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ABSTRACT

Ben-Naim in three articles dismissed and “answered” the Levinthal’s paradox. He announces there are pitfalls caused
by the “misinterpretation” of thermodynamic hypothesis. He claims no existence of Gibbs free energy formula G(X )

where the variable is a protein’s conformation X . His Gibbs energy functional is G(T, P,N; P( R)) , where the vari-

able is probability distributions P(R) of the conformations. His “minimum distribution P, is wrong. By carefully

establishing thermodynamic systems, we demonstrate how to apply quantum statistics to derive Gibbs free energy for-

mula G(X). The formula of the folding force —VG(X) is given.
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1. Introduction

In [1], Levinthal pointed out that assuming a protein
folds by randomly searching its native structure it will
need time longer than the age of the universe to achieve
its native structure. Based on this contradiction, he then
concluded that the natural protein folding must be
cause-based, that is, the native structure has the (local)
minimum value of the Gibbs free energy. Because of too
involved in the random thinking of target-based mental-
ity, many people would not understand the proof by con-
tradiction of Levinthal’s mathematical style argument.
Instead, they felt that there exists a Levinthal’s paradox
that Levinthal never raised. In [2] Ben-Naim dismissed
the so called Levinthal’s paradox.

But Ben-Naim invents a new “pitfall”: “This misinter-
pretation (of thermodynamic hypothesis) has inspired
many scientists to search for a global minimum in the
Gibbs energy as a function of the conformation of the
protein, sometimes referred to as the Gibbs energy land-
scape. Such a minimum in the Gibbs energy is different
from the minimum required by the Second Law of Ther-
modynamics” [3].

Trying to answer the so called Levinthal’s paradox in
[4] Ben-Naim gives the following inference:

“The following two statements are true:

a) The native stable structure of the protein must be at
a minimum of the GEL (Gibbs Energy Landscape).

b) Upon releasing a constraint within the system,
specified by the variables: T, P NV, the Gibbs energy of
the system will reach a single absolute minimum?”.

Copyright © 2013 SciRes.

Ben-Naim’s conclusion is: “From the two true state-
ments a) and b), people have concluded that the stable
state of the protein must be in a global minimum in the
GEL. Unfortunately, this conclusion is invalid... The
reason so many people fell into this pitfall is that in
making statements a) and b), we have not specified the
variables with respect to which the Gibbs energy has a
minimum”.

Here Ben-Naim implies that conformation of a protein
should not be the variable of the Gibbs energy. To an-
swer the question of what is the variable in the Gibbs
energy Ben-Naim states in [4]: “For a system character-
ized by the variables T, P and N”, (respectively the tem-
perature, pressure, and the number of particles) “we can
write the Gibbs energy function of the system as
G(T,P,N;R). If we start with a system having one par-
ticle at a fixed position, say R = R, , then releasing the
constraint on R, but keeping T, P, and N fixed, the sys-
tem’s Gibbs energy will always decrease by the amount:

AG =k, TInpA’ <0

So Ben-Naim confirms here that the variable of the
Gibbs energy is not conformation R. In [4], Ben-Naim
continues to state the variable should be probability dis-
tributions P of the conformations: “Note again that
G(T,P,N;R) is not a monotonic decreasing function of
R, and that there exists no value of R for which G is
minimal. Instead, the functional G(T,P,N;P(R)) has
a single minimum with respect to all possible distribu-
tions P(R). The distribution P, (R), for which G is
minimal, is given in Equation (1)”. Ben-Naim’s Equation

OJBiphy



14 Y. FANG

(1) in [4] is as follows:
1
Py —>Peq(R):V, for any R (1)

Unfortunately, Ben-Naim’s solution of the single
minimum (maximum) distribution R, at equilibrium is
wrong, either for the Gibbs energy functional
G éT, P,N; P(R ); or for the entropy function
S(U,V,N;P(R)) in [4]. Because in physiological en-
vironment, almost all proteins are in the native structure,
i.e., the native structure has much larger opportunity to
appear than any other conformation.

