
Int. J. Communications, Network and System Sciences, 2013, 6, 66-76
http://dx.doi.org/10.4236/ijcns.2013.61008 Published Online January 2013 (http://www.scirp.org/journal/ijcns)

A Novel Decoder Based on Parallel Genetic Algorithms for
Linear Block Codes

Abdeslam Ahmadi1, Faissal El Bouanani2, Hussain Ben-Azza1, Youssef Benghabrit1
1Department of Industrial and Production Engineering, Moulay Ismail University,

National High School of Arts and Trades, Meknès, Morocco
2Department of Communication Networks, National High School of Comptuer Science and

System Analysis, Rabat, Morocco
Email: ab_ahmadi@hotmail.com, elbouanani@ensias.ma, hbenazza@yahoo.com, you_benghabrit@yahoo.fr

Received November 8, 2012; revised December 5, 2012; accepted December 15, 2012

ABSTRACT

Genetic algorithms offer very good performances for solving large optimization problems, especially in the domain of
error-correcting codes. However, they have a major drawback related to the time complexity and memory occupation
when running on a uniprocessor computer. This paper proposes a parallel decoder for linear block codes, using parallel
genetic algorithms (PGA). The good performance and time complexity are confirmed by theoretical study and by simu-
lations on BCH(63,30,14) codes over both AWGN and flat Rayleigh fading channels. The simulation results show that
the coding gain between parallel and single genetic algorithm is about 0.7 dB at BER = 10−5 with only 4 processors.

Keywords: Channel Coding; Linear Block Codes; Meta-Heuristics; Parallel Genetic Algorithms; Parallel Decoding

Algorithms; Time Complexity; Flat Fading Channel; AWGN

1. Introduction

The error correcting codes began with the introduction of
Hamming codes [1] in the same period that the remark-
able work of Shannon [2]. They consist in correcting data
corruption when saved in storage media (erasure CD/
DVD, etc.) or transmitted over noisy communication
channel. Figure 1 shows the canonical system diagram
of numerical communication.

The encoder takes the information symbols and adds
to them redundancy symbols, carefully chosen such that
a maximum of errors, which are infiltrated throughout
the process of signal modulation, noisy transmission
channel, and demodulation, can be corrected. The result-
ing binary code word is then transmitted over the noisy
and memoryless channel under assumption that the
sending messages are independent from the added noise.
At the reception, the decoder attempts, given channel
observations and using the redundancy symbols, to find
the most probable message. The techniques used by the
decoder are diverse. The most optimal criterion is Maxi-
mum Likelihood [3]. Given its high complexity (compu-
tation time, memory occupation), other suboptimal tech-
niques with acceptable performance are used in practice
like Turbo codes [4] and LDPC [5]. Several other decod-
ers developed were inspired from the artificial intelli-
gence field as Han decoding which using algorithm A*
[6], Genetic Algorithms (GAs) [7] and Neural Networks

[8]. In 2007, it was shown that decoders based on GAs
have good performance and time complexity lower than
those of classical algebraic decoders [9]. In 2008, the
performance of these decoders has been further improved
by using iterative decoding for product block codes in
two dimensions [10]. In 2012, we made an extension of
concatenated codes by passing to three dimensions [11].
In this last work, we have proposed two iterative decod-
ing algorithms based on GAs, which can be applied to
any arbitrary 3D binary product block codes, without the
need of a Hard-In Hard-Out decoder.

The first decoder outperforms the Chase-Pyndiah [12]
one. The second algorithm, which uses the List-Based
SISO Decoding Algorithm (LBDA) based on order-i re-
processing [13], is more efficient than the first one. We
have also showed that the two proposed decoders are less
complex than both Chase-Pyndiah algorithm for codes
with large correction capacity, and LBDA for large i pa-
rameter.

All these proposed decoders have been designed to run
on a single processor machines. Their instructions are
executed sequentially and then so slowly. In addition, we
do not take advantage of the parallel nature of GAs,
which is a major advantage related to their exploration
and convergence. So, the aim of this new work is to
overcome these drawbacks by applying Parallel Genetic
Algorithms (PGAs) to decoding linear block codes. Thus,

Copyright © 2013 SciRes. IJCNS

A. AHMADI ET AL. 67

ModulationInformation

Source
Encoder

û

vu 1 11 1

1

n

k k kn

b b b

G

b b b

   
       
      

   

 

x

r
DemodulationDestination Decoder

Noisy Channel

y

 0,1  2

n

1 2, .n nx x   

2
 2

and .

