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ABSTRACT 

Automated simulating of power electronics systems is currently performed by means of nodal analysis method com-
bined with implicit numerical integration schemes. Such method allows to find transient solutions, even when the inte-
grated system is stiff, however, it leads to some difficulties when simulating big systems and sometimes to the deterio-
ration of computations quality, that is reflected in decrease in accuracy, oscillations of solutions, which are not present 
in the initial model. This paper analyzes the shortcomings of this approach, and proposes to apply explicit numerical 
schemes with stability control on the integration step and with reduction of some of state variables. A brief description 
of the method of finding transient solutions and an example of the analysis are also given in the present paper. 
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1. Introduction 

In simulation of power electronics systems specialized 
packages SPICE [1] are generally used. MicroCap, Mul- 
tisim, PSpice, SwitchCad, LTSpice, etc. enjoy popularity 
among Russian engineers. The SPICE package itself was 
created in the USA in the 70-s. The basic ideas underly- 
ing the SPICE package—the nodal method, the process 
for sparse matrix computations and implicit schemes for 
integration of trapezoidal or Gear method were so suc- 
cessful that the current generation of modeling tools dif- 
fers little from its predecessor in the part of modeling 
cores. The advantage of SPICE is particularly apparent in 
simulation of 80-s integrated circuits, mainly containing 
capacitive type inertial elements and smooth non-linear- 
ity represented by an exponential function, polynomial or 
a rational function of polynomials. SPICE is able to 
simulate such circuits containing up to hundreds of nodes 
and thousands of complex non-linear dependencies within 
a reasonable time frame. Many producers of SPICE- 
based software cultivate the “illusion of virtualization” 
which is illustrated in advertising brochures about the 
programs—when using our product, you get a virtual 
analogue of device being designed. While the principle 
of virtualization works for digital systems, with dynamic 
models things are more complicated. One can identify 
the following typical problems associated with auto- 
mated simulating using SPICE programs: 
 The inability to flexibly impose constraints on the 

relative and absolute error for individual variables— 
in SPICE constraints on the accuracy of the currents 

and voltages are applied directly to all the nodal 
voltages and currents, which creates problems, for 
example, in modeling power converters with input 
voltages up to several kilovolts or magnifying and 
corrective devices with the working voltage range of 
a few millivolts; 

 “Excess Q-factor” that occurs in the presence of in- 
ductance contacts in the circuit—a semiconductor de- 
vice in the locked state, generating long-term oscilla- 
tory processes that are not present in real devices; 

 Inability to effectively “scale” models for parallel 
computation, operational ceiling of many packages is 
limited to a few hundred nodes. 

Our study [2] also demonstrates that the reduction of 
the integration step in order to improve the accuracy of 
the numerical scheme when using the node potential 
method at the same time degrades the conditioning of the 
system of equations. For small steps this does not allow 
to integrate with reasonable accuracy. 

The abovementioned problems of SPICE programs, in 
our opinion, are connected with the use of implicit inte- 
gration schemes in the computational core, and they can 
be partly solved by using explicit numerical schemes. 

2. Explicit and Implicit Numerical Schemes 

Implicit schemes have proven to be so popular, because 
they partially solve the problem of “stiff” [3] occurring 
when trying to integrate equations with time constants of 
transient response, spread out onto several orders of mag- 
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nitude. A simple example might be a semiconductor di- 
ode that protects the circuit input from static electricity. 
Such a diode will be in a locked state most of the time. 
When integrating its capacity, which is in the range of 
femto- to pico-farad, and the internal resistance of the 
order of fractions of Ohm are taken into account. At such 
parameters the processes in a virtually locked diode will 
not affect the operation of integrated circuits, functioning, 
for example, in the range of sound frequencies, but will 
create problems of computational nature. In this example, 
the diode can be simply removed from the model, but in 
power systems, e.g. with pulse-width modulation con- 
verters, where there are both fast processes that occur on 
the fronts of the pulses and slow processes at other times, 
elements of schemes simply can not be removed. 

In SPICE programs integration is performed with a 
variable step. The use of implicit schemes allows not to 
control the stability and accuracy is measured according 
to the Runge rule. When fast transients caused by fronts 
of pulses end, the Runge rule allows to increase the step. 

Assume that the simplest model contains the circuit 
elements resistor R and capacitor C shown in Figure 1, 
with a fast transient (relative to the time of change in 
other variables). 

