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ABSTRACT 

Wavelet methods are a very useful tool in solving integral equations. Both scaling functions and wavelet functions are 
the key elements of wavelet methods. In this article, we use scaling function interpolation method to solve Volterra in-
tegral equations of the first kind, and Fredholm-Volterra integral equations. Moreover, we prove convergence theorem 
for the numerical solution of Volterra integral equations and Freholm-Volterra integral equations. We also present three 
examples of solving Volterra integral equation and one example of solving Fredholm-Volterra integral equation. Com-
parisons of the results with other methods are included in the examples. 
 
Keywords: Wavelets; Coiflets; Scaling Function Interpolation; Volterra Integral Equation; Fredholm-Volterra Integral 

Equation 

1. Introduction 

The study of finite-dimensional linear systems is well 
developed. As an infinite-dimensional counter part of 
finite-dimensional linear systems, one can view integral 
equations as extensions of linear systems of algebraic 
equations. An integral equation maybe interpreted as an 
analogue of a matrix equation which is easier to solve. 
There are many different ways to transform integral 
equations to linear systems. Many different methods have 
been used for solving Volterra integral equations and 
Freholm-Velterra integral equations numerically. 

In this paper, we first recall the method of scaling 
function interpolation. Then we solve linear Volterra inte- 
gral equation of the form: 

     ,
x

a
df x k x t y t  t          (1) 

and Fredholm-Volterra integral equations of the form: 
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2

, d

, d
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b
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y x g x k x t y t t

k x t y t t

 






       (2) 

where the functions  and    1, ,  ,k x t k x t  2 ,k x t  are 
known functions and called kernels. The function  f x  
is known, and the function  y t  is to be determined. 
One of the motivations in this study arose from equations 
in theoretical physics. In fact, there are many applica- 
tions in several disciplines as well. We will use scaling 
function interpolation method to solve integral equations. 
As a natural question, one would wonder any possible  

convergence properties and how this method would com- 
pare with other methods. We will prove two convergence 
theorems and present several examples. 

2. Approximation 

Wavelets and scaling functions are a useful tool in ap- 
proximation methods of solutions of differential and in- 
tegral equations [1]. We first recall Multiresolution analy- 
sis (MRA) [2]. We assume the scaling function and 
wavelet function , Ψ are sufficiently smooth and satisfy 
MRA with compact support and Ψ has N vanishing mo- 
ments (defined below). The scaling function  x  is 
defined as 

     ,2 j
p p

p p
j px x p x            (3) 

for some coefficients  ,p p Z  . By using this dilation 
and translation we defined a nested of sequence spaces 
 ,jV j Z  which is called MRA of  with the 
following properties: 

 2L R

1,j jV V j Z                 (4) 

 0j
j Z

V V


                (5) 

j
j Z

V

  is dense in           (6)  L R2

    12j jx V x    V .        (7) 

For the subspace  is built by 1V  2x p  , p Z   
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then  and  we can write   0 ,V x p p    0V VZ 1

p     1,2p p
p p

x x p x        . In general, 

     ,2 j
p

p p
p j px x p x        .     (8) 

In fact, for each j we define the orthogonal subspace 

jW  of jV  in the subspace 1jV  , the or thogonal basis 
of jW  is denoted by 

, 2 j
j p p    ,              (9) 

and the wavelet function can be obtained by 

   ,p j px x    .           (10) 

for some coefficients p . Some interesting properties of 
scaling and wavelet functions make wavelet method 
more efficiently than other methods such as spline ap- 
proximations in solving an equation. A lot of computa- 
tional time and storage capacity can be saved since we do 
not require a huge number of arithmetic operations partly 
due to the following properties. 

Vanishing moments: 

 d 0kx x x  ,             (11) 

and in this case the wavelet is said to have a vanishing 
moment of order k. 

