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ABSTRACT 

We explore the stability of image reconstruction algorithms under deterministic compressed sensing. Recently, we have 
proposed [1-3] deterministic compressed sensing algorithms for 2D images. These algorithms are suitable when Daube-
chies wavelets are used as the sparsifying basis. In the initial work, we have shown that the algorithms perform well for 
images with sparse wavelets coefficients. In this work, we address the question of robustness and stability of the algo-
rithms, specifically, if the image is not sparse and/or if noise is present. We show that our algorithms perform very well 
in the presence of a certain degree of noise. This is especially important for MRI and other real world applications 
where some level of noise is always present. 
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1. Introduction 

The theory of compressed sensing [4-6] states that it is 
possible to recover a sparse signal from a small number 
of measurements. A signal 0

Nx   is k-sparse in a  

basis  
1

N

j j



   if 0x  is a weighted superposition of  

at most k elements of Ψ. Compressed sensing broadly 
refers to the inverse problem of reconstructing such a 
signal 0x  from linear measurements  


   
2 2

2 2
1 1k k k k kx x x       2

2
,      (1) 

for any k-sparse signal kx . Solving for the original 
sparse signal with  minimization, 1

1
min ,  subject to ,

x
x x y           (2) 

guarantees successful recovery with a very high prob- 
ability. This is a well-known theory and has been verified 
empirically in several papers, e.g., [5,11]. In this paper, 
we explore the stability of deterministic compressed 
sensing when there is noise present in the signal or its 
measurements, or the signal is not sparse. Traditional 
compressed sensing techniques use random projections 
for the sensing matrix as opposed to deterministic meas- 
urements. We discuss some comparisons between the 
two later in this section. 

, 1, ,n    0y x
N

 with , ideally with 
. In the general setting, one has 0

n N
n x y  , where 
Φ is an n × N sensing matrix having the measurement 
vectors   as its rows, 0x  is a length-N signal and y is 
a length-n measurement. By now, many authors have 
proposed different sensing matrices and reconstruction 
algorithms, establishing the feasibility of such recon- 
struction in practice. Applications have been shown for 
medical images [7], communications [8], analog-to-in- 
formation conversion [9], geophysical data analysis [10], 
etc. The standard compressed sensing technique guaran- 
tees exact recovery of the original signal with over- 
whelmingly high probability if the sensing matrix satis- 
fies the Restricted Isometry Property (RIP). This means 
that for a fixed k, there exists a small number k , such 
that 

Signals that are compressible are not sparse in any 
transform domain. A signal x is said to be compressible 
[12] if its coefficients follow a decay rate, 

    ,
s

sj
x C j D

              (3) 

where  jx  is the j-th largest coefficient  

    1 2
x x   of x with respect to some basis or  

transform Ψ,  the constant Cs depends only on s, 
and  is a shift. A compressible signal may not 
have any of its coefficients exactly equal to zero. The 

1,s 
0D 
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most relevant recent results on the reconstruction of 
compressible signals are summarized below. 

In [13], Candès and Romberg demonstrate that em- 
pirically it is possible to recover a compressible signal 

0x  from about 3k to 5k projections with accuracy as 
good as the optimal k-term wavelet approximation of 0x . 
Their experiments are carried out for compressible 1D 
signals and 2D images. For images, they proposed a re- 
covery algorithm that minimizes the total variation (TV) 
in the image domain (with Ψ being the inverse wavelet 
transform), with -norm constraints on the wavelet 
coefficients: 

1

1 1
0min such that ,  and .

jjTV
x x y x   

 
x   (4) 

The 1 -constraints restrict the locations where the 
large wavelet coefficients can appear, assuming the 

-values 



1
1

0 j
x


 of each subband  

 1, 0, , 2 1
m

jm    
,0 0j j

x x  are known. In their ex-  

periments, random Fourier matrices were applied to the 
wavelet coefficients of the images. The number of meas- 
urements were taken to be 15%, 23%, 30%, and 38% of 
the total number of pixels, i.e., 256 × 256. It was shown 
that the recovery from 3k to 5k random projections is 
comparable to the best k-term wavelet approximation 
[13]. 

The main results in [12] by Candès, Romberg and Tao 
are that the standard compressed sensing is able to stably 
recover sparse as well as compressible signals from 
noisy measurements. For the latter, if k is chosen such 
that 3k  and 4k  in (1) satisfy 3 43k k 2   , the 
error bound for compressible signals with noise in the 
measurements is 

1

22

0

0 1, 2,ˆ ,
k

k k

x x
x x C C

k



    

     (5) 

where 0x  is the true signal, x̂  is the recovered signal, 

kx  is the best k-term approximation of 0x , μ is any per- 
turbation, and constants 1,k  and 2,k  depend on 4kC C  . 
It is stated (Theorem 2, [12]) that 1  minimization 
stably recovers the -largest entries. As the authors 
point out, this is a deterministic statement, i.e., there is no 
probability of failure. Their experiments on both 1D and 
2D compressible signals with noise added to measure- 
ments confirm this theoretical result. It is also observed 
in their experiments that if the noise is Gaussian with 
small standard deviation, then the recovery error is 
dominated by the approximation error, i.e., by the last 
term in (5). 

k

Even though the above methods and results deal with 
non-sparse compressible signals they are not determinis- 
tic in the sense that the measurements are obtained via 
random projections. In practice, it is beneficial to use  

deterministic sensing matrices that are pre-determined in 
order to save computation time and memory. Work in 
this direction was done by DeVore [14], then followed 
by a few others. However, the recovery results were far 
inferior compared to that obtained by traditional random 
sensing. Recently, another deterministic compressed sens- 
ing method (mainly applicable for 1D signals) was pro- 
posed by Applebaum, Howard, Searle, and Calderbank 
[15] by using the chirp transform to create the sensing 
matrix. In their experiments (Figures 2 and 3 in [15]), 
the full pass chirp decode algorithm results in smaller 
reconstruction error than using Gaussian random matri- 
ces with matching pursuit. They have also shown em- 
pirically (see Figure 4 in [15]) that these two methods 
are comparable when there is noise in the measurements. 
The reconstruction algorithm is good for 1D signals but 
in experiments given in [15] the 1D signals are of size 

 or 672 only, much smaller than the size en- 
countered for 2D signals, such as images. A similar re- 
construction algorithm was also proposed for a sensing 
matrix made from Reed-Muller sequences [16]. In [3], 
we proposed new reconstruction algorithms for determi- 
nistic sensing matrices made from chirp and Reed-Muller 
sequences that are suitable for 2D images. 

