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ABSTRACT 

Biochemical systems have important practical applications, in particular to understanding critical intra-cellular proc-
esses. Often biochemical kinetic models represent cellular processes as systems of chemical reactions, traditionally 
modeled by the deterministic reaction rate equations. In the cellular environment, many biological processes are inher-
ently stochastic. The stochastic fluctuations due to the presence of some low molecular populations may have a great 
impact on the biochemical system behavior. Then, stochastic models are required for an accurate description of the sys-
tem dynamics. An important stochastic model of biochemical kinetics is the Chemical Langevin Equation. In this work, 
we provide a numerical method for approximating the solution of the Chemical Langevin Equation, namely the deriva-
tive-free Milstein scheme. The method is compared with the widely used strategy for this class of problems, the Mil-
stein method. As opposed to the Milstein scheme, the proposed strategy has the advantage that it does not require the 
calculation of exact derivatives, while having the same strong order of accuracy as the Milstein scheme. Therefore it 
may be used for an automatic simulation of the numerical solution of the Chemical Langevin Equation. The tests on 
several models of practical interest show that our method performs very well. 
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1. Introduction 

A fundamental problem in the post-genomic biology is to 
describe and analyze the complex dynamical interactions 
which take place at the level of a single cell. Recent ex- 
perimental techniques made it possible to study gene 
regulatory networks in living cells [1] as well as to gen- 
erate synthetic gene networks [2]. 

There are currently several levels of refinement used 
for modeling the cellular dynamics. Often chemical ki- 
netic models represent cellular processes as systems of 
chemical reactions. Traditionally, these processes were 
modeled as continuous deterministic systems, by reaction 
rate equations. However, the random fluctuations which 
are captured by the experiments [3-6] are neglected by 
such models. These fluctuations are due to low molecular 
numbers of some biochemical species. Then, stochastic 
models are required for an accurate description of the 
system dynamics. A stochastic model of the well-stirred 
biochemical systems is the Chemical Master Equation [7]. 
Various algorithms proposed for the exact simulation of 
the solution of the Chemical Master Equation [8,9] are 
computationally very expensive for most practical appli- 
cations. Approximate algorithms were designed and 
analyzed in the literature to speed-up the simulation for 
biochemical systems modeled with the Chemical Master 

Equation [10-14]. Nonetheless, more sophisticated tech- 
niques are necessary for dealing with systems which 
manifest stiffness. Stiffness is due to the presence of the 
multiple time-scales in the system, as some reactions are 
much faster than others. 

As an intermediate model between the Chemical Mas- 
ter Equation and the reaction rate equations, the Chemi- 
cal Langevin Equation (CLE) [15] is considered a very 
attractive choice in modeling many important biological 
processes. CLE consists of a system of stochastic differ- 
ential equations, nonlinear and with non-commutative 
multiplicative noise. Most biochemical systems of inter- 
est typically involve many components interconnected in 
a complex manner. Thus, it is important to have efficient 
and accurate algorithms for simulating their mathemati- 
cal models and in particular if they are stiff. However, 
the construction of algorithms to simulate and approxi- 
mate the solution to these mathematical models is a 
challenging task, and research in this field is only at the 
initial stages [16-18]. One of the widely used numerical 
methods to simulate the Chemical Langevin Equation is 
the Milstein scheme [19,20]. This scheme has strong 
order of accuracy one, however it necessitates the calcu-
lation of some exact derivatives. This is a drawback of 
the Milstein strategy. 

This paper provides a derivative-free numerical method 
for the strong approximation of the solution of the *Corresponding author. 
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Chemical Langevin Equation. To our knowledge, the 
derivative-free Milstein scheme was not utilized before 
in the simulation of stochastic models of biochemical 
kinetics. The advantages of this method include: it is of 
strong order of accuracy one and it does not entail the 
calculation of exact derivatives. The derivative-free Mil- 
stein strategy estimates the derivatives by using finite 
differences. The proposed method may therefore be used 
for designing automatic simulation algorithms for ge- 
neric models of well-stirred biochemical systems, in the 
Langevin regime. 