Our model is: 

d
,

d C

x
x x U

t
    

Let the initial conditions be . Let us 
consider what happens to the integration error for the free 
component of the solutions when using different methods 
of integration with a step h. The time constant of this 
circuit τ = RC. The dependence of the error on the mag- 
nitude of step is shown on a logarithmic scale in Figure 
2. Curve 1 is the analytical solution of the Cauchy prob- 
lem 

 0 1CU t  

  e t
ax t   ; curve 2 is the error obtained by us- 

ing the explicit Euler scheme      2 Ex ac h x h x h  , 
where      0 0Exx h x h x    ; curve 3— 

     3 Ei ac h x h x h  ; the implicit Euler scheme— 
    1

1Eix h h x   0 ; curve 4— 
     4 tr ac h x h x h   error of trapezoidal schemes— 
         1

1 2 1 2 0trx h h h x 
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   ; curve 5— 
     5 RKM ac h x h x h  , where xRKM solution by using 

the Runge-Kutta-Merson scheme [4] 
 

 

Figure 1. Section of the circuit for analyzing the quality of 
various numerical integration schemes. 

 

Figure 2. The dependence of the error on the magnitude of 
the integration step when using different methods of inte-
gration. 
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where g(x) in our case 

 g x x  . 

The Runge-Kutta-Merson scheme allows to estimate 
the error as well    6 4 3 52 3 1c h k k k   0 —curve 6. 

The graph allows to draw several conclusions useful 
for consideration in the practical integration of stiff sys- 
tems. The implicit Euler scheme with an order of ap- 
proximation 1, becomes more accurate than trapezoidal 
schemes with approximation order 2, when step h > 2.5 τ. 

If we reduce the state variable x, i.e. remove the ca- 
pacitor from the circuit, you will obtain the trivial solu- 
tion x = 0, which is more accurate than: 
 an explicit Euler scheme, with h > τ; 
 an implicit Euler scheme, with h > 1.7 τ; 
 a trapezoidal scheme, with h > 2τ; 
 a Runge-Kutta-Merson scheme, with h > 2 τ. 

Note that when h > τ solutions  
with an increase in k have expressed oscillatory character, 
when using the schemes under consideration, which is 
absent in the analytical solution. Of all the options con-
sidered only the implicit Euler scheme constitutes an 
exception. At the same time the explicit Euler scheme 
and Runge-Kutta-Merson scheme (hereafter RKM) will 
have the oscillations grow exponentially, while the 
trapezoidal schemes will have them dampen slightly—the 
bigger is the step, the slower is the dampening. The latter  

  , 1, 2,3x t k h k   
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property of trapezoidal schemes, combined with the prob- 
lem of “excess Q-factor” mentioned above may give rise 
to significant fluctuations in solutions which will not be 
present in the actual device. This explains why the results 
of the numerical integration of “stiff systems” (h >> τ) 
are often doubtful. It would seem that the implicit Euler 
scheme presents a compromise, but it has a low order of 
approximation, and excessively dampens oscillation so-
lutions, if those are present for the integrated system. 
Curve 6, which gives the error estimate above for RKM 
schemes is wrong for h > 3 τ. Note that the Runge rule [5] 
according to which the accuracy of the integration by 
other methods is evaluated, also ceases to operate in the 
case of stiff systems. 

3. Explicit Sheme and Stiff Equations 

Let us consider a possible way of integrating a system of 
equations using different approaches to obtaining solu-
tions that are used for different equations of the system. 
Let us consider a system of differential equations: 

 d
, ,

d

X
G X t

t
             (1) 

where —single-column matrix—vec- 
tor of state variables, —vector 
function that returns the derivative of state variables, N— 
the dimension of the equations system, T—denotes the 
transpose. It is known that the applicability of explicit 
schemes is limited by their stability, which depends on 
the step size h, so an evaluation of a maximum h, at 
which stability is preserved, is necessary. By expanding 
right side of (1) in a Taylor series in X, and passing to the 
coordinate system ε , where 

 T

1 2, , , NX x x x 

 


 T1 2, , , NG g g g 

   Pt X t X t   X t  
is the exact solution of (1),  PX t  is the perturbed so-
lution, Equation (1) can be written with respect to per-
turbations of ε(t) in the following form: 

     2 ,d
0 ,

d

G X t
A t A

t X

  


   


.  

Accurate integration implies that ε is small enough to 
neglect 0 member ε2 within a step, whereas for the per-
turbation we can assume that: 

d

d
A

t

                   (2) 

We will assume that the integration is stable within the 
step, if the solution (2) of the numerical scheme con-
verges at . That is, stability within the integration 
step is equivalent to the stability of a linear equation with 
constant matrix A. In order to ensure that integration of 
the linear system (2) is stable, the eigenvalues of matrix 
A must be in the range of values determined by the nu-
merical scheme. In Figure 3, the shaded area represents 

such range of values for the explicit Euler scheme, and in 
Figure 4—for RKM. 

t 

As can be seen from Figures 3 and 4, one of the ad-
vantages of the RKM in comparison to the Euler scheme 
is stability when 1im rel l  , where λim and λre are re-
spectively the imaginary and the real part of any eigen-
value λ of matrix A. Rs = 2.3 on Figure 4 is a stable ra-
dius. But we prefer using RKM scheme with Ra = 1—that 
we assume adequate radius. For the matrix A we know 
the simple estimate of eigenvalue with maximum modulus  
max i

i
A   [6], where  is the adjoint matrix norm. 