241N 

The advantage of using deterministic matrices for com- 
pressed sensing is that reconstruction can be very effi- 
cient [15,16]. The fast reconstruction algorithm [15-17] 
is called the Quadratic Reconstruction Algorithm. This 
algorithm takes advantage of the multivariable quadratic 
functions that appear as exponents of the entries in the 
sensing matrix, and therefore, only requires vector-vector 
multiplication instead of matrix-vector multiplication re- 
quired in Basis and Matching Pursuit algorithms that are 
used for reconstructions with random sensing matrices. 
In [17], Calderbank, Howard and Jafarpour set forth cri- 
teria on Φ that ensure a high probability that the mapping 
taking the k-sparse signal vector kx  to the measurement 
vector y is injective, assuming a uniform probability dis- 
tribution on the unit-magnitude k-sparse vectors in . 
They say that Φ has the Statistical Restricted Isometry 
Property (StRIP) with respect to parameters  and δ if 

N



   2 2

2 2
1 1k k

2

2kx x      x        (6) 

holds with probability exceeding 1   when kx  is as- 
sumed to be uniformly distributed among k-sparse vec- 
tors in N  of some fixed norm (e.g., unit norm). They 
show that such deterministic sensing matrices sat- isfying 
StRIP can be constructed by chirps, Reed-Muller (RM) 
sequences, and BCH codes, as done in [15-17]. In the 
presence of noise, if Φ satisfies the StRIP property with 
parameters  and δ, the reconstruction error due to the 
Quadratic Reconstruction Algorithm is given by 



22 2
0 0

5 2
ˆ ,

1 1kx x x x 
   

   


 

     (7) 
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where 0x  is the true signal, x̂  is the recovered signal, 

kx  is the best k-term approximation of 0x , and μ is the 
measurement noise from a Gaussian distribution, see [17]. 
As mentioned there, this bound is tighter than bounds 
obtained by using random ensembles [12] and expander- 
based methods [18]. While the Quadratic Reconstruction 
Algorithm [15,16] is shown to accurately reconstruct 1D 
sparse signals with nonzero locations chosen uniformly 
at random, from a small number of measurements, it does 
not work when it is directly applied to 2D signals, like 
images. This is because the locations of the nonzero co- 
efficients, usually in the wavelet domain, are not distrib- 
uted uniformly. Our proposed algorithm [3] takes this 
into account and we have shown that it outperforms a 
standard compressed sensing method, which takes ran- 
dom noiselet measurements and uses  minimization 
for reconstruction, for example, see [19]. 

1

Authors in [17] also derived that the deterministic 
sensing matrices are resilient to noise. Suppose the noise 
comes from the measurements, say ky x    , where 
μ are iid complex Gaussian random variables with zero 
mean and variance 22 . Suppose Φ satisfies 

   
2 2

2 22 2
1 1k kx x x     

2

2

k
      (8) 

with probability exceeding 0  . Then, for 0  , 

   
22

2 22
1 1kx y x       

2

22
,k     (9) 

with probability exceeding 1 2
x

S





  
      

, where 

     
2 2 1

1 12 2

0

e d e d
y y

N N

r

S r y y y y


   
  
  
  
  
  .



   (10) 

Therefore, we see that the noisy measurement is 
bounded in (9) by the signal in a similar way as the ine-
quality (8) in the StRIP property. 

Now, suppose that the noise comes from the signal, 
say  0y x   

  2

, where μ is a complex, multivariate, 
Gaussian distributed noise with zero mean and covari- 
ance 2

N N . In this case, the estimates 
given in (9) can still be applied. The covariance of the 
measurem

E    I

ent vector is  
.     22E E              For determi-  

nistic matrices, n n

N
I

n 
   and this gives  

   22 n n

N
E

n
  

   .I  The factor 
N

n
 that ap- 

pears in  is not present in  E    

One important and desirable task in reconstruction of 
signals via deterministic compressed sensing is to recon- 
struct signals efficiently. Moreover, such reconstruction 
should be stable under noise and also work when the 
signal is non-sparse. In this paper, we discuss the stabil- 
ity and robustness of the algorithms we introduced in [3]. 
We show that these algorithms are stable for non-sparse 
(compressible) signals and robust under various types of 
noise. In addition, we also indicate how, when using the 
sensing matrix composed from Reed-Muller sequences, 
the algorithms in [3] may be modified to efficiently han-
dle excessively large images or large 2D signals. 

This paper is structured as follows: in Section 2, we 
review our reconstruction algorithm of [3] and comment 
on how to incorporate properties of the Reed-Muller se- 
quences so that the algorithm can handle images of size 
much larger than considered so far. Then we discuss how 
to choose the proper wavelet domain and the level of 
decomposition of the image under the chosen wavelet 
basis. In Section 3, we discuss the stability and robust- 
ness under noise and for non-sparse signals. Finally, Sec- 
tion 4 contains the discussion of the results. 

2. Choosing a Suitable Sparsifying Domain 

We address the issue of choosing a suitable sparsifying 
domain for images, since the compressed sensing theory 
is based on the fact that the signal is sparse. Wavelets are 
commonly used for 2D images, but the choice of the spe- 
cific wavelet to be used is not usually discussed much. In 
the next few subsections, we first review the fast recon- 
struction algorithm for 2D signals including comments 
on modifying the Reed-Muller sensing case based on 
certain properties of the Reed-Muller sequences. Then 
we discuss how to choose a suitable Daubechies DN 
wavelet basis and the optimal level of decomposition. 
The images used in this work are shown in Figure 1, 
where 1) is a 512 × 512 MR image of brain, 2) is a 512 × 
512 MR angiogram image, and 3) is a natural image of 
1024 × 1024 resolution, which we refer to as the man 
image. 