But even someone can get a correct minimum distribu-
tion for Ben-Naim, Ben-Naim’s shifting from statement
(a) to statement (b) is still a misleading, or a real pitfall.
Because it shifts the study of protein structure to the
study of probability distribution of conformations. The
two are different problems and answer to one would not
automatically solve the other problem. For example, even
knowing what is Ben-Naim’s minimum distribution, we
still do not known what is the three-dimensional shape of
the native structure.

In this article, why Ben-Naim falls into a pitfall is ana-
lyzed. We will also demonstrate how to derive Gibbs free
energy formula G(X) from quantum statistics to show
how to get out of Ben-Naim’s “pitfall”, where we have
omitted the environment parameters T and P, since they
do not vary in nature protein folding process. Where
X =(x,, X, Xy )€ R is a conformation of the
protein [, equivalent to Ben-Naim’s R, and x, € R’ is the
atomic center of the atom &, , supposing that the mole-
cule has total M atoms. Denying the existence of such
G(X) (it is equivalent to Ben-Naim’s G(T,P,1;R))
is one of the reasons that Ben-Naim claims “pitfall”. The
negative gradient —VG, is the force that forces the
portein to fold. Formulas of VG are given. The details
of the derivation of G(X) is given in Section 7.

2. Where Comesthe “ Pitfall”

To analysize Ben-Naim’s “pitfall” and look for the
reason why there is a “pitfall”’, we should recall what is
the thermodynamic principle (Anfinsen called it modes-
tly the thermodynamic hypothesis in [5]). Anfinsen
stated in [5] clearly that “This hypothesis states that the
three-dimensional structure of a native protein in its
normal physiological milieu (solvent, pH, ionic strength,
presence of other components such as metal ions or
prosthetic groups, temperature, and other) is the one in
which the Gibbs free energy of the whole system is low-
est”; What did Anfinsen mean by the “whole system”? It
seems from beginning to present, nobody has really
specified it. But all assume that in it there are many
conformations of the same protein molecule among other
things. Ben-Naim’s molecule number N is no exception.

Copyright © 2013 SciRes.

But look at what Anfinsen continued in [5]: “That is, that
the native conformation is determined by the totality of
interatomic interactions and hence by the amino acid
sequence, in a given environment”. Here without any
ambiguity the “totality” is “interatomic interactions” of a
single protein molecule. Unfortunately, nobody really
paid attention to these.

All previous attempts of deriving the Gibbs free
energy formula, including Ben-Naim’s, missed the goal
of identifying “the three-dimensional structure of a native
protein” that Anfinsen had emphasized in above quota-
tion. By their derivation, the whole system consists of
N >1 conformations of the same protein molecule, each
is only a point in the R’ Euclidean space, supposing
that the protein has M atoms. Each micro state of the
system, the N points in R’ | is structureless if we
consider the three-dimensional conformation. In this kind
of treatment, statistical mechanics cannot tell us anything
about “the three-dimensional conformation of a native
protein”. Once realized this, one should stop using such
kind of systems and start to look for systems that can
answer the problem of what is the three-dimensional
shape of the native structure.

But many just followed the standard setting of statisti-
cal mechanics that successfully treated objects such as
ideal gas. Instead of telling “the three-dimensional
conformation of a native protein”, they shift the problem
to that what is the share of the native structure in the
probability distribution of conformations. This problem
is also interesting and important, but it is a different pro-
blem, and as afore mentioned, its resolution tells us
nothing about “the three-dimensional conformation of a
native protein”. One has to be careful when making
inferences between these two different problems. Ben-
Naim’s “pitfall” comes exactly from the misplaced
inference, i.e., even knowing what is the correct “mini-
mum distribution B, ” (Ben-Naim’s is wrong) would
not help us to know what is “the three-dimensional
conformation of a native protein”, not even one iota.