Figure 1. The canonical diagram of numerical communica-
tion.

we have developed a new decoder using parallel genetic
algorithms, which runs on a parallel computer with mul-
tiple processors and a shared memory, or on a distributed
system. So, it reduces the time complexity and increases
little performance.

This paper is organized as follows. Section 2 presents
some background on Linear Block Codes, Parallel Sys-
tem, and Genetic Algorithms. Section 3 describes the pro-
posed Parallel Genetic Algorithms Decoder (PGAD),
studies its time complexity and compares it with the one
of SGAD. In Section 4 we discuss the simulation results
obtained for PGAD. Finally, we give in Section 5 our
conclusions and perspectives of this work.

2. Background

2.1. Linear Block Codes

Let be the binary alphabet and 2

The set of all words of length n i.e.:

  2 1 / ,
n

x x

A linear code C of length n on is a subspace of
the vector space [14]. i.e.: n

2, , , ,x y C x y C x C  

,

     

Let x y C such that  , , n1x x x 
 1, , n

 and

y y 
 ,Hd x y

 ,1 .iy i n 

  , /x y x y

 dimk C


y . The Hamming distance between x and y,

noted , is defined by:

 , card /H id x y i x 

The minimum Hamming distance d of a code C is the
Smallest non zero distance between all its vectors, taken
two by two. i.e.:

,
min H
x y C

d d


 (1)

Let be the dimension of code C. C is then
said , ,d n k d -linear code. The code rate is the ratio
k n

Let

Thus, we have:

 2/
k

C G   
1

,

n

x

 i.e. x C

x

 
    
 
 



   1 2! , ,
k

k     

x G such that 

1 1 11 1

1 1

k k

n n k kn

x b b

 i.e:

 1 k be a basis of C. Since i, ,B b b  b C ,
Then length (bi) = n. The matrix G for which rows are
the basis vectors is called generating matrix of the code
C. It can be written as:

x b b

 

 

  


    






2.2. Parallel Systems

The choice of parallel machines or distributed systems is
more imposed for applications requiring a very high
processing power and/or a big memory space. There are
plenty of parallel systems which are classified as below
[15].

2.2.1. Taxonomy of Parallel Systems
These systems have been classified by Flynn (1972) ac-
cording to two independent concepts: the stream of in-
structions and the stream of data used by these instruc-
tions. There are four possible combinations:
 SISD (Single Instruction, Single Data): The machine

executes one instruction on one data at each clock cy-
cle. It is not really a parallel machine but a classical
computer (Von Newman).

 SIMD (Single Instruction Multiple Data): A processor
having a single Control Unit (CU) and multiple Ar-
ithmetical and Logical Units (ALUs) executes the
same instruction on different data at each clock cycle.

 MISD (Multiple Instruction, Single Data): Systems
running multiple instructions on the same data at each
clock cycle.

 MIMD (Multiple Instruction Multiple Data): These
systems are multiple independent processors i.e. each
processor has its CU and its ALU. At the same clock
cycle, each processor executes a different instruction
on a different data. These instructions can be synchro-
nous or asynchronous. The majority of parallel sys-
tems are MIMD. The MIMD system can be either a
Multiprocessor or a Multi-computer or a hybrid of
them. We explain in the next subsections the architec-
ture of each one.

2.2.2. Multiprocessor
It is a MIMD parallel system with certain number of
autonomous processors (CU+ALU) and a single shared
memory. i.e. All processors use a common physical

Copyright © 2013 SciRes. IJCNS

A. AHMADI ET AL. 68

memory which composed of several memory blocks
Figure 2. These blocks are interconnected with the pro-
cessor and between them [15].

If two processors want to communicate, it suffices that
the first one writes data (or message) in the memory and
the other one recuperates it. So their programming is
easy since the programmer does not have to focus on the
explicit communication (message exchange) between the
different processors. These allowed multiprocessors mak-
ing a great success. However, it would be difficult to
build a multiprocessor when the number of its commu-
nicating elements (processors and memory blocks) is
very important. Indeed, the interconnection of all these
elements is not always an easy task.