The paper is organized as follows. Section 2 gives an 
introduction to the strong numerical solution of Itô sto-
chastic differential equations. In Section 3 we discuss a 
stochastic continuous model of well-stirred biochemical 
kinetics, namely the Chemical Langevin Equation. Sec-
tion 4 presents our proposed numerical strategy for the 
Chemical Langevin Equation. Numerical tests on several 
models of practical interest, showing the accuracy of the 
method provided, are given in Section 5. Finally, we 
summarize our conclusions in Section 6. 

2. Background 

A brief introduction to the numerical solution of Itô sto-
chastic differential equations (SDE), which are essential 
in stochastic biochemical kinetic modelling, is presented 
below. The Itô formulation of an SDE system is 

         
1

d , d , d
M

j j
j

t f t t t g t t W t


 X X X ,



  (1) 

where X is an N-dimensional stochastic process. Here 
  ,f t tX  and   ,ig t tX

 1 2, ,W W W 

 are N-dimensional and 
represent the drift and the diffusion coefficients, respec-
tively, while  denotes an M-di- 
mensional Wiener process with independent components. 

, MW

We are interested in the strong numerical solution of 
SDE. Strong numerical approximations are employed 
when an accurate approximation of the solution of an 
SDE on individual trajectories is desired, while weak 
numerical approximations are utilized when the ap-
proximation of the moments of the exact solution is suf-
ficient. 

Let XL be the numerical approximation on [0, T], after 
L steps with stepsize h T L , of the exact solution 

 of (1) and let  tX 0   be a constant. 

2.1. Strong Convergence 

The approximation 
1n n L 

 of  is said to have 
strong order of convergence γ if there exists a constant 

, independent of h and 

 X  tX

00C    , such that the fol-
lowing is true 

  L LE t Ch X X            (2) 

for any  0,h  . 

2.2. Weak Convergence 

The approximation  1n n L 
 of  is said to have 

weak order of convergence γ if, for any polynomial P 
there exists a constant , independent of h and 

X

0C 

 tX

0  , such that 

      L LE P t E P Ch X X       (3) 

for any  0,h  . 
Here  E   denotes the expectation of a random vari-

able and   a norm of an N-dimensional vector. 
The focus of this work is on SDE with non-commuta- 

tive noise [20], as the Chemical Langevin Equation has 
multiplicative non-commutative noise. For this class of 
problems, to obtain numerical methods of strong order of 
accuracy 1 on each interval  ,t t h , in addition to the 
computation of the Wiener increments 

   ,j j jW W t h W t      

with 1 j M  , the simulation of the stochastic double 
Itô integrals ijI  is necessary or, equivalently, of the 
Levy areas. The double Itô integrals ijI  are defined as 

   d d
t h t s

ij i j
t t

,I W s W r
 

    

for any 1 ,i j M  . 
The double Itô integrals are estimated in terms of their 

Fourier series expansion truncated after p terms (see also 
[20]): 

 , , ,

1 1
,

2 2 ,
p p

i j i j j o i i o j i jI h h a a h       A  

where, for any 1 ,i j M  , 
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1 1
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with 

2 2
1

1 1 1
.

12 2π

p

p
r r




    

The random variables ,,j j j rW h   and  
 , 0,1j r N 

1 r p

 are independent normally distributed with 
mean 0 and variance 1, for any 1  and any j M 
 

p 
. Numerical experiments in the literature indi-

cate that  is sufficient for an accurate approxima-
tion ,

5
p

i jI  of the double Itô integrals ijI . In our simula-
tions we choose p = 5. 
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2.3. Milstein Method 

The classical strong order 1 numerical method due to 
Milstein is used in the literature for approximating the 
exact solution of the Chemical Langevin Equation [19]. 
The Milstein scheme on the time interval  ,n nt t h  is 
given by 

   

   1 2 1 2
1 2

1
1

,
, 1

, ,

, ,

M
n

n n n n j n n
j

M
p

j j n n j j
j j

jf t h g t W

L g t I






   







X X X X

X

   (4) 

where the Wiener increments are denoted by  

  n j j n j nW W t h W t      . 

