,m (vi)
Model 2:
Minimize C = kl(iyidij+k2 3 e (i)
i i=1
and Maximize Rl(di):{f[[l—(l—ri)”'a”d' J} (ii)
Subject to[iﬁdij+ K, /iﬂzdf <T, (iii) (19)
i=1 & i=1 &
{ﬁ[l—(l—ri)ni'a“d‘ J}x{lﬂ[ (1@ ]}z RY(d)  (iv)
i=1 i=S+1
0<d, <a,Vd, areint eger (v)
n>a,i=12,---,m (vi)
4. A Multi-Criteria Weighted Tchebycheff lem
Optimization Technique Min f (x) = f,(x), f,(x),-, f (X) 20)
Let us consider a multi-objective programming prob- Subject to x e s
AJOR
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assumed to have k(k>2) competing objective func-
tions ( f,:R" —>R) that are to be minimized simulta-
neously. The following definitions illustrate the concepts
of efficient and weakly efficient decision vectors.

Definition: A decision vector x* e X is efficient
(Pareto optimal) for multi-objective programming prob-
lem if there does not exist a xe X,x = x" such that
fi(x)< f(x")fori=1,2,---,k with strict inequality
holding for at least one index i. (x" e X s efficient,
f x*) is non-dominated).

Definition: A decision vector x* e X is weakly effi-
cient (weakly Pareto optimal) for multi-objective pro-
gramming problem if there does not exist a xe X,
x#X" such that f(x)<f(x") for i=12--k .
(X eX is weakly efficient, f(x")is weakly non-
dominated).

There are several metrics that are found in the litera-
ture related to multi-objective programming problem. If
& is the reference point and the ideal point,

& =Min _, f.(x),

is used as the reference point, the general weighted
L,-metric(1< p <o) is defined as

Kk b Yp
Mln[iz_l:wi|fi(x)—§i| ) (21)
Subject to x e X

k
We assume that w; >0,Vi=12,---,k and > w =1,

i=1
where the w; ’s are weighting coefficients provided by the
decision maker reflecting the relative importance. If

p=c, problem (21) reduces to a “weighted Tcheby-
cheff Technique” (see Bowman [13]).

Minimize &

Subjectto o > w, H
(

52W2Hl11[1 1-p ) }} 52} (iii)

{Z_l“ftj+K\/ﬂ

[Z::ﬂidijJrK“\/iZ::G?SCO (v

w+w, =1L,w,w, >0
0<d, <a,Vd, are integer

n>a,i=12,---,m

Min Max |:W | £ (x ;H} 22)

Subject to xe X

If the reference point is the global optimal solution of
f.(x), then the absolute value signs in problem (22) can
be removed (see Miettinen [14]) yielding

Min Max [w, (f,(x)~¢ )]}

Subject to x e X

(23)

Miettinen [14] also showed that if the objectives and
constraints are differentiable form of problem (23) can
be defined as

Min &
Subjecttodz{wi( () 5.)} V|XEX} (24)

The solution of problem (24) is guaranteed weekly
non-dominated for positive weights and at least one
non-dominated solution is also guaranteed. If the solu-
tion is unique, then it is non-dominated, however if it is
not unique, then it might be weakly non-dominated (see
Wierzbicki [15].

The two objective functions in the Equation (15) are to
be maximizing the total reliability of replaceable com-
ponents of Group X and the reliability of repairable com-
ponents of Group Y. We have convert the following
maximizing problem into minimization problem using
the property MaxZ = Min(—Z). Therefore the problem
defined in Equation (15) is converted into a two criterion
minimization problem: Min—{Z,,Z,} subject to the
constraints (see Khasawneh et al. [16]). Now the effi-
cient solution is obtained by using the weighted Tche-
bycheff technique

(i)

sl @)
(iv) (25)

)
(vi)
(vii)

(viii)

In practice, & can be defined as the minimum individual values of the following problems:

Copyright © 2013 SciRes.
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S =Min(—R(di)):_{

i1

(Zm:ﬂidij+ Ka Zmlo'izdiz <G,
i1 =

0<d, <a,Vd, are int eger

n>a,i=12,---,m

and similarly

£ =Min(-R(d,)) = _{ﬁ [1-@ny ]} (i)