2.1. Reconstruction Algorithm for Deterministic 
Sensing Matrices 

We start with a discussion of deterministic compressed 
sensing using chirps, i.e., frequency modulated discrete 
sinusoids. Our reconstruction algorithm using Reed- 
Muller sequences is similar and is briefly discussed here 
as well. The detailed reconstruction technique for both 
can be found in [3].    ,E   

making the measurement variance in this case larger than 
the source noise variance 22 . This means that noise 
coming from the signal is harder to deal with than noise 
coming from the measurements. 

2.1.1. Compressed Sensing with Chirps 
A discrete chirp of length n with chirp rate r and base 
frequency m has the form 
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(a) brain                             (b) vessel                              (c) man 

Figure 1. 2D images used in this paper. 
 

 
22π 2π

,

1
e , , ,

i i
r m

n n
r m nr m

n





 
  .      (11) 

Note that the coefficient 1 n  is present in order for 
the vector to have a unit 2  norm. For a fixed n, there 
are n2 possible pairs (r, m). The full chirp sensing matrix 
Φ thus has size n × n2 and can be written as 



1 2chirp ,  1 .
t nr r r rU U U U t n      

.i





 (12) 

Each 
tr
 is an n × n matrix with columns given by 

chirp signals having a fixed chirp rate t  with base fre-
quency m varying from 0 to n − 1. The chirp rate r also 
varies from 0 to n − 1. Therefore, column  
of chirp  is a discrete chirp with chirp rate r and base 
frequency m. 

U
r

1j m rn  


Example 2.1. Let  Then  2; , , 0,1 .n r m 

0 1π π π 2π

1 1 1 1
,

1 e e ei i iU U 

  
   
  

 

The 2 × 4 sensing matrix is then given by 

chirp π π π 2π

1 1 1 1
.

1 e e ei i i i

 
   

 
 

Note that U0, the n × n matrix corresponding to chirp 
rate 1  is the Discrete Fourier Transform (DFT) 
matrix. The Fast Fourier Transform (FFT), which im- 
plements the DFT, is used in the algorithm for recovering 
a sparse signal from chirp measurements, see Section 
2.1.5. 

0,r r 

2.1.2. The Chirp Sensing Matrix for 2D Signals 
Despite the success in accurate reconstruction of very 
sparse one-dimensional (1D) signals with the algorithm 
described in [16], applying it to real two-dimensional 
(2D) images is impractical. This is because, in general, 
real images are not as sparse in any transform domain as 
the one-dimensional signals used in [15] or [16]. 

A good approximation of a 256 × 256 pixel image is 

typically obtained by retaining the largest 10% wavelet 
coefficients in some suitably chosen wavelet domain. In 
particular, many medical images are well approximated 
by transform coding using 10% - 20% of their wavelet 
coefficients, but begin to show appreciable degradation 
as the percentage of coefficients retained falls below 
these levels. However, a 256 × 256 image with 10% 
sparsity has 6554 nonzero coefficients, which is much 
larger than the sparsity considered for the 1D signals in 
[15,16]. A rule of thumb, see [20, Theorem 1], for the 
number of measurements in the standard compressed 
sensing using the Gaussian random matrices with  
minimization is given by 

1

 2 1logn k N k  .             (13) 

This rule guarantees successful reconstruction with 
high probability if the number of measurements n is large 
compared to the sparsity and signal size. Using (13) in 
the above example, at least 22,672 measurements are 
needed for the correct reconstruction. The ratio N n  is 
2.89, and this implies that roughly only three chirp rates 
are needed to form the sensing matrix. 

As explained above, due to the nature of sparsity of 
images and the rule of thumb (13), a few sub-matrices of 

chirp  can be used to make the sensing matrix, with the 
ratio 2.89N n   for 10%-sparse images. In practice, a 
larger ratio can be used, such as 4 for 10%-sparse images, 
which will be analyzed later. Consequently, there is more 
freedom in the choice of the chirp rates r when con- 
structing the sensing matrix. 

The inner product of any pair of distinct chirp vectors 
is as follows: 

, ,

1
, if

,

0, if and .
t t t t

t t
r m r m

t t t t

r r
n

r r m m

 
 



 

  
  

  (14) 

Therefore, a submatrix should use as few chirp rates as 
possible and the choice of the chirp rates can be arbitrary. 
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For example, the submatrix can be 

1 2 3 4chirp ,r r r rU U U U    
         (15) 

where 1 2 3 4  and 
4r

 denotes a 
submatrix of 

4r
U  so that the number of columns of 

chirp  matches the signal size. When only the first J 
submatrices 

1

0, 1, 2, 3,r r r r   

, ,

U



Jr r  are used to form the sensing 
matrix, it follows from an argument given by Alltop ([21], 
Section 4) that n need not necessarily be prime. Rather, 
the crucial condition for unique identification of the chirp 
rate rt in the reconstruction algorithm is that the smallest 
prime divisor of n is greater than J. For instance, the 
sensing matrix for a 256 × 256 (N = 65,536) image may 
be taken to be of size n × N = 16,385 × 65,536. Note that 
16,385 = 5 × 29 × 113 is closest to and larger than 25% × 
65,536 = 16,384 whose smallest prime divisor is greater 
than 4. Here, the 25% ratio comes from the fact that four 
chirp rates are used. In this example, 

4r
U  is of size 

16,385 × 16,381 and can be  without the last four 
columns. 

U U

4r
U



2.1.3. Reed-Muller Sequences in Deterministic  
Compressed Sensing 

The set of real valued second-order Reed-Muller (RM) 
codes or sequences with length 2 p  is parameterized by 
p × p binary symmetric matrices P and binary p-vectors 

2
pb . In terms of these parameters, a second-order RM 

code is given by 

   2
,

1
.

