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ABSTRACT 

Ben-Naim in three articles dismissed and “answered” the Levinthal’s paradox. He announces there are pitfalls caused 
by the “misinterpretation” of thermodynamic hypothesis. He claims no existence of Gibbs free energy formula  G X  

where the variable is a protein’s conformation X . His Gibbs energy functional is   , , ;G T P N P R , where the vari- 

able is probability distributions  of the conformations. His “minimum distribution ” is wrong. By carefully 

establishing thermodynamic systems, we demonstrate how to apply quantum statistics to derive Gibbs free energy for-
mula 

 P R eqP

 G X . The formula of the folding force  G X  is given. 
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1. Introduction 

In [1], Levinthal pointed out that assuming a protein 
folds by randomly searching its native structure it will 
need time longer than the age of the universe to achieve 
its native structure. Based on this contradiction, he then 
concluded that the natural protein folding must be 
cause-based, that is, the native structure has the (local) 
minimum value of the Gibbs free energy. Because of too 
involved in the random thinking of target-based mental- 
ity, many people would not understand the proof by con- 
tradiction of Levinthal’s mathematical style argument. 
Instead, they felt that there exists a Levinthal’s paradox 
that Levinthal never raised. In [2] Ben-Naim dismissed 
the so called Levinthal’s paradox. 

But Ben-Naim invents a new “pitfall”: “This misinter- 
pretation (of thermodynamic hypothesis) has inspired 
many scientists to search for a global minimum in the 
Gibbs energy as a function of the conformation of the 
protein, sometimes referred to as the Gibbs energy land- 
scape. Such a minimum in the Gibbs energy is different 
from the minimum required by the Second Law of Ther-
modynamics” [3]. 

Trying to answer the so called Levinthal’s paradox in 
[4] Ben-Naim gives the following inference: 

“The following two statements are true: 
a) The native stable structure of the protein must be at 

a minimum of the GEL (Gibbs Energy Landscape). 
b) Upon releasing a constraint within the system, 

specified by the variables: T, P N, the Gibbs energy of 
the system will reach a single absolute minimum”. 

Ben-Naim’s conclusion is: “From the two true state- 
ments a) and b), people have concluded that the stable 
state of the protein must be in a global minimum in the 
GEL. Unfortunately, this conclusion is invalid... The 
reason so many people fell into this pitfall is that in 
making statements a) and b), we have not specified the 
variables with respect to which the Gibbs energy has a 
minimum”. 

Here Ben-Naim implies that conformation of a protein 
should not be the variable of the Gibbs energy. To an- 
swer the question of what is the variable in the Gibbs 
energy Ben-Naim states in [4]: “For a system character- 
ized by the variables T, P and N”, (respectively the tem- 
perature, pressure, and the number of particles) “we can 
write the Gibbs energy function of the system as 
 , , ;G T P N R . If we start with a system having one par- 

ticle at a fixed position, say 0 , then releasing the 
constraint on R, but keeping T, P, and N fixed, the sys- 
tem’s Gibbs energy will always decrease by the amount:  

=R R

3ln 0BG k T     ”. 

So Ben-Naim confirms here that the variable of the 
Gibbs energy is not conformation R. In [4], Ben-Naim 
continues to state the variable should be probability dis- 
tributions P of the conformations: “Note again that 
 , , ;G T P N R  is not a monotonic decreasing function of 

R, and that there exists no value of R, for which G is 
minimal. Instead, the functional   , , ;G T P N P R  has 
a single minimum with respect to all possible distribu-
tions  P R . The distribution eq , for which G is 
minimal, is given in Equation (1)”. Ben-Naim’s Equation 

 RP
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(1) in [4] is as follows:  

  1
, for anyeq eqP P

V
 R R         (1) 

Unfortunately, Ben-Naim’s solution of the single 
minimum (maximum) distribution eq  at equilibrium is 
wrong, either for the Gibbs energy functional 

 or for the entropy function 
 in [4]. Because in physiological en- 

vironment, almost all proteins are in the native structure, 
i.e., the native structure has much larger opportunity to 
appear than any other conformation. 

P

  , , ;G T P N P R
  , , ;S U V N P R




But even someone can get a correct minimum distribu-
tion for Ben-Naim, Ben-Naim’s shifting from statement 
(a) to statement (b) is still a misleading, or a real pitfall. 
Because it shifts the study of protein structure to the 
study of probability distribution of conformations. The 
two are different problems and answer to one would not 
automatically solve the other problem. For example, even 
knowing what is Ben-Naim’s minimum distribution, we 
still do not known what is the three-dimensional shape of 
the native structure. 