Semiorthogonality: 

       , , , ,,

; , , , .

i p j k i p j kx x x x x

p k i j p k Z

   





 
 d 0;

 (12) 

The set of scaling functions  ,n j  is orthogonal at 
the same level n, which means: 

       , , , ,,

, , .

n p n k n p n kx x x x x

n p k Z

   






 d 0;

1

 (13) 

Coiflet (of order L) has more symmetries and it is an 
orthogonal multiresolution wavelet system with, 

 d 0,  1,2, ,k
kM x x x k L    

1

.     (14) 

 d 0,   1,2, ,kx x x k L     .       (15) 

where  is the moment of scaling functions.  kM

3. Scaling Function Interpolation 

In MRA, any given function    2f x L R  can be in-
terpolated by using the basis functions in the subspace 

jV  as follows: 

     ,
j

p j p
p

f x f x x            (16) 

where the coefficientsv p  are evaluated by using the 
semiorthogonality of th g functions (12) such that e scalin

       , ,,  dp j p j px f x f x x x     .    (17) 

Hence the Equation (16) becomes as follows: 

          dj
, ,j p j p

p

.f x f x f x x x     x  

To approximate a given function f, one can use sam-
pling values of f at certain points. It is proved in [3], 
namely, an interpolation theorem using coiflet, namely, if 
 x  and  x  are sufficiently smooth and satisfy the 

ions (1 5) and the function  Equat 0)-(1  kf x C  , 
where Ω is a bounded open set in R2, k   2N , j Z  
then, 

     

 

, ,

1
, ,

2 2 2

,

j
j p j qj j

p

p c q c
f x y f x y

x y

     
 



 ,
 (18) 

where the index set is 

       , ,, sup supj p j pp q p p      .  

In addition, the moment lM  satisfies 

  ,  2, , 1
l

M c l N1,l    . 

1,c M  and Then 
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1
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jL
f f C f

 

    
 

 

where C is a constant depending only on N, diameter of 
Ω and 

 
   , , 0, ,: max , .

N
N

x y m N m N m

f
f x y

x y  




   

For one-dimensional analogue, we have 

     ,

1j p
f ,  , ,

2 2 j pj j
x f x x a b  

 
     (19) 

and 

 

 
 

2 ,

1
.

2

N
Nj

L a b
f f C f



    
 

       (20) 

where 

 
     , , , 0, ,: max .

N
N

x y a b m N m

f
f x

x 




  

4. Solutions of Linear Integral Equation 

egral 

4.1. Linear Volterra Integral Equation 

n Formula 

In this section, Coiflet is used to solve linear int
Equations (1) and (2), where we will explain the method 
in terms of matrix notation. 

In this subsection we will use the interpolatio

Copyright © 2013 SciRes.                                                                                  AM 



Y. Al-JARRAH, E.-B. LIN 206 

(19) to solve Volterra integral Equation (1). The un- 
known function  y x  in Equation (1) can be expressed 
in term of scaling functions  ,j p x  in the subspace 

jV  such that 

   ,
j

p j p
p

y x a x  .         (21) 

By substituting Equation (21) into the Equation (1), we 
have the following system, 

x

     

   

,
0

,
0

, d

, d

p j p
p

x

p j p
p

f x k x t a t

a k x t t t





 
  

 





 

 

t

    (22) 

To simplify the system, let 

p     ,
0

, dp j

x

A x k x t t   t

Then the system (22) becomes 

   p p
p

f x a A  x             (23) 

The coefficients can be evaluated by sub- 
st

.

 ,pa p  
eal numbersituting the set of r  

  , 0, ,  ,0p px x X p  X   b

into the system (23), let n  , then the system (23) 

n

If we use the notation 

can be written in the form 

   a A x a A x    
       

       

1 1 1 2 2 1 1 1

1 1 2 2 2 2 2 2

1 1 2 2 .

n n

n n

n n n n n

a A x f x

a A x a A x a A x f x

a A x a A x a A x f x

  
   

   






 

 1 2, , , na a a a   and 

n

  A x   
     

     

1 1 1 2 1

2 1 2 2 2

1 2

n

n

n n n

A x A x

A x A x A x
A

A x A x A x

 
   
 





   


 

 




      1 2, , , nf f x f x f x 
equivalent to the system aA 

, then the system (23) is 
f , and the solution is 

a 1fA . 24) 

This gives raise to coefficien
a 

4.2. Linear Fredholm-Volterra Integral  

To s holm-Volterra integral Equation (2), we 

                (

ts in (23) and we obtained 
numerical solution to Equation (1). 