2

Tb Pa a
P b p

a i          (16) 

In analogy with the chirps, the vector b in the linear 
term of (16) and the matrix P in the quadratic term may 
be regarded as the “frequency” and “chirp rate” of the 
code, respectively. In the expression (16), 2

pa  in- 
dexes the 2 p  components of the code ,P b . So, for 
given parameters P and b, the code is a vector of length 
2 p . These vectors will serve as the columns of the sens-
ing matrix RM . In addition, during implementation, P 
is taken to be zero on its main diagonal to ensure that the 
codes generated are real valued. This implies that the 
components of these codes are all ±1. 



Example 2.2. Let p = 2 then  

2
2

0 0 1 1
, , ,

0 1 0 1

                
         


 


.

2
2,a b and  There are  

2 2 1 22 2  zero diagonal symmetric matrices of size 2 
× 2. These are 

1

0 0

0 0
P

 
  
 

 

and 

2

0 1
.

1 0
P

 
  
 

 

Set 
0

.
1

b
 

  
 

 Then if  we get for  
0

,
0

a
 

  
 

1P

 
1 1, ,

0
1.

0P b P ba 
  

    
  

 

Similarly, for other values of a in , one gets 2
2

1 1 1, , ,

0 1 1
1,  1,  1.

1 0 1P b P b P b  
          

             
          

 

The vector 

1

1

1

1

 
 
 
 
 
 

 will be one of the columns of the  

sensing matrix. 
In general, the compressed sensing matrix proposed in 

[16] has the form 

 
 

1 2 1 22

1 2,  1 2 ,
t p p

p p
RM P P P PU U U U t



      
  (17) 

where each 
tPU  is a 2 2p p  orthogonal matrix whose 

columns are ,tP b  with b going through all binary 
p-vectors. In addition, each ,P b  is multiplied with a 
phase factor    b

1 wt
, where  is the Hamming 

weight of b, i.e., the number of ones in b. The extra phase 
factor ensures that the total number of plus and minus 
signs of the inner products of any two columns are the 
same. For convenience, 1  is chosen to be the zero ma- 
trix, and therefore, without the phase factor, 

1

 bwt

P

PU  is a 
Hadamard matrix up to a scaling [22]. Consequently, 
multiplication by 

1P
U  is the Walsh-Hadamard transform 

(DHT) which, up to a scaling, is its own inverse [22]. In 
the reconstruction of a sparse signal using the Reed- 
Muller sensing matrix the algorithm uses the DHT, see 
Section 2.1.5. This is analogous to the DFT that is used 
with the chirp sensing matrix. 

Example 2.3. In Example 2.2, 

1

1 1 1 1

1 1 1 1
.

1 1 1 1

1 1 1 1

PU

  
   
  
 
 

 

In this case, the first column corresponds to 
0

,
0

b
 

  
 

  

the second column corresponds to  (as shown in  
0

1
b

 
  
 

Example 2.2), and so on. Similarly, for the matrix  
we get 

2P
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2

1 1 1 1

1 1 1 1
.

1 1 1 1

1 1 1 1

PU

  
   
  
 
    

 

Together, we get the 22 23  Reed-Muller sensing 
matrix, for p = 2, as 

1 2

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
.

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

RM P PU U

   
             


   








 

As noted earlier, the vector b in the linear term of (16) 
and the matrix P in the quadratic term may be regarded 
as the binary “frequency” and “chirp rate” of the code, 
respectively. There are  1 22 p p  such P matrices with 
zero-diagonal, so the maximum size of the RM sensing 
matrix in (17) is  1 22 2 p pp  . For a given P, 2 p  codes 
are obtained by varying b, yielding the columns of a 
2 2p p  orthogonal matrix .PU  

The Delsarte-Goethals set  is the binary 
vector space of  binary symmetric matrices with 
the property that the difference between any two distinct 
matrices has rank greater than or equal to  [23]. 
Evidently, these sets are nested 

 ,DG p r 
p p

2p r

    1
,0 ,1 , .

2

p
DG p DG p DG p

   
 

 






   (18) 

Example 2.4. Let  Then DG(3,0), consisting 
of matrices whose differences have rank at least 3, is 
spanned by the set [24] 

3.p 

1 0 0 0 0 1 0 1 0

0 0 1 , 0 1 0 , 1 0 1 .

0 1 0 1 0 1 0 1 1

     
     
     
          







 

The set DG(3,1), consisting of matrices whose differ-
ences have rank at least 3 − 2 = 1 is spanned by [24] 

 
0 0 0 0 1 0 0 1 1

3,0 0 0 1 , 1 0 0 , 1 0 0 .

0 1 0 0 0 0 1 0 0

DG

      
      
     
          

  

Note that these 6 matrices generate all the 26 binary 
symmetric matrices of size 3 × 3. 

The set of all P matrices that reside in DG(p,0), is 
called the Kerdock set. This means that the difference 
between any two distinct matrices in the Kerdock set has 
full rank. The Reed-Muller codes made from the matrices 
P in the Kerdock set produces the Kerdock codes [25]. 
Two distinct Kerdock codes, normalized to unit length, 
have inner product modulus that is either zero (if they 
correspond to the same P) or 1 2 p  (if they corre- 

spond to distinct Ps). More generally, 

, ,

1
, 2 times,

, 2

0,2 2 times,

q

q
P b P b

p q

   


 
 

      (19) 

where   rankq P P  . So, if the domain of P is DG(p, 
q), the set of possible inner product modulus values for  

distinct normalized codes is   2 220,2 , , 2 p rp    .  

Allowing P to range over all of   , 1 2DG p p  , (16) 
gives the full set of second-order RM codes. 

Defining  1 22 p pN   and 2 pn  , a k-sparse signal 
Nx  yields a measurement , which is 

the superposition of k RM functions 

nxRMy  

       

 

1 1 2 21 , 2 , ,

,
1

.

k k

t t

P b P b k P b

k

t P b
t

y a z a z a z a

z a

  




   

 


 (20) 

In (20), zt are used instead of x in order to only write 
the nonzero terms, and Pt and bt may individually repeat 
in the equation. 