In this article, why Ben-Naim falls into a pitfall is ana-
lyzed. We will also demonstrate how to derive Gibbs free 
energy formula  G X  from quantum statistics to show 
how to get out of Ben-Naim’s “pitfall”, where we have 
omitted the environment parameters T and P, since they 
do not vary in nature protein folding process. Where 

 3
1, , , , M

i M X x x R 
U

a

 G

x  is a conformation of the 
protein , equivalent to Ben-Naim’s R, and  is the 
atomic center of the atom i , supposing that the mole- 
cule has total M atoms. Denying the existence of such 

3
i x 

X  (it is equivalent to Ben-Naim’s  
is one of the reasons that Ben-Naim claims “pitfall”. The 
negative gradient , is the force that forces the 
portein to fold. Formulas of 

 , ,G T P 1; )R

G
G  are given. The details 

of the derivation of G X  is given in Section 7. 

2. Where Comes the “Pitfall” 

To analysize Ben-Naim’s “pitfall” and look for the 
reason why there is a “pitfall”, we should recall what is 
the thermodynamic principle (Anfinsen called it modes- 
tly the thermodynamic hypothesis in [5]). Anfinsen 
stated in [5] clearly that “This hypothesis states that the 
three-dimensional structure of a native protein in its 
normal physiological milieu (solvent, pH, ionic strength, 
presence of other components such as metal ions or 
prosthetic groups, temperature, and other) is the one in 
which the Gibbs free energy of the whole system is low- 
est”; What did Anfinsen mean by the “whole system”? It 
seems from beginning to present, nobody has really 
specified it. But all assume that in it there are many 
conformations of the same protein molecule among other 

But look at what Anfinsen continued in [5]: “That is, that 
the native conformation is determined by the totality of 
interatomic interactions and hence by the amino acid 
sequence, in a given environment”. Here without any 
ambiguity the “totality” is “interatomic interactions” of a 
single protein molecule. Unfortunately, nobody really 
paid attention to these. 

All previous attemp

things. Ben-Naim’s molecule number N is no exception. 

ts of deriving the Gibbs free 
energy formula, including Ben-Naim’s, missed the goal 
of identifying “the three-dimensional structure of a native 
protein” that Anfinsen had emphasized in above quota- 
tion. By their derivation, the whole system consists of 

1N   conformations of the same protein molecule, each 
 a point in the 3is only M  Euclidean space, supposing 

that the protein has M s. Each micro state of the 
system, the N points in 3

 atom
M , is structureless if we 

consider the three-dimension onformation. In this kind 
of treatment, statistical mechanics cannot tell us anything 
about “the three-dimensional conformation of a native 
protein”. Once realized this, one should stop using such 
kind of systems and start to look for systems that can 
answer the problem of what is the three-dimensional 
shape of the native structure. 

But many just followed the st

al c

andard setting of statisti- 
ca

e is 
th

l mechanics that successfully treated objects such as 
ideal gas. Instead of telling “the three-dimensional 
conformation of a native protein”, they shift the problem 
to that what is the share of the native structure in the 
probability distribution of conformations. This problem 
is also interesting and important, but it is a different pro- 
blem, and as afore mentioned, its resolution tells us 
nothing about “the three-dimensional conformation of a 
native protein”. One has to be careful when making 
inferences between these two different problems. Ben- 
Naim’s “pitfall” comes exactly from the misplaced 
inference, i.e., even knowing what is the correct “mini- 
mum distribution eqP ” (Ben-Naim’s is wrong) would 
not help us to kn  what is “the three-dimensional 
conformation of a native protein”, not even one iota. 

Our understanding of the thermodynamic principl

ow

at under the physiological environment, for each con- 
formation X  of the peptide chain of the protein mole- 
cule U  th  is a Gibbs free energy  Gere X . The native 
structure NX  has the minimum value s Gibbs free 
energy fu on G . The only uncertainty is that 

 of thi
ncti NX  

might just corresp d a local minimum of G , as assert- 
ed by Levinthal in [1]. Then the initial confo ation 

on
rm IX  

becomes important, because it will determine wh
local minimum conformation is the native structure 

ich 

NX . 
ut, toB  answer the question of e

di
what is “th  three 

mensional conformation of a native protein”? as Anfin- 
sen emphasized, we have to make the transition of con- 
formations in 3M  to conformations in 3 . Based on the 
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three-dimensional geometry of each conformation X , a 
thermodynamic system 3X   should be ta- 
blished, in which among ot les, contain exactly 
only one protein molecule with the conformation 

es
her partic

X . 
Then one can apply statistical mechanics, classical or 
quantum, to get the Gibbs free energy of the system X , 
denoted as  G X . 