Subject to {Zm:ﬁti} K, iﬁzdf <T, (ii)

i=1 & i-1 &

(Zm:ﬂidij+ Ka,/ifﬂzdf <C,
i1 i1

0<d, <a,Vd, areint eger

n>a,i=12,---,m

In similar way, the problem defined in Equation (17) is
also a two criterion minimization problem: Min{T,C}

a0 0

Subject to (iﬁtij+ K, [>Laz<t, (i)
i=1 &; i-1 &

Minimize & (i)
Subject t052W1Hk1(§l:§:tij+kz iaﬁ}df}_é} (ii)
52""2{%@%@)”2\/%—@} (iii)

i=1
W +w, =1,w,w, >0
0<d, <a,Vd, areint eger

n>a,i=12---,m

Copyright © 2013 SciRes.
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(vii)

23

(26)

(@7)

subject to the constraints. Now the efficient solution is
obtained by using the weighted Tchebycheff technique

(28)

AJOR
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The values of & can be defined as the minimum individual values of the following problems:

£ = MinT = kl[zm:ﬁdiJ+k2 /iﬁzdf
i=1 @ i=1 &;

Subject to {ﬁ[l—(l— R)" }} x {Iﬁ

i=1
0<d, <a;,Vvd, are int eger
n=a,i=12--m

& =MinC = k1 ig,d, +k, / o’d?

and similarly

Subject to {H[

0<d, <a,Vd, are int eger
n>a,i=12,---,m

Now the problem defined in Model 1; Equation (18) is
also a two criterion minimization problem:
Min{T —R, (d,)} subject to the constraints. Now the

=S+

11

nI —a; +d;
X
i=1 i= S+1

(1)
1[1-(1-ri)”ie‘i“"}}zR*(di) (ii) (29)
(iii)
(iv)
(i)
R @) ) @
(iii)
(iv)

efficient solution is obtained by using the weighted
Tchebycheff technique

Minimize & (i)
Subject to 5 > w, Hk{é%ti}ukz 20%(15}—51} (ii)
5w, {{iﬁl[l—(l—ri)”'“d' }}—52} (iii)
M- (- Jer@) (v @
(iﬂidi}rKu\/%SCo (v)
W, +W, =1,w,w, >0 (vi)
0<d, <a;,Vvd, are int eger (vii)
n>a,i=12---,m (viii)

The values of & and &, is the minimum individual
values obtained as

& =Minimize T

_k(gfd}k \/ﬂ

subject to the (iii) to (vi) of Equation (18)

Copyright © 2013 SciRes.

i=S+1

&, = MinR, (d,) = _{ 11 1oy J}

subject to the (iii) to (vi) of Equation (18).

In Model 2, Equation (19) is also a two criterion mini-
mization problem: Min{C —R,(d,)} subject to the con-
straints. Now the efficient solution is obtained by using
the weighted Tchebycheff technique

AJOR
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Minimize & (i)
Subject toézwl{kl[zm:y,d,j+k Zazdz } (ii)
&WZ{{; -] } 52} (iii)
IDERCR AN }} { sil A ELCYRN(Y @
(;ﬁ't}rK /zﬂ' 42 < (v)
W +w, =1,w,w, >0 (vi)
0<d, <a,Vvd, are int eger (vii)
n>a,i=12--m (viii)

where the values of & and &, is the minimum indi-
vidual values obtained as

& = Minimize C =k, (Z,uidij-i-kz /Zaﬁdf
i=1 i=1

subject to the (iii) to (vi) of Equation (19)
& =MinR,(d;)= —{ﬁ[l—(l— r )”i’aﬁdi J}

subject to the (iii) to (vi) of Equation (19).

5. Numerical lllustrations

Consider a system having the Group X consisting of 3
subsystems and also the Group Y consisting of 4 subsys-
tems. The available time between two missions for re-
pairing and replacing is 150 time units. The available

& =Min(-R,(d;))=- {[1 (1-08)“* |x[1-(1-0.75) "' x[1-(1- os)“*"ﬂ}

Subject to[2d, +3d, +d; +20d, + 28d; + 22d, + 22d, |

cost of maintenance for repairing and replacing for the
next mission is 860 units. For simplicity we have con-
sidered in the above numerical illustration: the reliability
of each component in a subsystem is same, cost spent
and time taken on replacing and repairing each compo-
nent within a subsystem are same. The remaining pa-
rameters for the various subsystems are given in Table 1.

5.1. Solution of Chance Constrained
Programming by Using Weighted
Tchebycheff Technique

Before applying the Weighted Tchebycheff Technique
firstly we find the individual optimum values & =(&,,&,).