Our understanding of the thermodynamic principle is
that under the physiological environment, for each con-
formation X of the peptide chain of the protein mole-
cule $( there is a Gibbs free energy G(X). The native
structure X, has the minimum value of this Gibbs free
energy function G. The only uncertainty is that X
might just correspond a local minimum of G, as assert-
ed by Levinthal in [1]. Then the initial conformation X,
becomes important, because it will determine which
local minimum conformation is the native structure
X, .

But, to answer the question of what is “the three
dimensional conformation of a native protein”? as Anfin-
sen emphasized, we have to make the transition of con-
formations in R*™  to conformations in R*. Based on the
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three-dimensional geometry of each conformation X, a
thermodynamic system 7, c R’ should be esta-
blished, in which among other particles, contain exactly
only one protein molecule with the conformation X .
Then one can apply statistical mechanics, classical or
quantum, to get the Gibbs free energy of the system 7T,
denoted as G(X).

Kinetically, in the physiological environment, an indi-
vidual protein molecule takes an initial conformation
X, with a Gibbs free energy G(X, ). With the totality
of interatomic interactions of the protein molecule, (we
have to add that plus the interaction with its immediate
environment), the conformation changes to a series
conformations X, with Gibbs free energy G(X;). At
last the conformation changes to the native structure X
with G(X,)<G(X;). The “whole” system is the series
of systems T, y, In (time) series. Searching the native
structure X, then becomes the mathematical problem
of solving the minimization problem

G(XN):I/?Hi)I(lG(X) (1)

The solution of (1) will not only tell us what is the
value G(X, )=min,,, G(X) (which is not important)
but also will tell us what is X (which is the most
important). This is one way to answer the question that
what is “the three dimensional conformation of a native
protein”, i.e., making protein structure prediction.

So if we want to resolve the protein folding problem
(PFP), for any individual conformation X we should
create a tailored thermodynamic system 7, and derive
from it the Gibbs free energy formula G(X). Given a
native protein’s amino acid sequence, searching for
global minimum of G(X) is truly following the
thermodynamic hypothesis as Anfinsen stated it. Unable to
derive such G(X) should not be labeled as “misin-
terpretation of the (thermodynamic) hypothesis” [3].
Lacking of Gibbs free energy function G(X ) explains
the question in [4]: “why an answer to this problem (PFP)
has been elusive for so long”. The fact that many,
including Ben-Naim, in trying to establishing G(X )
have shifted the variable of G from X, the confor-
mation, to P(X), the probability distribution of X s,
partially explains that why for so long such formula
G(X) has not been discovered. In particular, one
common point of all previous theoretical treatment of
protein folding is setting the thermodynamic system
contains N >1 copies of the same protein molecule, for
example [6], thus failed to obtain G(X).

On the other hand, since 1990’s many techniques for
probing individual molecules were developed and experi-
mentally observing and testing single molecule is cur-
rently a common practice, see [7,8] for example. Theory
anyway should not lagged too far behind experiment in
single molecule protein folding study.

Copyright © 2013 SciRes.

3. Thermodynamic System 7, andthe
GibbsFree Energy Formula G(X)

3.1. The Systems

The thermodynamic system 7, occupies a region in
R*. Given X € R’ , how to put it into a space region
Ty cR’? And actually, what is 7 ? To resolve this
we have to use X ’s three dimensional structure.
Assume that each atom has the shape of a ball with van
der Wals radius r,, B(xi,ri)c]%l3 , the three dimen-
sional structure of X is Py = Ui:1 B(x,.r,)=R’. The
R* is the real space or behavior space while the R*“
is only the control space of the protein conformation,
[9].

To establish 7, we need some geometric prepa-
ration, although it may sounds too mathematical, it is no
surprise at all. In fact, Anfinsen stated as early as in
1973 that “biological function appears to be more a
correlate of macromolecular geometry than of chemical
detail” [5]. Unfortunately, so far, nobody has taken it
seriously.