Kinetical ely, in th  physio vironment, an
vi

logical en  indi- 
dual protein molecule takes an initial conformation 

IX  with a Gibbs free energy  IG X . With the totality 
nteratomic interactions of t ein molecule, (we 

have to add that plus the interaction with its immediate 
environment), the conformation changes to a series 
conformations i

of i he prot

X , with Gibbs free energy  iG X . At 
last the conform on changes to the native structati ure NX  
with    N iG GX X . The “whole” system is the se  
of sys

ries
tems 

iX  in (time) series. Searching the native 
structure NX  th

he 
en becomes the mathematical problem 

of solving minimization problem  

   minG G

 t

All XNX X            

The solu (1) will y tell 
va

   (1)

tion of not onl us what is the 
lue    All minNG G XX X  (which is not important) 

but also s whwill tell u at is NX  (which is the most 
important). This is one way to answer the question that 
what is “the three dimensional conformation of a native 
protein”, i.e., making protein structure prediction. 

So if we want to resolve the protein folding problem 
(PFP), for any individual conformation X  we should 
create a tailored thermodynamic system X  and derive 
from it the Gibbs free energy formula  G X . Given a 
native protein’s amino acid sequence ching for 
global minimum of  G

, sear
X  is truly following the 

thermodynamic hypothes nfinsen stated it. Unable to 
derive such  G

is as A
X  should not be labeled as “misin- 

terpretation o  (thermodynamic) hypothesis” [3]. 
Lacking of Gibbs free energy function 

f the
G X  explains 

the question in [4]: “why an answer to th lem (PFP) 
has been elusive for so long”. The fact that many, 
including Ben-Naim, in trying to establishing 

is prob

 G X  
have shifted the variable of G  from X , the c  
mation, to  P

onfor-
X , the probab ity distr tion of il ibu X s, 

partially exp that why for so long such form la 
 G

lains u
X  has not been discovered. In particular, one 

n point of all previous theoretical treatment of 
protein folding is setting the thermodynamic system 
contains 1N   copies of the same protein molecule, for 
example [ s failed to obtain  G

commo

6], thu X . 
On the other hand, since 1990’s   man echniy t q  ues for

probing individual molecules were developed and experi- 
mentally observing and testing single molecule is cur- 
rently a common practice, see [7,8] for example. Theory 
anyway should not lagged too far behind experiment in 
single molecule protein folding study.  

3. Thermodynamic System X  and the 
Gibbs Free Energy Formula  G X  

 system

3.1. The Systems 

The thermodynamic  X  occupies a region in 
3 . Given 3MX  , how to put it into a space region 

3X  ? And actually, what is X ? To resolve this 
have towe  use X ’s three dimensional structure. 

at each atom has the sha f a ball with van 
der Wals radius ir
Assume th pe o

,   3,i iB r x  , the three dimen- 
sional structure of X  is   3

1
,

M

i ii
P B r


 X x  . The 

3  is the real spa  o ce while the 3ce r behavior spa M  
is only the control ace ation, 

 
To establish 

sp of the protein conform
[9].

X  we need some geometric prepa- 
ration, although it m y sounds too mathematical, it is no 
su

the theory of atoms in molecule 0], what 
co

a
rprise at all. In fact, Anfinsen stated as early as in 

1973 that “biological function appears to be more a 
correlate of macromolecular geometry than of chemical 
detail” [5]. Unfortunately, so far, nobody has taken it 
seriously. 