2.1.4. The Reed-Muller Sensing Matrix for 2D Signals 
When forming a sensing matrix from submatrices of the 
RM matrix given in (17), the choice of the submatrix 
cannot be arbitrary. The inner product of two columns of 

RM , one taken from 
tPU  and another from 

tPU


, 
t t , is given by (19) with . If q = p, 
the inner product is always 

rank t tq P   P
1 2 p , which is smaller 

than the inner product in other cases, q < p. Since the 
nonzero locations of the signal are unknown, it is desir- 
able that the inner products between any two columns are 
as small as possible, thus making the columns of the re- 
sulting sensing matrix close to orthogonal. Taking q = p, 
and thus drawing P matrices only from DG(p,0), (i.e., the 
Kerdock set) gives the best situation. For a given p, there 
are 12 p  zero-diagonal matrices in the Kerdock set [24]. 
A sensing matrix can be constructed in the form 

1 2 3 4
,RM P P P PU U U U           (21) 

where P1, P2, P3, and P4 are matrices from the Kerdock 
set. The idea behind choosing four P matrices or chirp 
rates is the same as that discussed in Section 2.1.2 for the 
chirp sensing matrix. For example, the sensing matrix for 
a 256 × 256 (N = 216) image with 10% sparsity is of size 
n × N = 214 ×216 which means that only 25% of the signal 
entries are sampled. Note that for images with sparsity 
much smaller than 10%, fewer measurements are needed, 
and therefore, more P matrices can be used, since the 
ratio N n  becomes larger. 

2.1.5. The Reconstruction Algorithm 
Here we outline the reconstruction algorithm. For more 
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details, we refer the reader to [3]. 
Input: y and  1 2 3 4 .U U U U     
Output:  z
1) Approximation: Perform hard-thresholding 1U y  

to obtain a set of nonzero locations, denoted by  . Let 

1A U


 be a submatrix of 1  restricted on the set  U  . 
Then, the initial approximation is  and the 
residual is obtained by . 

z A y
0 Ay y  z

2) Detection1: From  

           0 0, or

1, 2,3, 4,

t
n n

w t y v y vDHT DFT

t





    ,t   

where  is the first column of , update tv tU

 locations associated with largest ,d w t    . 

Let A


  . 
3) Least Squares: 

2
.arg min

z

z y  Az

z

  

4) Define 0 . Repeat 2.-4. until y y A   0 2
y  is 

sufficiently small. 
If all the non-zero terms are caught by the set   then 

the precision of reconstruction is dependent on the LSQR 
algorithm [26] that is used in step 3) above. 

2.2. Using the Hierarchy of the  
Delsarte-Goethals (DG) Sets for Larger  
Signals 

So far while using the RM sensing matrix the size of the 
images was such that it was possible to pick all the P 
matrices, needed to construct the sensing matrix, from 
the Kerdock set. Sometimes one has to deal with signals 
whose sizes are such that the required sensing matrix has 
to be larger than what can be obtained only from the 
Kerdock set. Then we have to move on to P matrices 
from the DG sets that do not have the full rank property 
of the Kerdock matrices. This leads us to look at the rank 
and other properties, see, for example, (18), of matrices 
from the DG sets as described in Section 2.1.3. In this 
case some assumptions on the signal are useful. Com-
pressed sensing for signals with prior information has 
been addressed by other authors [27-30]. These authors 
design appropriate reconstruction algorithm but not 
sensing matrices as we do here. 

We assume that there is some a priori knowledge of 
the behavior of the signal coefficients. Let us suppose 
that the signal is sparse and the coefficients of the signal 
(with respect to some sparsity domain, for example, 
some wavelet basis) follow a decay pattern. This means 
that for each location in the signal we know the probabil-
ity of having a non-zero value. In this case the sensing 
matrix from the second order Reed-Muller sequences can 
be constructed in the following way. We start assigning  

vectors generated from P matrices in the Kerdock or 
DG(p,0) set to the columns of the sensing matrix that 
correspond to the signal locations that are most likely to 
be non-empty. Once the Kerdock set is exhausted we 
take vectors that come from DG(p,1), DG(p,2), and so on 
following the hierarchy given in (18). Alternatively, 
without any loss of generality, one can assume that the 
signal elements are arranged in ascending order. Then the 
columns of the sensing matrix appear in the DG order, 
i.e., the columns from the Kerdock set come first, fol-
lowed by the DG(p,1) and so on. So 

     1 1 2 1,1 ,1 ,2 .
nK K DG p DG p DG p            

This is outlined in the following algorithm. Note that 
in the algorithm given below, f is the probability density 
function of the nonzero (or active) locations. It is as-
sumed to be a decreasing function, which corresponds to 
the design of the DG matrix. 

Input:  

     1 1 2 1,1 ,1 ,2, ,
nK K DG p DG p DG py f             

Output:  z
Initially, the residual 0y y . 
1) Detection: From  

         1 3

0, ,t
n

w t f y v tDFT     1, 2, ,  where  

DFT is DHT in the RM case and  is the first column 
of , update  

tv

tU
  locations associated with largest ,d w t    .  

Let A


  . 
2) Least Squares: 

2
.arg min

z

z y  Az  

3) Define 0y y Az   . Repeat 1)-3) until 0 2
y  is 

sufficiently small. 
Some preliminary results have been obtained by using 

the above method and are given in Table 1. According to 
the rule of thumb, as given in (13), if we have a signal of 
size 221 and we wish to recover this using 26 measure-
ments, then the sparsity should satisfy  However, 
our results in Table 1 indicate that with our algorithm, 
using the DG order, we are able to recover signals with 
sparsity greater than 3. This is part of ongoing and future 
work. 

3.k 

2.3. Choosing the Best Daubechies Wavelet Basis 

It is commonly believed that the Haar wavelet (D2) 
works best for 2D images in compressed sensing. This is 
because many images chosen for experiments are rela-
tively small, i.e., at most 128 × 128. In this paper, we are 
interested in higher-resolution images, such as 512 × 512 
and 1024 × 1024. The degree of smoothness in an image 
loosely determines the support width of polynomials. For 
an image scene, if the image resolution is large, the de-  

1DHT is used for the Reed-Muller sensing matrix while DFT is used in 
the case of the chirp sensing matrix. 
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Table 1. The density function used is     


j

N
f j a a

a

1
ln

1
. Signal size is N = 221, sparsity k = 6, 7, measurement size or 

no. of rows of the sensing matrix = n = 26 = 64. The magnitude of the signal entries are either ones or randn (normally 
distributed pseudorandom). 