Although the shape of each atom in & is well
defined by the theory of atoms in molecules [9,10], what
concerning us here is the overall shape of the structure
Py . The cutoff of electron density o >0.001 au [9,10],
gives the overall shape of a molecular structure that is
just like Py, a bunch of overlapping balls. Moreover,
the boundary of the p>0.001 au cut off is almost the
same as the molecular surface M, (Figure 1) which
was defined by Richards in 1977 [11] and was shown to
be a more suitable boundary surface of P, than other
surfaces in 1992 and 1993 [12,13].

In mathematics, for any closed surface (compact and
connected) T c R’, there are a bounded domain €
and a un-bounded domain Q'; such that

R =0, UZUQY, 0Q, =0Q', =% )

Let d, be the diameter of a water molecule and
M, be the molecular surface of P, with the probe

Accessible Surface

S~ — Contact
Yy S Molecular
[ M \ Reentrant / Surface
Probe | | |~ Surface
[ \ / /
X/ N
7 Atoms \
:
A
7 \\;/ /

—

Figure 1. Two dimensional presenting of molecular surface
[11] and solvent accessible surface [14]. This figure was
originally in [15].
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radius d, /2. If M, is connected, then we can use
Y=M, in (2). If M, has multiple connected compo-
nents §, 1<i<m, such that § is the largest com-
ponent, i.e., all other components of M, are contained
in Q¢ . Then denote Q, =Qg ﬂ(hiilQ‘S) and
Q' =Q'g U( Qg ) . Thus, we always have

R'=Q,UM,UQ', 80, =0Q', =M,  (3)

Let dist(x,C)=inf, c|x—y| be the distance from a
3

point x toasubset Cc R’. Define
Ty ={x:dist(x,Q)<d,} 4)

as our thermodynamic system. While
Ry =Tx / Qy (5)

is the first hydration shell surrounding P, .

To be simple, we only consider single peptide chain,
self-folding globular proteins here. Hence in the system
Ty, except Py, there are only water molecules and
electrons. We have P, cQ,=0Q,UM, and all
nuclear centers of water molecules in 7, are contained
in R, . Moreover, since €, is bounded, it has a finite
volume V(X)=V(Qy).

The thermodynamic system 7, will be an open sys-
tem, i.e., electrons and water molecules can enter and
leave 7T, . Therefore, the numbers N and N,, of
water molecules and electronics in 7, are variables.
According Anfinsen [5], the protein folding process is
after the peptide chain synthesis. Therefore, part of the
totality of the “interatomic interactions”, as emphasized
by Anfinsen in [5], has already contributed to form
correct chemical bonds. In the folding process, “chemical
details” may be represented by the forming of intra-
molecular hydrogen bonds and the interactions with the
immediate environment, in our case, the solvent consist-
ing of water molecules.

Ben-Naim claims that “in the author’s opinion, the main
hindrance to finding a solution to the protein folding
problem has been the adherence to the hydrophobic
(HOO) dogma, which states that various HOO effects
(both solvation and interaction) are the dominant forces
in protein folding” and “an exhaustive analysis of all the
solvent induced effects on protein folding reveals that the
hydrophilic (HOI) effects are much more important than
the corresponding HOO effects” [2].

In [15] a simulation of enlarging the hydrophobic core
alone, whose forming is considered the main effect of
HOO, not only produced secondrary structures, but also
produced the intra-molecular hydrogen bonds. This result
shows that HOO should not be dismissed so simply.

But no matter the driving force of protein folding is
HOO or HOI, a common essence for them is that in a
protein there are many different moieties or atom groups
with different levels of ability of forming hydrogen

Copyright © 2013 SciRes.

bonds (hydrophobic levels). Simply classifying amino
acids as hydrophobic or hydrophilic is an over simplifi-
cation [16]. In fact, since each atom belongs to a parti-
cular moiety or atom group, it can be assigned a hydro-
phobic level as the level of the moiety or atom group.
Suppose we classify the atoms into H hydrophobic
1evHels H,, i=1,--,H, such that

Ui:lHi =(al,---,ai,~~-,aM ) For example, in [16] there
are H=5 classes, C, O/N, O, N', S. If a hydrogen
atom is bonded with an atom in H;, we will put it in
H,.