Although the shape of each atom in U  is well 
defined by s [9,1

e ncerning us here is the overall shape of th structure 
PX . The cutoff of electron density 0.001   au [9,10], 
gives the overall shape of a molecular structure that is 

 like Pjust X , a bunch of overlapp oreover, 
the boundary of the 0.001

ing balls. M
   au cut off is almost the 

same as  molecular surface the M X  (Figure 1) which 
was defined by R  1977 [11] and was shown to 
be a more suitable boundary rface of P

ichards in
 su X  than other 

surfaces in 1992 and 1993 [12,13]. 
In mathematics, for any closed surfac compact and 

connected) 3
e (

   , there are a bounded domain   
and a un-bounded domain Σ'  such that  

3 ' , '                   ) (2

Let  be the diameter of a water mowd lecule and 
M X  be  molecular surface of the  PX  with the probe 
 

 

Figure 1. Two dimensional presenting of molecular surface 
[11] and solvent accessible surface [14]. This figure s 
originally in [15]. 

wa
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radius 2wd . If M X  is connected, then we can use 
M  X  in (2). If M X  has multiple connected compo- 

S , 1nents i m uch that 1S  is the largest com- 
ponent i.e., all othe omponents of 

i

, 
, s
r c M X  are contained 

in  . Then denote 
1S  1 1

'
iX S Si

      and 
 1 1

' '
iX S Si

     . Thus, we always have  
3 ' , 'M M       X X X   (3) X X X   

Let  , inf Cdist C  x y  be the distance y
3C  

x from a 
point to a subset . Define  

h stem

x  

 : dist( ,X x x ) wd X         (4) 

as our t ermodynamic sy . While  

 X X X                 (5) 

is the first hydration shell surrounding PX . 
To be simple, we only consider

nce n the system 
 single peptide chain, 

self-folding globular proteins here. He  i

X , except PX , there are only water molecules and 
electrons. We have P M   X X X X  and all 
nuclear centers of water molecules in X  are contained 
in X . Moreover, since  X  i ou  is b t has a finite 
volume    V V XX . 

The thermodynamic system 

nded,

X  will be an open sys- 
tem, i.e., elect  and water molecules can enter and 
lea

rons
ve X . Therefore, the numbers N  and eN , of 

water molecules and electronics in X  are variables. 
According Anfinsen [5], the protein folding process is 
after the peptide chain synthesis. Therefore, part of the 
totality of the “interatomic interactions”, as emphasized 
by Anfinsen in [5], has already contributed to form 
correct chemical bonds. In the folding process, “chemical 
details” may be represented by the forming of intra- 
molecular hydrogen bonds and the interactions with the 
immediate environment, in our case, the solvent consist- 
ing of water molecules. 

Ben-Naim claims that “in the author’s opinion, the main 
hindrance to finding a solution to the protein folding 
problem has been the adherence to the hydrophobic 
(HOO) dogma, which states that various HOO effects 
(both solvation and interaction) are the dominant forces 
in protein folding” and “an exhaustive analysis of all the 
solvent induced effects on protein folding reveals that the 
hydrophilic (HOI) effects are much more important than 
the corresponding HOO effects” [2]. 

In [15] a simulation of enlarging the hydrophobic core 
alone, whose forming is considered the main effect of 
HOO, not only produced secondrary structures, but also 
produced the intra-molecular hydrogen bonds. This result 
shows that HOO should not be dismissed so simply. 

But no matter the driving force of protein folding is 
HOO or HOI, a common essence for them is that in a 
protein there are many different moieties or atom groups 

ith different levels of ability of forming hydrogen 

bonds (hydrophobic levels). Simply classifying amino 
acids as hydrophobic or hydrophilic is an over simplifi- 
cation [16]. In fact, since each atom belongs to a parti- 
cular moiety or atom group, it can be assigned a hydro- 
phobic level as the level of the moiety or atom group. 
Suppose we classify the atoms into 

w

H  hydrophobic 
levels iH , 1, ,i H  , such that 

 11
, , , ,

H

i i Mi
H


   a a a . For example, in [16] there 

are 5H   classes, C, O/N, O–, N+, S. If a hydrogen 
atom is n n atom in i bo ded with a H , l put it in we wil

iH . 
t Le  1,2, ,iI M   be the subset such that 

j iHa  if and only if ij I . Defi  ne
 ,j jj Ii

P B r
i   PX Xx  and as shown in Figure 2,  

    : dis dist , ,

,

P  Xx x
 (6)

t ,

1

i i iP P

i H 

X X X Xx 
 

Let  V   be the volume of , then  

X
    (7) 

Define the hydrophobicity subsurface 

3  

   
 

=1
=1

, ,

and for , 0.