The differential operator jL  is defined as 

,
1

,
N

j k j
k k

L g






X

              (5) 

for any . 1, ,j M 

2.4. Derivative-Free Milstein Method 

The strong order 1 Milstein strategy has the disadvantage 
that it requires derivative calculations, an issue for gen-
erating automatic simulation algorithms. The derivative- 
free Milstein schemes [21] overcome this difficulty. The 
derivative-free Milstein strategy for the general SDE (1), 
driven by M independent Wiener processes can be ob-
tained from the Milstein method by replacing the deriva-
tives by finite differences. Note that these differences 
require intermediate approximations at other points. The 
derivative-free Milstein scheme can be written as 

   
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1 2

1
1

,
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



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 





X X X X

X X ,

 (6) 

where the intermediate values are 

  ,i n n n i n nf t h hg t  X X X X , ,  (7) 

for . 1 i M 

3. Stochastic Continuous Models of  
Biochemical Kinetics 

It has recently been acknowledged that stochastic models 
are more accurate than their deterministic counterparts 
for representing cellular dynamics. Biological processes 
at the single cell level are often modeled as systems of 
biochemical reactions. Below we discuss a key stochastic 
model of well-stirred biochemical kinetics. This model is 
valid for isothermal biochemically reacting systems with 
relatively large molecular numbers, in a constant volume. 

Assume that N biochemical species 1, , NS S  un-
dergo M reaction channels 1, , MR R . The well-stirred 
assumption leads to a simplification of the molecular 
dynamics model. Under the above assumptions, the sys-
tem state can be represented by a stochastic process 

 tX . The components of the dynamical state vector are 
 i tX , the number of molecules of the  species pre-

sent in the system at time t, for any . 
iS
,i N1,

Each reaction jR  is completely characterized by its 
propensity and its state-change vector. The state-change 
vector of the reaction ,  j jR ν , is an N-dimensional vector 
with the component ij  being the variation in the num-
ber of molecules of the  species produced by the fir- iS

ing of one reaction jR . The matrix    
1 ,1ij i N j M

V 
   



is the stoichiometric matrix of the biochemical system. 
The propensity  ja x  of the reaction jR  is defined 

as  dja x t  is the probability that a single reaction jR  
occurs in the time-interval  , dt t t , given the state x at 
time t. The existence of the propensity function is a con-
sequence of the kinetic theory. 

A unimolecular reaction 

productskc
iS   

has propensity  ia x c x i k . The bimolecular reaction 

productsk
i jS S c  

is characterized by the propensity a x  if  k kc x x i j

i j  and by the propensity    1 2k k i ia x c x x   if 
i j  (the reaction being called dimerization). 

Assume that the system has a macroscopic time-scale. 
More precisely, we assume that a time step h exists sat-
isfying simultaneously the conditions. 

1) h is small enough such that no propensity varies sig-
nificantly in the interval  ,t t h , 

        j j ja s a t a t X X X      (8) 

for t s t h    and each 1 . j M 
2) and h is large enough such that each reaction jR  

occurs many times in the time-interval  ,t t h  or, 
equivalently, for any 1 j M   

   1.ja t hX               (9) 

The conditions 1) and 2) are satisfied for biochemical 
systems with abundant molecular numbers. Then, the 
dynamical state of the system may be approximated by a 
continuous Markov process  satisfying  tX

         
1 1

d d dj j j j j
j j

t a t t a t W t 
 

  X X X . (10) 
M M

Here  
1j j M

W
 

 denote independent Wiener pro- 

cesses. The Equation (10) is called the Chemical Langevin 
Equation (CLE) and it is a system of non-commutative  
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Itô SDE. The SDE (10) has an associated Fokker-Planck 
equation [15], a partial differential equation which gov-
erns the probability density of the dynamical state  tX . 
The dynamical state  tX  is required to obey the initial 
condition 

  00 xX               (11) 

at . 0t 

4. Derivative-Free Simulation of the  
Chemical Langevin Equation 

In this paper we propose to utilize the derivative-free 
Milstein strategy for simulating the Chemical Langevin 
Equation. The derivative-free Milstein scheme has strong 
order of accuracy 1 as the Milstein method, but achieves 
it without making use of exact derivatives. The computa-
tion of the exact derivative required by the Milstein tech-
nique constitutes a difficulty for designing automatic 
simulating algorithms for the CLE, as it necessitates the 
user's input of the expression of the exact derivative. The 
method we propose for the CLE avoids this problem. 