Let |, c{l,2,---,M} be the

a; eH; ifandonlyif jel;.Define
Pyi = UjEli B(xj Ny ) c P, and as shown in Figure 2,

Ry = {x eR,: dist(x, Py, ) < dist(x, Py /Pi )}

subset such that

. " (6)
1<i<H,
Let V(Q) be the volume of Q =R, then
H
Ry :U:IRXi’ V(RX):Z\/(RM)’ Rl
=

and for i#j, V(RyNRy;)=0.

Define the hydrophobicity subsurface M,,;, 1<i<H,
as

MXi:MXmRXi‘ 3
Let A(Z) be the area of a surface T c R’, then
H
szu:lMxia A(Mx)zzA(Mxi)s
=

andif i # j, then A(My, M) =0.

©)

Figure 2. Note that Ry; generally are not connected, i.e.,
having mor e than one block.
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3.2. TheFormulas

In our open thermodynamic system, there will be N,
water molecules in R,,;, and N, electrons in T,

thus we will denote the variable N as a vector
N :(Ne, N, -, N, )

After statistical treatment, the mean number of N,
and N, willbe denotedas N (X), N;(X), i=L-H.
Each water molecule in R,; will contact M,,;. The
chemical potential reflecting the contacting energy will
be denoted as g . Similarly, the energy for an electron
kept in T, will be the chemical potential z,. With
these preparation, arguing in quantum statistics via the
grand canonic ensemble we derive the Gibbs free energy
of protein folding G(X) as follows (see Section 7 for
the detailed derivation, also see [17,18] for further
discussions):

G(X):yeNe(X)Jrii,ui N, (X). (10)

Note that in the folding process, each intermediate
structure X is not in a stationary state, it is rather a
system of quasi-equilibrium states of the folding. So that
it is not the case that g =y, as in equilibrium state.
Rather, the chemical potentials will be constants during
the folding, as the environment is kept unchanged.

Formula (10) is not easy to calculate, we can convert it
into a geometric form that is not only calculable but also
coincident to a mathematically derived formula appeared
in [15,19].

Since every water molecule in R, has contact with
the surface M,, and the curvature of M, is uni-
formly bounded, N, (X) is proportional to the area
A(M Xi ) . That is, there are v, >0, independent of X,
such that

v A(My ) =N (X),1<i<H. (11)
Similarly, there will be a v, > 0, independent of X,
such that vV (Ty)=Ng(X).

By the definition of 7, and Q,, we have roughly
V(Ty/Qy)=d,A(My). Thus

Ne(X):VeV(TX):Ve[V(QX)JFV(Tx/QX )]

(12)
=vV(Qy)+vd,A(My).
Substitute (11) and (12) into (10), we get
G(X)=vuV (Qy)+dveu. A(My )
(13)

+gviyi A(My;)

This Gibbs free energy function G(X) really should
be written as G(E,; X ), where E, is environment, its
parameters including the temperature T and pressure
P which will affect the values of chemical potential

Copyright © 2013 SciRes.

M, and g . Since protein folding is in a fixed physio-
logical environment, we can omit E_ in this stage.

It should be emphasized here that since we assumed
that the proteins are single peptide chain, self-folding
globular proteinsins, the first hydration of P, contains
only water molecules and electrons, no presence of other
components at all, this Gibbs free energy function
G(X ) should be only suitable to these proteins. For
other kinds of proteins, the presence of other components
such as chaperonins must be considered in the thermo-
dynamic system 7T, . Then, the geometry of 7, will
become more complicated.