Equation 

olve the Fred
use a similar algorithm as we use in 4.1. The unknown 
function can be approximated by using Equation (1) and 

one can have the system of linear equations; 

a B G   

where a is the vector of unknowns as we introduce in 
Equation (21), 

      1 2, , , ng x g x g x   G

and 

     
     

     

1 1 1 2 1

2 1 2 2 2
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and the set of 
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B x x k x t x t

k x t x t

 



 






 

 1 2, , , nx x x  is in the interval  ,a b  
t sec-which one can be ly spaced. In the nex  

tion we will discuss the convergence for the method by 
deriving a convergence theorem of this numerical solu- 
tion. 

 choose equal

5. Error Analysis 

ide with the convergence rate of 

, suppose that the functions 

In this section, we prov
our method for the numerical solution of solving linear 
Volterra integral equations and Freholm-Volterra integral 
equation respectively. We will explain the necessary 
conditions for the convergence. 

Theorem 5.1 
In Equation (1)

      , 0, , , 0k x t C X c d x X b     , 

  0, 0k x t m   and the two functions  f x ,  y x  
are in  0, ,  0C X x X b   , for ,j Z  

  ,p j py x a x j  . 

If an approximate solution of the Equation (1) with 
coefficients obtained in (24), and the error at the point  

ix  is      j  Then  i ie x y x y x  .i

1

2

j

e x c
  ,   
 

where c is a constant. 

n with the following equation. 

d


. (25) 

At any point 

Proof: 
We begi

         ,
0 0

, d , p j p
p

k x t e t t k x t t y t t   
 
 

x x 

 ;i jx x j   Equation (25) becomes: 

d         ,
0 0

, d , p j p
p

k x t e t t k x t t y t t 
 

  
 
  , 

i ix x
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then 

         ,
0

k x
0

, d , d
x x

p j p
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t e t t k x t t y t t 
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Such that  1 0
0

1
, dix

c k x t
m

  . t

By (19), the unknown function  y t  can be interpo-
la  the coiflet such that: ted by using
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         (28) ,j p

If we add and subtract Equation (28) in 
we get the following inequality: 
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But by (20), we have that; 
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By using the above results and the rthonomality of 
the scaling functions 

o
  t , we conclu e that d
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Theorem 5.2 
In Equation (2), suppose that the functions 

     1 ,k x t , , ,C a b a b a x X b    , 

     2 , , ,x t C a b a b  , and    ,  k y x g x  are in  

 ,C a b , for ,j Z  

  ,
j
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If an oximate solution of the Equation (2) with 
coefficients obtained in (24), and the rror at the point 
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e

ix  is      i i ie x y x y x  . Then 
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Proof: 
Substitute (21 get the following 

integral e uation 

     (29) 

Subtracts Equation (27) from (1) and subs
to get; 

) into Equation (2), we 
q
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 (30) 

Add and subtract Equation (28) for absolute value in 
the previous equation, we get the following equation. 
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We use the same idea in the proof of 5.1, and obtain 

the following error estimate. 

  1 2

1 1 1
.

2 2 2

j j j
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Remark 
Here we discuss only the case when the kernel func- 

tion  ,k x t  
 any given

is positive. We can generalize our method 
for  continuous function  ,k x t  in Equation 
(1); 

1) If  ,k x t  
e theore

is positive, we have obtained the con- 
vergenc m. 

2) If is negative then let   ,k x t     , ,k x t S x t  , 
and we can apply

   
0

, d
x

then the is positive  
our me

function 
thod for t

 ,S x t  
he equation  f x S x t y t  

uation (1). 
t

which m s

n be written as a sum of 
two positive 

,

tion (1) becomes 

 
 the Eqhas the sa e solution a

3) If the function  ,k x t  is neither of the above two 
cases, the function  ,k x t  ca

functions where 

      , ,k x t k x t k x t     

Then Equa

         
0 0

, d , d
x x

f x  k x t y t t k x t y t t     

And hence the result is concluded i ilar fashion. n a sim

6. erica

lve several linea

ns using coiflet of order 5
1-3) are 

al  the e
r resu

Example 1 
n (1) with; 

 Num l Examples 

In the following examples, we will so r 
Volterra integral equations of the first kind and Fred-
holme-Volterra integral equatio  
and provide the absolute errors. The examples (

so shown in [4] and xample 4 is presented in [5]. 
We will compare ou lts with others and show that 
our method has better approximations than other meth-
ods. 

Consider the integral Equatio

     e e
, , e

2

x x
x tf x k x t




   and the exact solution is  

 The numerical results are presented in Table 1. 