H
H

i ii
i

i j

V V

i j V

 

 





X X X

X X

   

 

iM X , 1 i H  , 
as  

.M Mi i X X X

Le

              (8) 

t  A   be the area of a surface , then  

9) 

 

3  

 , ,

and if , then 0.

H

i ii

i j

M M A M

i j A M M

 

 

X X X

X X

 
H

A M X

 
=1

=1i     (

 
Figure 2. Note that RXi generally are not connected, i.e., 
having more than one block. 
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3.2. The Formulas 

In our open thermodynamic system, there will be
water molecules in

 iN  
 iX , and  electrons in eN X , 

thus we will denote t riable  a vector 

After statistical treatment, the mean number of 
and will be denoted as 

he va N  as

 1, , ,e HN N N N  . 

eN  

iN   eN X ,  iN X , 1, ,i H  . 
Each water molecule in  iX  will contact iM X . The 

 will ch ical potential reflectin
be den ted as 

em
o

g the contacting energy

i . Similarly, the energy for an electron 
kept in X  e thwill b e chemical potential e . W

 statistics via the
Gibbs free en

ith 
 

ergy 
these pre

d ca
otei

parati
nonic 
n fol

o
ensem
ing 

n, arguing in
gran ble we 
of pr d

 quant
derive t

um
he 

 G X  as follows 
 also see [

(see Section 7 for 
 for futhe detailed derivation, 17,18] rther 

discussions):  

     
1

.
H

e e i i
i

G N N 


 X X X        (10) 

Note that in the folding process, each intermediate 
structure X  is not in a stationary state, it is rather a 
system of quasi-equilibrium states of the folding. So that 
it is not the case that i j  , a in equilibrium state. 
Rather, the chemical potentials w ll be constants duri  
the folding, as the environment is u changed. 

s 
i ng
kept 

Formula (10) is not easy to calculate, we can convert it 
in so

al  de ed form la appeared

n

to a geometric form that is not only calculable but al  
coincident to a mathematic ly riv u  
in [15,19]. 

Since every water molecule in iX  has contact with 
the surface iM X  and the curvature of M X  is uni- 
formly b unded,  iNo X  is proportional to the area 
 iA M X . That is, there are 0i  , independent of X , 

such that  

    , 1 .i i iA M N i H   X X      (11) 

Similarly, there will be a 0e  , independent of X , 
such that   e eV N X X

 the definition of 
. 

By X  and X , we have roughly 
  A M wV d X X X hus . T  

       
   .

e e e

e e w

N V V V

V d A M

 

 

      
  

X X X X

X X

X  
 (12) 

Substitute (11) and (12) into (10), we get  

     e e w e eG V d A M     X XX

 
1

.
H

i i i
i

A M 


 X

     (13) 

This Gibbs free energy function  G X  really should 
be written as  ;nG E X , where E s environment, its 
parameters in ing the temperature T  a d pressure 
P  which will affect the values of chem  

e

n  i
clud

  and i . Since  folding is in a fixed physio- 
vironment, we can omit nE  in this stage. 

It should

protein
cal en

be emphasized here that since we assumed 
that the oteins are single peptide chain, s

bular nsins, the first hy n of

logi

glo

 
pr

 protei
elf-folding 

dratio  PX  contains 
only water molecules and ele  no presence of other 
componen bb

ctro
at all, this Gi s  ene  function 

ns,
 freets rgy

 G X  should be only suitable t hese proteins. For 
e presenc

o t
e of

 considered i
othe
such
dy

r kin
 as c

nami

ds o
hape

c sy

f proteins, th  othe ponents 
ronins must be  the thermo- 

stem

r com
n

 X . Then, the etry geom  of X  will 
becom

4.

Anf
ously
sh

v

e more 

Hypothesis

ha
roces

co licated. 

dynamic 
 

isen d shown that the prot lding is
 p s [5], thus the ther namic hypothesis 

prin

mp

 Applying and Testing the Thermo

ein fo
mody

c 

 a spanten- 

ould be treated as thermodynami ciple. A direct 
application of it, also a real test of it, is the ab initio 
prediction of a protein’s native structure as in (1). How- 
e er, without control of overlapping of the balls 
 ,i ix , we may get a single ball with all other balls 

collapsed in it as a minimum structure, a disaster f
B r

hes

or a 

ady ed its role d ng the 
synthesis of the peptide chain. This reality forces us to 

pr

nt

ediction. The pairwise potentials used for force fields 
will prevent the collapsing happen. Why the pairwise 
potential energy among atoms of the protein U  does 
not show in formulae (10) and (13)? The reason is that 
according to Anfinsen [5], protein folding is after the 
sy is of the whole peptide chain. So that during the 
folding process all covalent bonds in the main chain and 
each side chain are already formed and non-bonding 
atoms keep a certain distance from each other. That is, 
the potential energy has alre  play uri

restrict what X  can be treated as a conformation, i.e., a 
conformation should satisfy the steric conditions below. 