The Chemical Langevin Equation (10) is a particular 
case of the SDE (1), with the drift coefficient 

   
1

M

j j
j

f a


 X X ν             (12) 

and the diffusion coefficients 

   j jg aX X ν j              (13) 

for . 1 j M 
The derivative-free Milstein method applied to the 

CLE (10) is derived by substituting the drift and diffu-
sion coefficients (12) and (13), respectively, in the scheme 
(6) to get 

   

     2 1 2 1 2
1 2

1

1 1

,2
, 1

1
,
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n

n j n j j j n j
j j

M
p

j j j j n j j
j j

h a W a

a a I
h







 



   

   

 



X

X X X

X X





 (14) 

on the time-interval  ,n nt t h . The approximations at 
the intermediate points are 

   
1

M

i n j n j i n
j

X X h a X ha X


   ν νi

2

     (15) 

for . 1 i M 
In the next section we test this method by comparing it 

to the Milstein scheme for the CLE as well as with Gil-
lespie’s algorithm [8,9], on some models of biochemical 
systems of interest in applications. 

5. Numerical Experiments 

Below are presented numerical tests of our proposed 
method for approximating the solution of the Chemical 
Langevin Equation of a generic model of biochemical 
systems. The simulations are performed in Matlab [22]. 
The numerical strategy proposed is tested on several 
models of biochemically reaction systems arising in ap- 
plications. We compare our method with the Milstein 
method, which is typically employed for simulating the 
CLE. However, there is no known biochemical system 
for which the Chemical Langevin Equation model has a 
closed form solution. To validate the accuracy of our 
numerical strategy we compare the histogram obtained 
with our method with the one computed with Gillespie’s 
algorithm [8,9]. Gillespie’s algorithm is a Monte Carlo 
simulation strategy which generates trajectories in exact 
accordance with the probability distribution of the Chemi- 
cal Master Equation. The Chemical Langevin Equation 
model is an approximation of the Chemical Master Equa- 
tion model, valid in the regime of large molecular popu- 
lation numbers. While there is also a modeling error 
when comparing the histograms generated with our 
method for the CLE and with Gillespie’s algorithm for 
the Chemical Master Equation, we note that the agree- 
ment of the numerical results is excellent, thus our 
scheme is shown to be very accurate. 

5.1. Michaelis-Menten Model 

Consider the Michaelis-Menten model [23], which deals 
with a very important mechanism of enzymatic catalysis. 
Four molecular species are involved in three reactions 

31 2
1 2 3 3 1 2 3 4,  ,  cc cS S S S S S S S S      (16) 

The species S1 is a substrate, S2 is an enzyme, S3 
represents an enzyme-substrate complex, while S4 is a 
product. The biochemical model shows how the enzyme 
transforms the substrate into a product. The reaction rate 
parameters are  and 3

3 4
1 21.661 10 ,  10c c    0.1c  , 

while the propensity functions associated with the reac-
tions (16) are 

     1 1 1 2 2 2 3 3 3,  ,  .a X c X X a X c X a X c X  3   (17) 

The solution of the system (16) is subject to the initial 
conditions     1 2 30 320,  0 125,  0 1X X X     and  

 4 0X 1 . The simulation is performed on the time- 
interval [0, 30]. Finally, the state-change vectors are the 
columns of the following stoichiometric matrix 

1 1 0

1 1 1

1 1 1

0 0 1

V

 
  
  
 
 
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The simulations with the derivative-free Milstein 
method with stepsizes h1 = 10−1, h2 = 5 × 10−2 and h3 = 
10−1, with the Milstein scheme for the step h1 = 10−1 and 
with Gillespie’s algorithm are presented in Figure 1. 
Each integration is performed over 10,000 trajectories. 
We note that our method has a similar computational cost 
with the Milstein scheme. We computed the ratio of the 
execution time of the Milstein method and that of our 
derivative-free Milstein technique. The value of this ratio 
for the sequence of steps above is between 0.98 and 1.01, 
showing that the two methods have almost the same 
computational cost on this model. Figure 1 presents the 
histograms at t = 30 for the species S1, S2, S3, and S4, re-
spectively. The accuracy of our method is excellent on 
this model. 