Example 2 
Consider the integral Equation (1) with; 
   1 e , , 1xf x x k x t x t      

exact solution is 
 and b = 1, and the 

  e xy x x  . The 
presented in Table 2. 

numerical results are 

Example 3 
Consider the integral Equation (1) with; 
    sin , , cos f x x x k x t x t  

tion is 
 and the exact solu-

  2siny x x . The nume
sented in Table 3. 

rical result are pre-

Example 4 
Consider the integral Equation (2) with; 

     4
1 2

2 1
,  , ,

3 3
g x x x k x t k x t xt   , 

and the exact solution is   .y x x
e 4. 

 The numerical re- 
sults are presented in Tabl

Absolute errors 

 
Table 1. The absolute errors for example 1. 

xi Exact solution
j = −2 j = −1 j = 0 

0.1 0.904831 8.384E−7 5.59E−7 6.788E−6 
0.2 0.818735 1.911E−6 1.638E−6 4.726E−6 
0.3 0.740816 4.223E−6 1.503E−8 1.799E−6 
0.4 0.670321 1.897E−5 1.562E−6 4.971E−7 
0.5 0.606533 5.633E−7 1.272E−6 2.261E−6 
0.6 0.548808 1.522E−6 2.271E−7 3.781E−6 
0.7 0.496588 4.381E−6 2.291E−6 2.572E−6 
0.8 0.449327 3.106E−6 1.647E−7 2.186E−6 
0.9 0.406571 1.021E−5 2.139E−6 1.111E−6 

7 4.466E−7 7.265E−7 4.201E−5 1 0.36783

 
Table 2. The absolute errors for example 2. 

Absolute errors 
xi Exact solution

j = −2 j = −1 j = 0 
0.1 0.0904738 1.381E−5 1.28E−6 9.954E−6 
0.2 0.163753 8.994E−6 1.488E−6 

3 0.222242 1.052E−5 1.81
7.303E−6 

0.
413E−5 2.

4.37E−6 
.639E−5 1.42E−7 4.349E−6 
066E−5 4.466E−7 3.997E−6 

4.136E−6 
0. 0.365915 3.425E−5 8.
1 0.367799 5.7E−6 1.

5E−6 3.265E−6 
0.4 0.268129 5. 242E−6 1.059E−6 
0.5 0.303268 1.689E−6 3.129E−6 
0.6 0.329283 1
0.7 0.347614 1.
0.8 0.359459 5.727E−6 1.692E−6 

9 073E−7 2.444E−6 
094E−6 8.08E−5   e xy x  .
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Tab solute errors for example 3. le 3. The ab

Absolute errors 
xi Exact solution 

j = 0 j = −2 j = −1 

0.1 0.0099833 8.384E−7 2.019E−6 4.092E−5 

0.2 0.0397339 1.911E−6 6.551E−6 4.573E−5 

0.3 0.0886561 4.223E−6 1.739E−7 1.081E−6 

−5 2.08

2.535E−6 1.028E−6 

047E−7 2.235E−6 

0.7 E−5 

0.8 0.573885 3.106E−6 4.201E−7 9.272E−6 

1. −5 2.303E−5 

0.4 0.155767 1.897E 2E−6 2.818E−5 

0.5 0.239713 5.633E−7 

0.6 0.338785 1.522E−6 8.

0.450952 4.381E−6 5.533E−6 1.412

0.9 0.704994 021E

662E−7 2.

3.581E−6 

1 0.841471 4. 985E−6 3.251E−6 

 
Table 4. The rro pl

A rs 

absolute e rs for exam e 4. 

bsolute erro
xi E n xact solutio

j = −2 j = −1 j = 0 

0.1 0.1 3.348E−7 1.032E−7 2.817E−7 

0.2 0.2 1.263E−7 5.75E−8 2.971E−7 

0.3 0.3 1.905E−7 3.789E−8 4.913E−8 

0.4 

5 0.

0.4 

5 

2.564E−8 

1.316E−

1.758E−7 

8.553E−8 1.

4.506E−8 

323E−7 0.

0.6 E−7 

0.7 0. −8 

2.064E−7 4.879E−8 

8 

0.6 1.876E−7 5.004E−7 1.243

7 6.735E−7 3.977E−7 5.035E

0.8 0.8 4.912E−7 

0.9 0.

1 

9 

1 

2.

5.887E−7 

589E−7 4.063E−7 2.472E−7 

7.36E−8 2.745E−7 
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