There are 0ij  , 1 i j M    such that for nu- 
clear centers ix  and jx  in X ,  

, no covalent bond between  and ;

,

 is the standard bond length between  and .

ij i j i j

ij ij i j ij ij

ij i j

d d

d



 

 

    

x x a a

x x

a a

(14) 

We will denote all conformations satisfying (14) as 
X . Then the minimization will become:  

   inf ,G G


N X
X X

X
           (15) 

or, at least, within X , NX  corresponds to a local mini- 
mum of G . 

With the steric conditions we avoided the collapsing 
problem. But the steric conditions turn the minimization 
problem (1) into a constrained minimization problem 
(15). Mathematically the latter is much more difficult to 

n
ical potential
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solve. To avoid the constraint in minimization for non- 
bonding atoms, we can use the van der Waals force to 
modify the formula as:  

       
=1

6

0 2

H

v e e w e e i i iG V d A M A M        X X XX

12

0

non-bonding ,

,

i

ijr
E

  
  

 
ij

ij
i j ij ij

r

r r

 
         

where  is the corresponding energy and 
(16) 

0ijE 
ij jr  x x  and  the ideal distance between the 

at
i 0ijr

oms ia  and ja . Before using vG  to eliminate the 
constraint of X X , we take a more convenient coo  
dinate of the conformation 

r-
X . We require that all bond 

le-length pattern) length d a oted ne
om

s an ngles (den  as o
 

 ang
are kept as obtained fr a conformation X X  and 
from X  calculate the values of all rotatable dihedral 
angles    1, , π,π

L

L      (including all the main 
chain i , i s). In fact, new conformations obtained 
by changing   will keep the same angle-length pattern 
and all conformations with the same angle-length pattern 
as X  are obtained by choose suitable   values. The 
function  vG X  then can be written as  

 v vG GX    1, , ;

is induced from .
vG   

 


X X

L      (17) 

Let NX  have the dihedral angles  1 , , L  N N N , 
 relaxed and we willthen th straint in (15) will be

have a minimization problem without any constraint:  

  (18) 

The For a

w
 is the 

ti

e con  

     
 induced from 

inf .
Lv v vG G G

 
   N

N
X

X
 X

5. ce Th t Forces the Protein to Fold 

Ben-Naim correctly emphasizes that the protein folding 
is a cause-based process, “One can imagine that at each 
stage of the folding process, there are strong solvent- 
induced forces exerted on the various groups along the 
protein. These forces will force the protein to fold along 
a narro  range of pathways...” [2], and the folding force 
actually  negative of the gradient of the Gibbs free 
energy func on, that is G , “we need to know the 
forces acting on each of the M groups of the protein 
being at the conformation MR . This force is obtained by 
taking the gradient of the Gibbs energy with respect to 
each of th [4]. e  

Howeve  on imum distribu
Ben-Naim cannot tell what is the garden 
mula (13), it is easy to write down mathe atical fo a 
of  F inat

iR ”
r, with ly a “min tion eq ” 

. With for- 
P

rmul
G

m
es  G or example, in the coord. L , the 

folding force is  

 
1

, , , , .v v vG G G
G

   
           (1

v
i L      

9) 

5.1. Newton’s Fastest Descending Method 

Before giving the formula of , we will point out vG
that if it is calculable, then we can apply the fastest 
descending method to pursue the minimum value of 

 vG  . That is, starting from a 0 , the immediate next 
conformation t  will be chosen such that  

 0 0 ,t vt G                (20) 

where 0t   is a suitable step length. When t  is small, 
it is guaranteed that    0tG G   . Any (local) mini- 
mum mX  would have that  mG X 0 . 