4, Applying and Testing the Thermodynamic
Hypothesis

Anfisen had shown that the protein folding is a spanten-
ously process [5], thus the thermodynamic hypothesis
should be treated as thermodynamic principle. A direct
application of it, also a real test of it, is the ab initio
prediction of a protein’s native structure as in (1). How-
ever, without control of overlapping of the balls
B(x;.r,), we may get a single ball with all other balls
collapsed in it as a minimum structure, a disaster for a
prediction. The pairwise potentials used for force fields
will prevent the collapsing happen. Why the pairwise
potential energy among atoms of the protein  does
not show in formulae (10) and (13)? The reason is that
according to Anfinsen [5], protein folding is after the
synthesis of the whole peptide chain. So that during the
folding process all covalent bonds in the main chain and
each side chain are already formed and non-bonding
atoms keep a certain distance from each other. That is,
the potential energy has already played its role during the
synthesis of the peptide chain. This reality forces us to
restrict what X can be treated as a conformation, i.e., a
conformation should satisfy the steric conditions below.
There are &; >0, 1<i<j<M such that for nu-

clear centers x; and x; in X,

& < |xi - X, |, no covalent bond between @; and a;;
dy -5 <|x —x|<d; +&, (14)
d; is the standard bond length between a; and a;.
We will denote all conformations satisfying (14) as
X . Then the minimization will become:
G(XN):QEG(X), (15)
or, at least, within X, X, corresponds to a local mini-
mum of G.
With the steric conditions we avoided the collapsing
problem. But the steric conditions turn the minimization

problem (1) into a constrained minimization problem
(15). Mathematically the latter is much more difficult to
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solve. To avoid the constraint in minimization for non-
bonding atoms, we can use the van der Waals force to
modify the formula as:

Gy (X) = vou (0 )+ vt A(M )+ iv,u, A(M,,)

12 r 6
| ] 0 ijo
+ Z E; 21 =1
non-bonding i, j rij rij

(16)
where E; >0 is the corresponding energy and
r. :|x- —x-| and r,, the ideal distance between the

ij i i ijo
atoms a; and a;. Before using G, to eliminate the

constraint of X € X, we take a more convenient coor-
dinate of the conformation X . We require that all bond
lengths and angles (denoted as one angle-length pattern)
are kept as obtained from a conformation X € X and
from X calculate the values of all rotatable dihedral
angles ®=(g,--,4 )€ (—n,n)L (including all the main
chain ®;, ¥;s). In fact, new conformations obtained
by changing ® will keep the same angle-length pattern
and all conformations with the same angle-length pattern
as X are obtained by choose suitable @© values. The
function G, (X) then can be written as

GV(X):Gv(q)):Gv(¢l»""¢L);
® is induced from X € X.
Let X, have the dihedral angles ®" = (¢1N By ) ,

then the constraint in (15) will be relaxed and we will
have a minimization problem without any constraint:

G,(Xy)=G,(@")= inf G,(®). (18)

L. v
®eR™ induced from XeX

(17

5. TheForce That Forcesthe Protein to Fold

Ben-Naim correctly emphasizes that the protein folding
is a cause-based process, “One can imagine that at each
stage of the folding process, there are strong solvent-
induced forces exerted on the various groups along the
protein. These forces will force the protein to fold along
a narrow range of pathways...” [2], and the folding force
actually is the negative of the gradient of the Gibbs free
energy function, that is —VG, “we need to know the
forces acting on each of the M groups of the protein
being at the conformation R" . This force is obtained by
taking the gradient of the Gibbs energy with respect to
each of the R, [4].

However, with only a “minimum distribution B, ”
Ben-Naim cannot tell what is the garden VG. With for-
mula (13), it is easy to write down mathematical formula
of VG. For example, in the coordinates ® e R", the
folding force is

G, (o)<

G, 96, ﬁ] (19)
6¢15 ’a¢i’ 9a¢L'

Copyright © 2013 SciRes.