No. of nonzero entries a Magnitude No. of successes out of 100 independent trials 

6 0.98 Ones 99/100 

6 0.99 Ones 98/100 

7 0.98 Ones 96/100 

7 0.99 Ones 90/100 

6 0.98 Randn 97/100 

6 0.99 Randn 96/100 

7 0.98 Randn 99/100 

7 0.99 Randn 97/100 

 
gree of smoothness becomes large. Therefore, an appro-
priate support width should be large. 

Figure 2 shows experiments of chirp compressed 
sensing using different Daubechies wavelet transforms. 
The vertical axis is the reconstruction SNR in dB using 
chirp compressed sensing. The horizontal axis shows  

which Daubechies wavelet DN (or 
2

N
db  in Matlab) is  

used as the sparsifying domain. The level of decomposi-
tions is fixed here and is equal to 4 levels (see explana-
tion about the levels in Section 2.2). In particular, D2 (or 
db1 in Matlab) is the Haar wavelet. The 2D images are 
not sparsified. The number of measurements taken is 
25% of the number of pixels. In all three plots, the re- 
construction SNR is optimal around D16. More strictly, 
the largest reconstruction SNR is within 0.5 dB from the 
reconstruction error at D16. The decay is faster in the 
vessel image (b) than in the images (a) and (c), since the 
vessel image is sharper than the brain and man images 
and contains more edges. See Table A1 in Appendix for 
the precise values. Therefore, we suggest using D16 
wavelet basis in deterministic compressed sensing. In 
particular, instead of the Haar basis our results are ob-
tained using D16 basis. 

2.4. Number of Levels for Wavelet  
Decomposition 

In this subsection we investigate how many levels of 
decomposition should be used in the reconstruction of 
large images. Figure 3 shows experiments of chirp com-
pressed sensing using D16 with different levels of de-
composition. The vertical axis is the reconstruction SNR 
in dB using chirp compressed sensing. The horizontal 
axis is the number of levels. In (a) and (c), 3 levels give 
the best reconstruction SNR. However, we observe that 
the sparsified images with 3 levels lost a lot more details 
than with higher levels, when compared to the original 

un-sparsified images. Therefore, we do not choose 3 lev-
els. The reconstruction SNR from level 4 to 7 is within 
0.1 dB range. For experiments in the next section, we 
thus choose 4 levels. See Table A2 in Appendix for the 
precise values. 

3. Stability of the Deterministic Compressed 
Sensing Algorithms 

By the observations in the previous section, we use 
Daubechies D16 with 4 levels of wavelet decomposition 
in all of the following experiments. To study the stability 
of deterministic compressed sensing using chirp and 
Reed-Muller sequences for 2D images under noise, we 
consider five cases. In the first three cases, the noise is in 
the sparse signal, before the transform Φ is taken. In the 
last two cases, the noise is added after the transform. In 
what follows we choose the noise to be iid Gaussian with 
mean zero and variance 22 . The following are the 
cases: 

1) The 2D images are sparsified with pre-defined spar- 
sity in the wavelet domain. The wavelet coefficients kx  
is k-sparse and there is a noise in the wavelet domain. 
The measurement is 

 .ky x                 (22) 

2) The wavelet coefficients, denoted by x0, is not spar- 
sified, but assumed to be compressible. The noise is 
again in the wavelet domain. The measurement is 

 0 .y x                 (23) 

3) The wavelet coefficients xk is k-sparse and the noise 

k
,c  in the wavelet domain, is only non-zero outside the 

support of kx . Here  stands for the complement lo-
cations of the non-zero wavelet coefficients, i.e., the 
noise is added to the zero wavelet coefficients. Therefore, 
the nonzero coefficients of the signal are not perturbed. 
The measurement is 

ck
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(a) brain                                 (b) vessel                                (c) man 

Figure 2. Reconstruction SNR (in dB) of chirp compressed sensing with different Daubechies wavelet DN (or 
N

db
2

 in 

Matlab) and 4 levels of wavelet decomposition. The 2D images from Figure 1 are not sparsified. The number of 
measurements taken is 25% of the number of pixels. 

 

     
(a) brain                                (b) vessel                               (c) man 

Figure 3. Reconstruction SNR (in dB) of chirp compressed sensing with Daubechies D16 wavelet and different number of 
levels of wavelet decomposition. The 2D images are not sparsified. The number of measurements taken is 25% of the number 
of pixels. 

 

 .ck k
y x                (24) 

4) Noise occurs at the step of measurements and is 
added after the signal kx  is transformed by the CS ma-
trix Φ: 

.ky x                (25) 

5) Noise occurs at the step of measurements and is 
added after the compressible non-sparse signal x0 is 
transformed by Φ: 

0 .y x               (26) 

We test our algorithm on 3 images, see Figure 1, 
which we refer to as brain, vessel, and man. The first two 
are typical MRI images used in the medical community, 
and the third is a high resolution natural image. We re- 
construct these images using chirp and Reed-Muller 
sensing matrices and compare with the reconstruction by 
noiselets (for example, see [31]). The noiselet method 
takes random noiselet measurements and then recon-
structs by 1  minimization whereas our chirp and Reed- 
Muller algorithms use deterministic measurements and 
the reconstruction is by a least squares method. 



The reconstruction error is defined as: 

 
2

actual reconstructed
10 2

actual

Error dB 10 .log
x x

x

 
 
  

 

The negative of the above error is known as the sig-
nal-to-noise ratio (SNR). Tables 2-6 show the recon- 
structed SNR of measurements taken according to (22)- 
(26), respectively. Several noise levels were chosen for 
the experiment; and specifically, the standard deviation σ 
of Gaussian noise with zero mean are σ = 0, 0.01, 0.05, 
0.1 and 0.2. These values are chosen for comparison pur-
poses, for example, with Tables 1 and 2 in [12]. 