5.2. The Formula of vG  

We will give the analytic formula of  vG X  here 
without mathematical proof. It is:  

 

     
1

v

i

H

w e e j j
ji i

V A A
d M M



     
  



  
   

  X X X

X

 

G

12 6

0 0

non-bonding ,

2 .

e e j
i

jk jk
jk

j k i jk jk

r r
E

r r







                   


(21) 

that bonIt should be mentioned here d in U  is rota- 
table if it is a single bond and if we cut this bond, all 
nuclear centers in X  can be divided into two (non- 
empty) groups, such that we can fix one group and rotate 
around the bond axis the other group. Let   be the 
outer product i  3 . Let i ix y  be the n d, then bon

 i i i ii  b x y x will b taty  e the ro ion axis and iL  
the rota ctor field, i.e.,    i i i tion ve L x x y b  if x  
is a rotated nuclear   x 0  if x  is a 
fixed nuclear center. Furtherm

center; and 
ore,  

iL

 

   2 d
M

i

A
M H




  
 

X
X L N

 (22) 

2

2

d ,

,

M

i

V
 

X
N 



    

and  

i
i
 

 X L

    2

0, 1

0,

2 d

d
d ,

j

j

j iM
i

j
iM

M j

A
M H

f

f






  



 
   
  





X

X
X

X L N

L η





  (23)

where  and 

 

N H  
ure of 

are the outer unit normal and the 
mean curvat M X , 2  and  the Haus
m

1
t

dorff 
easures of dimensions 2 and 1. Let X  be e family 

of conformations such that 0 
th

X X  and 
 t

k k i kt x x L x , 1, ,k M  . Define 3
, :t jf    

as      dist dist ,, , t t tt j j jX
f M M M x x x , and 

X X
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denote  

  ,
0, 0, 0, 0,

0

0,
0, 0,

' = ,

d
' ,

d

t j
M j j j j

t

j
i M j j

f
f f f f

t

f
f f

t




    



  
X

N

L

 (24) 

,
X

N

Finally, if  is rotated and kx jx  is fixed, then  

   
,

k j i kkj

i kj

r

r

 




x x L x
         (25) 

if kx  and jx  are both rotated or both fixed, then we 

have 0 . kj

i

r







The integration of above formulae on the mo
surface 

lecular 
M X  are given in [20]. 

6. Conclutions 

a 

gy formulas (  and (13), f them were
med by Ben-Naim as fallen into a pitfall. Th

mselves need detailed geometric formulat
odynamic system to present them, is a realiza- 

tion of Anfinsen’s insight that “biological function 
appears to be more a correlate of macromolecular ge
metry than of chemical detail” [5]. Contrary to
Naim’s claims that “In the author’s opinion, the main 
hinderence to finding a solution to the protein folding 
pr be ce obic 
(HOO) dogma” [2], the derivation of (10) and (13) hea- 
vily depends on the concept of hydrophob

In Section 7, the quantum statistical
rmul ) is

o  in
Naim’s minimization at  is analyzed and 

sed bec se it predicts  every 
pos

The Ben-Naim’s pitfall of “misinterpretation of thermo- 
dynamic hypotheses” is dismissed as Don Quixote’s 
windmill by demonstrating the existence of Gibbs free 
ener 10)  pursuing o  
clai e for- 
mulae the ion of 
the therm

o- 
 Ben- 

oblem has en the adheren  to the hydroph

icity. 
 derivation of 

fo a (10  given, the convertion of (10) to (13) is 
dem nstrated  Section 3.2. 

Ben-
dismis au

 eqP R
that at equilibrium

sible conformation R  will have the same probabi- 
lity to be the structure of a native protein. That is, Ben- 
Naim cl  that  aims 1eqP VR  for any conformation 
R . In fact, in the c
ment the native stru

ont , in t ogical environ- 
cture is dominate. 

rary he physiol

The reason of why calculable formulas such as (10) 
and (13) have not appeared so far is discussed, blindly 
imitating successful classical examples of applying 
statistical mechanics and ignoring Anfinsen’s insight are 
two main reasons. 

The force that forces the protein to fold is identified as 
 G X  by general physical law, that Ben-Naim has 

correctly pointed out. The calculable formula of G  is 
given. 