5.1. Newton'’s Fastest Descending M ethod

Before giving the formula of VG,, we will point out
that if it is calculable, then we can apply the fastest
descending method to pursue the minimum value of
G, (). That is, starting froma @, the immediate next
conformation @, will be chosen such that

O, =0, -tVG,(D,), (20)
where t>0 is a suitable step length. When t is small,
it is guaranteed that G(®, )< G(®, ). Any (local) mini-
mum X, would have that VG(X,)=0.

5.2. TheFormulaof VG,

We will give the analytic formula of VG, (X) here
without mathematical proof. It is:

oG,
7 (X)

oV OA o oA
= Ve:ue%(gx )+ dwvezueﬁ(,le)"_ j:lvj,uj %(M){j )

12 6
g, ||| ol ||
: o, I Fik

(21)

It should be mentioned here that bond in 4 is rota-
table if it is a single bond and if we cut this bond, all
nuclear centers in X can be divided into two (non-
empty) groups, such that we can fix one group and rotate
around the bond axis the other group. Let A be the
outer product in R’. Let x,y, be the bond, then
b, =(x,—y)/|x,—»| will be the rotation axis and I,
the rotation vector field, i.e, L (x)=(x-y)Ab if x
is a rotated nuclear center; and L (x)=0 if x is a
fixed nuclear center. Furthermore,

ov

2

non-bonding j,k

a—qﬁl(ﬂx)?IMXL. - NdH?,
A (22)
o M) ==2], W W),
and
oA s
) ==2f, (L W)
(23)

df,
J“.L:MXi {Li "I—|VMX—; dr’,

ol

where N and H are the outer unit normal and the
mean curvature of M,, H* and H' the Hausdorff
measures of dimensions 2 and 1. Let X' be the family
of conformations such that X=X and

x, =x +tL(x,), k=1--,M . Define f  :R'>R
as ft’j(x):dist(x M tJ_) dlst(x M /M ) , and
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denote
v, f . =vf —(vf -N)N,f' _Ay
My '0,j — o,j_( 0,j" ) >0 T ot >
=0 (24)
dfo,j '
o :lf.'vafo,j+fO,j’

Finally, if x, isrotated and x; is fixed, then

%:(xk—xj)'l,, (x)

, (25)
o¢ Ty
if x, and x; are both rotated or both fixed, then we
or;
have —%=0.
og

The integration of above formulae on the molecular
surface M, are given in [20].

6. Conclutions

The Ben-Naim’s pitfall of “misinterpretation of thermo-
dynamic hypotheses” is dismissed as a Don Quixote’s
windmill by demonstrating the existence of Gibbs free
energy formulas (10) and (13), pursuing of them were
claimed by Ben-Naim as fallen into a pitfall. The for-
mulae themselves need detailed geometric formulation of
the thermodynamic system to present them, is a realiza-
tion of Anfinsen’s insight that “biological function
appears to be more a correlate of macromolecular geo-
metry than of chemical detail” [5]. Contrary to Ben-
Naim’s claims that “In the author’s opinion, the main
hinderence to finding a solution to the protein folding
problem has been the adherence to the hydrophobic
(HOO) dogma” [2], the derivation of (10) and (13) hea-
vily depends on the concept of hydrophobicity.

In Section 7, the quantum statistical derivation of
formula (10) is given, the convertion of (10) to (13) is
demonstrated in Section 3.2.

Ben-Naim’s minimization at B, (R) is analyzed and
dismissed because it predicts that at equilibrium every
possible conformation R will have the same probabi-
lity to be the structure of a native protein. That is, Ben-
Naim claims that P, (R)=1/V for any conformation
R . In fact, in the contrary, in the physiological environ-
ment the native structure is dominate.

The reason of why calculable formulas such as (10)
and (13) have not appeared so far is discussed, blindly
imitating successful classical examples of applying
statistical mechanics and ignoring Anfinsen’s insight are
two main reasons.

The force that forces the protein to fold is identified as
—-VG(X) by general physical law, that Ben-Naim has
correctly pointed out. The calculable formula of VG is
given.

Copyright © 2013 SciRes.