For Tables 2-4, the third columns are the SNR of the 
noisy images compared to the images before noise is 
added to the wavelet coefficients. If noise is present in 
the signal, all reconstructed SNR are smaller than the 
reference SNR via noiselet measurements and 1  mini-
mization. The reconstructed SNR by chirp has the high-
est value (best) in all cases and stays very close to the 
reference SNR. The reconstructed SNR by RM is higher 
than noiselets when the noise level is small. 



When the noise level is large, it seems that the noise- 
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Ta  of aubechies wavelet D16 (db8 in Matlab) with 4 levels of 

Image, size, sparsity Stan. dev. σ SNR Noiselets Chirp RM 

ble 2. The 2D images are first sparsified in the domain D
decomposition. The image, its size, and the pre-determined sparsity are shown in the first column. Gaussian noise with zero 
mean and variance σ2 (or standard deviation σ) is added to the wavelet coefficients of the sparsified image; see (22). The third 
column shows the SNR in dB compared to the noise-free sparsified image. Columns 4-6 show the reconstruction SNR in dB 
using noiselets, chirp, and Reed-Muller CS algorithms, respectively. The number of measurements taken is 25% of the 
number of pixels. 

 0 - 29.8 127.0 121.6 

 0  3  

Brain, 512 × 512, 7% 

1  1  

0.  2  

Vessel, 512 × 512, 5% 

1  1  

0.  3  

Man, 1024 × 1024, 2.38% 

.01 1.6 24.0 31.0 27.4 

0.05 17.7 15.4 17.1 16.1 

 0.1 11.9 10.8 11.6 10.4 

 0.2 6.5 6.5 6.8 5.6 

 0 - 37.1 26.2 21.0

 01 1.6 15.7 18.1 15.2 

0.05 8.9 7.0 7.7 6.8 

 0.1 3.2 3.6 4.2 3.0 

 0.2 −2.5 1.2 2.1 0.9 

 0 - 43.3 22.6 18.1

 01 2.5 30.0 32.2 30.1 

0.05 18.7 16.8 17.9 16.7 

 0.1 12.9 11.8 12.5 11.3 

 0.2 7.2 7.2 7.5 6.3 

 
Table 3. In this table, the 2D images are not sparsified. Gaussian noise with zero mean and standard deviation σ is added to 
all 4 levels of D16 wavelet coefficients decomposition of the non-sparsified image; see (23). The third column shows the SNR 
in dB of the noisy images compared to the original image. Columns 4-6 show the reconstruction SNR in dB using noiselets, 
chirp, and Reed-Muller CS algorithms, respectively. The number of measurements taken is 25% of the number of pixels. 

Image, SIZE Stan. dev. σ SNR Noiselets Chirp RM 

 0 - 23.4 28.4 25.7 

 0  3

Brain, 512 × 512 

0  2

Vessel, 512 × 512 

0  3

Man, 1024 × 1024 

.01 1.6 22.2 25.7 24.6 

0.05 17.7 15.2 17.0 15.9 

 0.1 12.0 10.8 11.6 10.4 

 0.2 6.5 6.5 6.8 5.6 

 0 - 12.0 14.1 13.4 

 .01 1.8 11.4 12.8 12.7 

0.05 9.0 6.7 7.5 6.6 

 0.1 3.3 3.6 4.1 3.0 

 0.2 −2.4 1.2 2.0 0.8 

 0 - 20.0 23.2 22.6 

 .01 2.5 19.8 22.8 22.0 

0.05 18.8 15.2 17.3 16.1 

 0.1 12.9 11.3 12.4 11.1 

 0.2 7.3 7.1 7.5 6.3 

 
lets slightly outperform RM even though the discussion minimization. 

 o
urement compared to the clean measure-

m

in Section 1 assures that the deterministic compressed 
sensing matrices comprised of chirps and Reed-Muller 
sequences have advantage over random matrices. The 
reason is that the deterministic sensing matrices here 
satisfy StRIP for sparse signals whose nonzero locations 
follow a uniform distribution, and the wavelet coeffi-
cients do not follow a uniform distribution. Therefore, 
better performance is not guaranteed anymore. Never-
theless, all results show that the deterministic algorithms 
are as stable as the reconstruction using noiselets and 1  

For Tables 5 and 6, the third column gives the SNR f 
the noisy meas

ent. The reconstructed SNR is calculated the same way 
as in Tables 2, 4, and 5, comparing the reconstructed 
image to the reference image. Therefore, the SNR in the 
third columns is in a different domain, or differs by the Φ 
transform. All results show that the reconstruction by 
chirp or RM performs significantly better than noiselets. 
Note that in Tables 2-4, where there is no noise, the re-
construction is very accurate, above 100 dB. 
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Table 4. The 2D images are first sparsified in the Daubec
pre-determined sparsity for each image is show

hies wavelet D16 domain with 4 levels of decomposition. The 
n in the first column. The Gaussian noise with zero mean and standard 

deviation σ is added only to the non-zero wavelet coefficients of the sparsified image; see (24). The third column shows the 
SNR in dB of the images with added noise compared to the noise-free sparsified image. Columns 4-6 show the reconstruction 
SNR in dB using noiselets, chirp, and Reed-Muller CS algorithms, respectively. The number of the measurements taken is 
25% of the number of pixels. 

Image, size, sparsity Stan. dev. σ SNR Noiselets Chirp RM 

 0 - 29.7 127.0 121.6 

 0.01 31.9 24.2 31.1 27.1 

Brain, 512 × 512, 7% 0.  1

Vessel, 512 × 512, 5% 0.  