For the values given in Table 1, the SNLPP (26) for the
first optimum value is

+2.99,/0.33d2 +0.60d +0.10d? +2.86d? +3.11dZ +1.83d? +2.2d? <150
[120d, +110d, +120d, +40d, +30d, + 45d, + 65d, |

(33)

+2.99\/13dl2 +10d? +15d? +4d? +3dZ +5d; +6d> <860

0<d,<a,Vvd, areintegern, >a,i=12,---,

The optimal solution of (33) provided by LINGO is
d, =2,d; =3,d;=2,d, =0,d; =0,d; =0,d; =0

with the value of objective function as

Copyright © 2013 SciRes.

R, (d;) =0.9986398.

Similarly using (27) the SNLPP for the second opti-
mum values

AJOR
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Table 1. The number of failed components and the respective cost and time etc. in the various subsystems.

Group X (Replaced) Group Y (Repair)
Subsystem 1 2 3 4 5 6 7
n, 6 5 10 7 9 12 10
r 0.8 0.75 0.8 0.8 0.75 0.8 0.7
B 12 15 10 140 252 264 220
a 6 5 10 7 9 12 10
E(t)= g 2 3 1 20 28 22 22
V()= % 0.33 0.60 0.10 2.86 3.11 1.83 2.2
C, 120 110 120 40 30 45 65
ol 13 10 15 4 3 5 6
a 3 3 6 5 7 9 7

£, =Min(-R, (d,))=- {[ ~(1-08)* [x[1-(1-0.75)"* ][ 1-(1-08)**' x[1-(1-0.70)** }}

Subject to[2d, +3d, +d, +20d, + 28d; + 22d,, +22d, |

+2.99,/0.33d? +0.60d? +0.10d? +2.86d? +3.11d? +1.83d? +2.2d? <150

[120d, +110d, +120d, + 40d, + 30d +45d, +65d, ]+ 2.99,/13d? +10d +15dZ + 4d? +3dZ +5d2 + 6d? <860

0<d,<q,Vvd, areintegern, >a;,i=12,---,7.

(34)

The optimal solution of (34) provided by LINGO is E= (—0.9986398, —0.9788431) . For simplicity we as-
d, =0,d,=0,d; =0,d, =2,d; =1,d; =1,d; =2 sumed that the reliability of both the Groups X and Y

with the value of objective function as
R, (d;)=0.9788431.
From the Equations (33) and (34) the optimum values bycheff Technique

Minimize &
Subject to&zwl{—{[l (1-08)" |x[1-(1-0.75)"* |« [1—(1—0.8)(““’3)}}—(—0.9983842)}

ézwz{—{[ ~(1-0.8) % [x[1-(1-0.75)%* | x[1-(1-08)**) |[1-(1-07)** J}—(—0.9994604)}

[2d, +3d, +d, +20d, + 28d; + 22d, + 22d, |

+2.99\/O.15d12 +0.18d? +0.10d? +0.35d? +0.40dZ +0.50d? +0.60d’ <150

[120d, +110d, +120d, +40d, +30d, +45d, +65d, |+ 2.99,/10d? +8dZ +15dZ +8d? +5dZ + 7d? +9d? <860

0<d, <a,Vvd, areintegerw, +w, =1 w,w, >0,n, > a,,i=12,---,7.

Copyright © 2013 SciRes.

subsystems are equally important, thatis w, =w, =0.5.

For the values given in Table 1, the SNLPP (25) effi-
cient solution is obtained by using the weighted Tche-

(3%)
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The optimum allocation under the Weighted Tcheby- 0.00076.
cheff Technique
d: =(d* dsdrdrdrd d*) 5.2. Solution of Modified E-Model by Using
Toheb AT TEr= TS S Weighted Tchebycheff Technique
is obtained as

The individual optimum values ¢ =(&,<,). For the va-
4’ =2,d; =3,d; =0,d; =2, =2,d; =0,d; =1,

lues given in Table 1 and for simplicity take k; = k, = 0.5
The corresponding value of objective function is then the SNLPP (29) for the first optimum value is

& =MinT =k [2d, +3d, +d, +20d, + 28d; + 22d, + 22d, |
+k,+/0.33d2 +0.60d2 +0.10d? + 2.86d? +3.11d7 +1.83d? + 2.2d?
Subject to {[1 (1-0.8)*% x[1-(1-075)* ] [1—(1—0.8)(““’3)]} (36)

{[ ~(1-0.8) %% [x[1-(1-0.75)** |x[ 1-(1-0.8)** [ 1-(1-0.70)**] ]}20.99

0<d, <q,Vvd, areinteger,n >4a,i=12,---,7

And the SNLPP (30) for the second optimum value
&, =MinC =k, [120d, +110d, +120d, +40d, +30d +45d, +65d, |
+k,/L0d +8d? +15d7 +8d?Z +5dZ +7dZ +9d?
Subject to {[1—(1— 0.8 [x[1-(2-0.75)"* | «[1-(2- 0.8)(4“’3)}} (37)