7. Derivation of Formula (10) 

7.1. The Shrödinger Equation 

For any conformation X X , let 
  3

1, , , , N
i N W w w w    be the nuclear centers of 

oxygen atoms in water molecules in X  and 
  3

1, , , , L
i L e e e    be electronic positions of all 

electrons in 
E

X . Then the Hamiltonian for the system 

X  is:  

 

2 2
2 2

2 im

=1 1

2
2

1

ˆ ˆ ˆ=
2 2

ˆ , , ,

M N

i i
i ii w

L

ie

H T V
m m

V





     

  

 



 

 X W E
     (26) 

where im  is the nuclear mass of atom  in 
an

ia U , wm  
d em  the masses of water molecule and electron, 2

i  
the Laplacian in corresponding 3 , and V the poten- 
tial.  

7.2. The First Step of the Born-Oppenheimer 
Approximation 

g on the shape of PDependin X , for each i , 1 i H  , 
the maximum numbers iNX  of water molecules con- 
tained in iX  vary. The retically we co onsider all cases, 
i.e., there are 0 i iN N  X  water molecules in iX , 
1 i H  . Let 0 0M   and i jj i

M N


 and  
 1 11, , , ,

i i i

3 iN
i M M j M   W w w w   , 1 i H  , and 

  3, , ,1 2
H

HM

positions of water mole in 

M W W W W   denote the nuclear 
cules X

eN    of electrons in 
. As well, there will 

be all possible numbers 0

X . Let  1 2, , ,
e

3 eN
N E e e e   deno

ixed 
te their 

nuclear positions. For each f X  and 
 1, , ,H eN N N N  , the Born-Oppenheimer approxi- 
on hasmati  the Hamiltonian  

 
2

2 2

1 1

1 1ˆ ˆ , ,
2

eH NM

X j
jw e

H V
m m 

 

 
      

 
  .X W E

 

The eigenfunctions 
,  , 2

0 ,1
, ( )i e

H N NN
i ii

L


  X
X X XW E   N 1 i  

te heir
, 

compris an orthonormal basis of ,NX Deno  t  
eigen ues (energy levels) as ,

i
e . 

val NEX , then 
, ,

,
ˆ N i N

i N iH E X X
X X

the efinition

. 

7.3. Grand Partition Function and Grand 
Canonic Density Operator 

In the following we will use  natotions and d s 
in [21, Chapter 10]. Let Bk  be the Bolzmman constant, 
set 1 k TB  . Since the numbers iN  and eN  vary, 
we should adopt the grand canonic ensemble. Let i  be 
the chemical potentials, t is, the Gibbs fr  energy per 

ecule in 
hat ee

water mol iX . Let e  be electron chemical 
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potential. The grand canonic density operator is 
22])  

  

([21, 

 ˆ ˆ ˆˆ exp .
H

eH N N  
     X X X

 
where the grand partition function is



=1
i i e

i

    




,
1e

N
i

E 


 



 

X

7.4. The Gibbs Free Energy 

=1

,

exp

ˆ ˆ ˆTrace exp

.

H
i

i i e e

H

i i e e
i

N N

i N

H N N





  

 
 



          
    

X

X

 

   

 G
nder th

X  

According to [21, p. 273], u rand canonic 
ensemble the entropy 

e g
   S S XX   of the system 

X  is  

  

 

 

       

1

1

1

ˆ ˆ ˆ

1 ˆ ˆ

ˆ ˆTrace lnB Bk k  ˆln

ˆ

S 

1
.

H

B i i e e
i

H

i i e e
i

H

i i e e
i

k H N N

H N N
T

U N N
T

  

 

 







   X XX

   

      
      







X

X

X

X

X X X X
 



X

(27) 

Here we denote  ˆ
i iN N X  

i

the mean numbers of 
water molecules in X , 1 i H  , and  ˆ

e eN N X  
the mean number of electrons in X .

 ˆ  of the system
 The inner energy 

XH  X  is denoted as: 

)(=)( XX UU . 

The term   X  is a state function with v iables ar

1, , , , HT V   , and e , and is called the grand canonic 
or the thermodynamic potential 

([22, p. 33]). By the general thermodynamic equat
[22, pp. 5-6]:  

potential ([21, p. 27]) 
ions 

 

    
=1

, ,1

,

, , , ,

H

i i e e

H

N d N

T V
i

e

d SdT PdV d 

      X X 
 

see tha

     X

we t  

    1, , , , ,H eT V PV    X X , 

where    V V XX 
ic system 

 is the volume of the therm
dynam

o- 

X . T
ergy  G GX

hus by (27) we obtain the Gibbs 
free en  in (10):   X

         

   
1

.
H

i i e e
i

G G PV U TS

N N 


   

 

XX X X

X X



 
X
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