In our case, it is more convenient to use 


— 

,max i j
i j

A a

   

 

 

Figure 3. The area of eigenvalues A at which the solution (2) 
of the Euler’s numerical scheme is stable. 

 

 

Figure 4. The area of eigenvalues A at which the solution (2) 
of the RKM numerical scheme is stable. 

Copyright © 2013 SciRes.                                                                                  AM 



Y. TANOVITSKI, G. KOBZEV 226 

Let’s sort the rows of (1) in ascending order ,i j
j

a ,  

and by applying condition , 1i j
j

h a   distinguish the  

state variables—Xex, which for a given h will be inte-
grated through the explicit method. In the remainder of  

, 1i j
j

h a   we single out the variables that will be re- 

duced through Xr. Thus the general form of the equations 
system is the following: 

  d d
, , ,

d d
ex r

ex ex r r ex r

X X
G X X G X X

t t
  .     (3) 

Reduction of state variables Xr will be reduced to 
equating the derivatives to zero d drX t , while both 
these variables (which are not state variables) can be de-
termined by solving the second equation of system (3) 
under certain Xex. 

Now we shall present the idea of explicit integration of 
the equations system: 

1) At the beginning of integration step X is known and 
the calculation of the matrix A is performed. 

2) The variables are sorted by increasing ,i j
j

a  and  

vector X is separated into two parts, Xex and Xr, as de-
scribed above. For the perturbed solution the following is 
true: 

11 12 21 22

d d
, 0

d d
ex r

ex r ex rA A A A
t t

 
             

or 

1
11 12 22 21

d
,

d
ex

ex .A A A A A A
t


       

Here εex and εr are the corresponding perturbed and 
reduced components for the disturbance; A11, A12, A21, A22 
—parts of the Jacobian matrix  ,G X t X  , taking 
into account the permutations of rows and columns 
which happened during sorting; for the solution to be 
stable within a step h should be less than 1 A . The 
following estimate for the matrix norm can be applied: 

1
11 12 22 21A A A A A    

Here finding the norm 1
22 21A A  is one of the biggest 

challenges. However, if the reduction of state variables 
Xr has been done in the previous step, i.e. the second 
equation in (3) has been solved, for example, by the 
Newton-Raphson method, then in the current step 
LU-factorization of A22 matrix is available, which greatly 
simplifies the task of identifying and assessing 1

22 21A A . 
Now, we have obtained an estimate of the maximum step 
in which explicit integration remains stable. 

3) Then for the first equation of system (3) an explicit 

numerical scheme is performed, as a result we get Xex(h). 
4) And then by solving the second equation in (3) with 

known values of Xex(h) we get Xr(h) at the end of the 
step. 

Among the explicit schemes, which can be used effec- 
tively in this algorithm Runge-Kutta-Merson schemes 
can be distinguished. Their specific feature is that you 
need to determine the interim solutions five times and 
following each of the solutions determined you also have 
to calculate the reduced variables. But even in this case, 
the accuracy and speed of calculation will often be the 
best by virtue of a higher order of approximation. 

4. Example: Integration of Low Pass Filter 
Equations of the 2nd Order 

A scheme of power low-frequency filter is shown in the 
Figure 5. It consists of resistors with R = 10 Ohm RL = 
100 Ohm of induction L = 0.1 H and capacity C = 10−6 F 
we took the same parameters as in [7]. For simplicity we 
assume that voltage across the power supply source E = 0. 
Mathematical model 

    1

2

1d
, ,

1 1d

R L L xX
AX A X t

C CR xt

    
        

, 

where 1 Lx i —current in induction; 2 Cx U —ca-
pacitor voltage. Let the initial conditions be UC = 0 и iL = 
1 A, and we have to find points of transient solution with 
step h = 0.001 s. In our case, for the first line of A matrix—  

1, 0.11j
j

h a   and for the second line 

2, 1100j
j

h a  . And explicit integration schemes RKM  

and Euler are unstable. We choose—Xe = iL Xr = UC. 
Reduced system of equation: 

d

d
e L

e

X R R
X

t L


  . 

In this case 1
11 12 22 21 1100A A A A  . It means 

that with step 0.001 s eigenvalues will be within the steel 
Rs area (see Figure 4). 

The scheme RKM with reduction of state variable UC 
shown in Figure 6 coincides at-a-glance with the ana-
lytical decision (Analyt), starting from the second point. 
The scheme of trapezia (Trap), with the chosen step, has 
the biggest margin of error, bigger, than the implicit 
Euler method (ImEuler). 

 

 

Figure 5. Test circuit. 
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