1  1  

Man, 1024 × 1024, 2.38% 0.  1

05 8.0 15.5 17.1 16.1 

 0.1 12.3 11.0 11.6 10.4 

 0.2 6.8 6.7 6.8 5.6 

 0 - 31.7 126.2 121.0 

 0.01 21.3 15.7 17.9 15.2 

05 8.6 7.0 7.7 6.7 

 0.1 3.0 3.6 4.1 3.0 

 0.2 −2.8 1.2 1.9 0.8 

 0 - 43.1 22.6 18.1

 0.01 35.5 29.9 32.2 30.1 

05 8.7 16.8 17.9 16.8 

 0.1 12.8 11.8 12.6 11.3 

 0.2 7.2 7.2 7.5 6.3 

 
Table 5. The 2D images ar irst sparsified i e Daube s wavelet D16 domain 4 levels of decomposition. The 
pre-determined sparsity for each image is shown in the first olumn. Measurements are taken from the D16 domain. The 

e f n th chie  with 
c

number of measurement taken is 25% of the number of pixels. Gaussian noise with zero mean and standard deviation σ is 
added to the measurements of the sparsified image; see (25). The third column shows the SNR in dB of the noisy 
measurements compared to the noise-free measurements. Columns 4-6 show the reconstruction SNR in dB using noiselets, 
chirp, and Reed-Muller CS algorithms, respectively. 

Image, size, sparsity stan. dev. σ SNR Noiselets Chirp RM 

 0 - 29.7 127.0 121.6 

 0.01 31.6 24.7 46.4 45.6 

Brain, 512 × 512, 7% 0.  1

Vessel, 512 × 512, 5% 0.  6

Man, 1024 × 1024, 2.38% 0.  1

05 7.6 16.8 27.5 26.8 

 0.1 11.5 12.6 22.0 21.4 

 0.2 5.5 8.1 15.5 14.9 

 0 - 37.1 126.2 121.0 

 0.01 20.6 16.4 32.8 32.7 

05 .6 7.5 14.6 15.0 

 0.1 0.5 2.8 10.9 10.0 

 0.2 −5.5 -2.6 5.2 4.5 

 0 - 43.1 122.6 118.1 

 0.01 32.4 31.4 46.9 46.5 

05 8.4 18.3 27.0 26.0 

 0.1 12.4 13.5 22.0 21.0 

 0.2 6.4 8.6 16.0 15.5 

 
4. Discussions 

how that the algorithms introduced in 
f the signal is not exactly sparse and 

 We compare the perform-  

ance of dard Daubechies DN wavelets and suggest 
using Daubechies D16 as it performs the best for larger 
re

d for optimal computation time we work with 
le

In this work, we s
[3] are stable even i
there is some noise in the measurements or in the signal. 
We also address several practical concerns about com- 
pressed sensing with images. 

First of all, the Haar wavelet is commonly used as the 
sparsifying transform domain.

stan

solutions images, such as 512 × 512 or 1024 × 1024 
pixels. 

Secondly, we explain the proper selection of the num- 
ber of levels for wavelet decomposition. As discussed in 
Section 2, levels 4-7 are optimal for wavelet decomposi- 
tion, an

vel 4. 
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Table 6. The 2D images are not sparsified in this experiment. 
decomposition. The number of measurements taken is 25% 
and standard deviation σ is added to the measurements of non

Measurements are taken from the D16 domain with 4 levels of 
of e number of pixels. Then, Gaussian noise with zero mean 
-sparsified image; see (26). The third column shows the SNR in 

th

dB of the noisy measurements compared to the noise-free measurements. Columns 4-6 show the reconstruction SNR in dB 
using noiselets, chirp, and Reed-Muller CS algorithms, respectively. 

Image, size Stan. dev. σ SNR Noiselets Chirp RM 

 0 - 23.4 28.4 25.7 
 0.01 31.6 22.4 28.0 25.7 

Br 2 
1

Vessel 512 × 512 
 

Man 1024 × 1024 
1

ain 512 × 51 0.05 17.6 16.5 25.2 24.9 
 0.1 1.5 12.5 21.3 20.9 
 0.2 5.5 8.0 15.3 14.7 
 0 - 12.0 14.1 13.4 
 0.01 20.6 11.5 13.8 13.4 

0.05 6.7 6.9 12.4 12.3 
 0.1 0.7 2.6 9.9 9.1 
 0.2 −5.3 -2.6 4.9 4.3 
 0 - 20.0 23.2 22.6 
 0.01 32.4 19.6 23.2 22.5 

0.05 18.4 16.2 22.5 21.7 
 0.1 2.4 12.7 20.2 19.4 
 0.2 6.4 8.4 15.6 15.1 

 
Finally, our experiments show that the al thms are

indeed stable if the signal is compressible  there is
noise in either measurements or the signal. Furthermore, 
ou

o
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Appendix A: SNR values for Figures 2 and 3 

Tables A1 and A2. 
able A1. The table below shows reconstruction SNR of 

 

Table A2. The table below shows reconstruction error of 
chirp compressed sensing with Daubechies D16 wavelet and 
various levels of decomposition ranging from 3 to 7. The 2D 
images are not sparsified. Each column shows the recon-

Please see 
T
chirp compressed sensing with different Daubechies wavelet

 
 

N
DN db in matlab  and 4 levels of decomposition.  

 2
Specifically, D2 is the Haar wavelet. The 2D images are not 
sparsified. Each column shows the reconstruction SNR in 

ber of pixels. This table is plotted 
in Figure 2. 

 D2 D4 D8 D12 D16 D20 D24 D32 D40

dB with the indicated DN. The number of measurements 
taken is 25% of the num

brain 23.34 26.45 28.58 28.93 29.17 29.24 29.04 29.39 29.24

vessel 13.13 13.79 14.11 14.19 13.97 13.94 13.77 13.26 13.12

man 21.46 23.01 23.58 23.66 23.71 23.71 23.62 23.60 23.54

 
 D48 D56 D64 D72 D80 D88 

brain 29.09 29.14 29.08 28.80 28.78 28.72

man 23.46 23.44 23.38 23.37 23.35 23.30

 

struction SNR in dB with the indicated number of levels. 
The number measurement taken is 25% of the number of 
pixels. This table is plotted in Figure 3. 

 3 4 5 6 7 

brain 29.51 29.17 29.30 29.31 29.32 

vessel 13.89 13.97 13.99 13.96 13.94 

man 23.74 23.71 23.71 23.70 23.72 
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