5.2. Stiff Biochemical Model 

Below we illustrate our derivative-free scheme on a more 
complex system, a stiff non-linear biochemical model, 
consisting of the following reversible reactions 

31 2

5 64

1 2 3 3 1 2 1 3 2

2 1 3 3 2 1 1 3

,  ,  ,

,  ,  .

cc c

c cc

S S S S S S S S S

S S S S S S S S

     

      2S

2



3

 

The reaction rate constants are  
 and c6 = 2. 

The system is integrated on the interval   with 
initial conditions . The reactions 
above are characterized by the propensities 

3 4 1
1 2 3 4 52.5, 10 , 10 , 10 , 10c c c c c     

0,
  0 1000,1000,10X 

210



     
     

1 1 1 2 2 2 3 3 3 1

4 4 2 5 5 2 3 6 6 1

,  ,  ,

,  ,  .

a c a c a c

a c a c a c

  

  

X X X X X X X X

X X X X X X X
(18) 

Also, the state-change vectors are the corresponding 
columns of the stoichiometric matrix 

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

V

   
     
    

 

We ran the simulations for the proposed derivative- 
free Milstein, the Milstein and the Gillespie algorithms 
over 10,000 trajectories. The system is stiff as several 
orders of magnitude separate some of the propensities. 
As in the case of deterministic problems, in stochastic 
systems stiffness poses challenges to the numerical 
simulation. Our proposed method can integrate the sys- 
tem efficiently and accurately. Figure 2 shows the histo- 
grams computed at time  with the proposed 
derivative-free Milstein, Milstein and the Gillespie algo- 
rithms, respectively. We illustrate the behavior of our 
method applied with stepsize  and compare it 
with the behavior of the Milstein strategy for the same 
step. The agreement between the results of the two nu-
merical integrators is very good. We also study the be- 

210t 

1h  510

 

 

 

 

Figure 1. The Michaelis-Menten model: the histograms 
generated with the Gillespie algorithm, the Milstein method 
with step h1 = 10−1 and the derivative-free Milstein method 
with steps h1 = 10−1, h2 = 3 × 10−2 and h3 = 10−2 at time t = 
30 for the species S1, S2, S3 and S4 are shown. The 
simulation is over 10,000 trajectories. 
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Figure 2. The stiff model: the histograms generated with the 
Gillespie algorithm, the Milstein method with step h1 = 10−5 
and the derivative-free Milstein method with steps h1 = 10−5, 
h2 = 5 × 10−6 and h3 = 10−6 at time t = 10−2 for the species S1, 
S2 and S3 are plotted. The simulation uses 10,000 paths. 

 
havior of our method for a sequence of time-steps h1 = 
10−5, h2 = 5 × 10−6 and h3 = 10−6. As expected, the accu-
racy of our algorithm improves when the step is reduced. 
In addition, we computed the ratio of the execution times 
of the Milstein scheme and of the proposed deriva-
tive-free Milstein method for the steps above and found 
that the ratio ranges between 1.003 and 1.031, showing a 
very similar computational cost of the two methods. Fi-
nally, for the given sequence of time-steps the derivative 
free Milstein histogram matches closely that of the Gil-
lespie’s algorithm, which shows that our method is very 
accurate. 

The advantage of our derivative-free Milstein algo-
rithm over the existing Milstein strategy is that ours can 
generate the numerical solution automatically, and does 
not require the user’s input regarding the computation of 
the exact derivatives, as the Milstein scheme does. 

6. Conclusion 

In this work we described the derivative-free Milstein 
method for approximating the solution of the Chemical 
Langevin Equation. Chemical Langevin Equation is a 
key model of well-stirred biochemical systems, with many 
important practical applications. Many models arising in 
practice are mathematically stiff and therefore their 
simulation may be quite challenging. The method we 
discuss in this paper achieves strong order of accuracy 
one as the Milstein scheme, which is currently the most 
widely used simulation technique for the Chemical 
Langevin Equation. Unlike the Milstein scheme, the 
method we provided above does not require the compu-
tation of exact derivatives, which is a drawback of the 
Milstein technique. The tests on key biochemical models 
arising in applications show the excellent accuracy of our 
method. 
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