{[ ~(1-08)*% [x[1-(1-0.75) ' |x[1-(1-08)** |« [1—(1—0.70)(3“’2)}}20.99

0<d, <q,Vvd, areinteger,n, >a,,i=12,---,7

From the Equations (36) and (37) the optimum values systems are equally important, that is w, =w, =0.5. For
£=(101.73,418.40) . the values given in Table 1, the SNLPP (28) efficient

For simplicity we assumed that the maintenance time solution is obtained by using the weighted Tchebycheff
taken and cost spent for both the Groups X and Y sub- Technique

Minimize 6

Subject to 5 > w; {{O.S[Zd1 +3d, +d, +20d, +28d; +22d; +22d, |

+0.5,/0.33d? +0.60d +0.10d? +2.86d? + 3.11d? +1.83dZ +2.2d? } —101.73}

S>w, {-{o.s[lzool1 +110d, +120d, +40d, +30d; +45d, +65d, |
(38)

+05,/10d7 +8d +15d; +8d] +50; +7d7 +9d | —418.40}

Subject to {[ - (1-08)"% Jx[1-(1-075)** |u 1-(1-08)* J}
{[ —(1- 08)2+le [ —(1-0.75) 2*"2] [ —(1- 08)“3} [ —(1-0.70)>%) ]}20,99

0<d, <a,Vvd, areinteger,n, >a,,i=12,---,7

The optimum allocation under the Weighted Tcheby- cheff Technique

Copyright © 2013 SciRes. AJOR
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O = (05,070,050, d;. ;)
is obtained as
d; =1d;, =3,d; =0,d, =3,d; =3,d; =1,d; =2.

The corresponding value of objective function is 6.48.

The individual optimum values of Model 1 are
£ =(64.47,-0.9994) . Therefore, the optimum allocation
under the Weighted Tchebycheff Technique of SNLPP
(31) is obtained as

df=1d; =3,d; =1,d; =2,d =1,d; =1,d; =1.

The corresponding value of objective function is
0.01306.

In the same manner, we obtained the individual opti-
mum values for Model 2 are ¢&=(277.57,-0.9989) .
Therefore, the optimum allocation under the Weighted
Tchebycheff Technique of SNLPP (32) is obtained as

d; =1d; =2,d; =0,d; =2,d; =2,d; =0,d =1.

The corresponding value of objective function is
0.00299.

The optimum allocations obtained corresponding to
the various Bi-criteria models are summarized as given
below in Table 2.

6. Conclusions

The multi-objective problem of allocation of repairable
and replaceable components becomes complicated be-
cause an allocation that is optimal for one objective is
usually far from optimal for other objectives. In such
situations, we need a compromise criterion that gives an
allocation which is optimum for all objectives in some
sense. This paper is an attempt to utilize weighted Tche-
bycheff approach to the solution of optimum compromise
allocation of repairable and replaceable components in a
system.

The allocation problem of repairable and replaceable
components for a parallel-series system considered as a
Bi-objective stochastic optimization problem and dis-
cussed the four different situations. In the first situation,
the reliabilities of Groups X and Y are considered as two
different objectives. While in the next three situations,

Table 2. Optimum allocation of replaceable and repairable
components under various Bi-criteria models.

S. Bi-criteria d
No. models !

1 -Min{fR,R} 2 3 0 2 1 0 2

2 Min{T,C} 2 1 0 2 1 0 3
3 MinfC-R} 1 2 o0 2 2 o0 1
4 MinfT-R} 1 3 1 2 1 1 1

Copyright © 2013 SciRes.

the maintenance cost and time, maintenance cost and
Group X subsystem reliabilities, maintenance time and
Group Y subsystem reliabilities respectively are consid-
ered as two different objectives. Selective maintenance
policy is used to select the repairable and replaceable
components.

An equivalent deterministic model of these Bi-objec-
tive stochastic optimization problems is established by
using Chance Constrained programming method. The
following four different stochastic problems are then
solved by using the Bi-criteria optimization technique,
weighted Tchebycheff. The weighted Tchebycheff tech-
nique provides compromise allocations of repairable and
replaceable components which are optimum for both the
objectives function (see Table 2). Since a compromise
criteria differ from method to method, so comparison can
not be made.
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