7. Derivation of Formula (10)
7.1. The Shrodinger Equation

For any conformation X € X, let

W =(w,,w, -, wy,)eR™ be the nuclear centers of
oxygen atoms in water molecules in R, and
E=(e, e, e )eR’" be electronic positions of all
electrons in 7 . Then the Hamiltonian for the system

Ty is:

R, M j2 N
H=T+V= Z— i
= m 2m,, o
' (26)
SV V(X E),
Zme =
where m is the nuclear mass of atom @, in i, m,

and m, the masses of water molecule and electron, V;
the Laplacian in corresponding R*, and V the poten-
tial.

7.2. TheFirst Step of the Born-Oppenheimer
Approximation

Depending on the shape of P,, for each i, 1<i<H,
the maximum numbers N,, of water molecules con-
tained in R,,; vary. Theoretically we consider all cases,
i.e, there are 0<N, <N,; water molecules in R,;,
I<i<H . Let M;=0 and M,=3> _N; and
W= (W oW o W, ) € RN, 1<i<H,and
W=(W,. W, W, ERWH denote the nuclear
positions of water molecules in R, . As well, there will
be all possible numbers 0< N, <o of electrons in
Ty - Let E :(el,eQ,---,eNe eR*™e  denote their
nuclear positions. For each fixed X and
N=(N,,---,Ny,N,), the Born-Oppenheimer approxi-
mation has the Hamiltonian

H, 1MHVZ+— V2LV (X,W.E).
S L )

The elgenfunctlons

v WL E) e LT R x T =My, 1Si<om,
comprise an orthonormal basis of Hy n - Denote their
eigenvalues (energy levels) as EX N> then

Hx‘//i N :EIX,N'//i '
7.3. Grand Partition Function and Grand
Canonic Density Operator

In the following we will use the natotions and definitions
in [21, Chapter 10]. Let k; be the Bolzmman constant,
set S=1/k,T. Since the numbers N, and N, vary,
we should adopt the grand canonic ensemble. Let z; be
the chemical potentials, that is, the Gibbs free energy per
water molecule in R,; . Let x4, be electron chemical
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potential. The grand canonic density operator is ([21,
22])

Px = eXp{—ﬂ{HAX —iui N, — 2N, —Q(X)}}-

where the grand partition function is

exp[ /(X))
- Trace{exp[_ﬂ( Hy - inl'ui N - ﬂel\]eﬂ}

. H
EIX,N "Z HiNi *I‘eNe}
1

- i’zNeﬁ{

7.4.TheGibbs FreeEnergy G(X)

According to [21, p. 273], under the grand canonic
ensemble the entropy S(X)=S(Ty) of the system
Ty is

S(X)=—kgTrace(py In py ) =~k (In py )

= kBﬁ<|3|X —Q(X)—gyi N, —yeNe>

R0 () e ()

:%[u (x)-0(x)-3uN (X)—yeNe(X)}.
@7)

Here we denote {lgi > =N, (X) the mean numbers of
water molecules in ‘R,;, 1<i<H, and <Ne> =N, (X)
the mean number of electrons in 7T, . The inner energy
(Hy) of the system T is denoted as:

U(X)=U(Ty).

The term Q(X) is a state function with variables
TV, -, 4 ,and g, and is called the grand canonic
potential ([21, p. 27]) or the thermodynamic potential
([22, p. 33]). By the general thermodynamic equations
[22, pp. 5-6]:

H
dQ(X)=-SdT —PdV - Y N.dg — N, dp,,
i=1
AQ(X) :Q(X)(Taﬂvuu]n"'uuH a,ue)a
we see that

QX)(TV.phos s i) = =PV (X)

where V(X)=V(Ty) is the volume of the thermo-

dynamic system 7T, . Thus by (27) we obtain the Gibbs

free energy G(X)=G(Ty) in(10):
G(X)=G(Ty)=PV(X)+U(X)-TS(X)

= N, (X)+ N, (X)

Copyright © 2013 SciRes.
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