2.2.3. Multi-Computer
A multi-computer is also a MIMD system but relatively
simple to build. It contains a number of computers (CU +
ALU + private memory) linked together by an intercon-
nection network. Each computer has its own memory
Figure 3. This reduces significantly the number of ele-
ments to be interconnected. The communication between
computers is achieved by exchanging messages as primi-
tives Send/Receive, programmed and integrated by the
programmer in its application [15]. This may complicate
more his task. The following points must be taken into
account for each parallel programming:
 For an efficient communication between different

elements (processors and memory blocks) of a paral-
lel or distributed system, the suitable choice of the
topology, routing and switching mode of its inter-
connection network affects its performance remarka-
bly.

 To benefit from the advantages of a multiprocessor
and those of a multi-computer and minimize the dis-
advantages of each one of them, hybrid systems have
been designed.

 To take advantage of parallel systems, we must exe-
cute on them parallel programs or containing a sig-
nificant part of parallel instructions.

2.3. Genetic Algorithms

The Genetic Algorithm (GA), initiated in 1970 by Hol-
land [16] is an Evolutionary Algorithm (EA) inspired
from the natural biological evolution. It use search sto-
chastic techniques to solve problems not having an ana-
lytical resolution or when the time to resolve them by
classical algorithms is not reasonable [17]. Their applica-
tions cover, in addition to error correcting codes in tele-
communication, several other fields as optimization, arti-
ficial intelligence, economic markets, etc. As shown in
algorithm below [18], an EA especially a GA has an it-
erative character:

Sharedmemory

PPPP

PP P ProcessorP

P

P

P

P

P

P

P P

Figure 2. A multiprocessor with 16 processors sharing a
commonmemory.

Processor

Network of message
transport

PPPP

PP PP

P

P

P

P

P

P

P

P

MMMM

M

M

M

M

MM MM Privatememory

M

M

M

M

Figure 3. A multi-computer with 16 interconnected proces-
sors where each one has its own memory.

t=0;
initialize and evaluate [P(t)] ;
while not stop-condition do
P’(t)=variation [P(t)] ;
Evaluate [P’(t)] ;
P(t+1) =select [P’(t), P(t)];
t=t+1;
end while.

 PIt generates an intermediate population t by ap-
plying variation operators (often stochastic) on individu-
als (which may be here, information sequences or code-
words) of the current population P(t). Then, it evaluates
the quality (of being solution) of individuals from  P t

using a criterion known as fitness. It finally creates the
new population P(t+1) in which individuals are selected
from those of  P t and eventually from P(t). The pro-
cess is repeated until the stopping condition is satisfied.
In general, the process is stopped when the optimal solu-
tion is found or when the maximum number of itera-
tions is reached.

The Genetic Algorithms can be singles (SGA) or Par-
allels (PGA).

2.3.1. Single Genetic Algorithms
The previous general algorithm can be adapted in SGA
as follows:
Generate an initial population of n individuals randomly;
while not stop-condition do
Calculate the fitness f (x) for any individual x;

Copyright © 2013 SciRes. IJCNS

A. AHMADI ET AL. 69

while not Filled-New-Population do
Select two parent individuals;
Cross them to have a new(s) individual(s);
The new individuals undergo eventual mutations;
Insert the new individual in the new population;
end while
Replace the old population by the new one;
end while.

The three classical operators inspired from natural
evolution to generate a new population from the current
one in both SGA and PGA are selection, crossover and
mutation:
 The selection operator describes how to select the

parents in the current population to cross them and
generate new individuals (offspring) which will be
inserted in the new population. The individuals are
sorted in ascending order of their fitness to give more
chances to the best ones (fittest) to be selected (as-
suming that better parents reproduce better children).
However, there are cases where the crossing of bad
parents can generate good offspring. The most popu-
lar selection methods are: Proportional, Linear Rank-
ing, Whitley’s Linear Ranking and Uniform Ranking
[19].

 The crossover operator generates new individuals
inheriting from their parents. i.e. Their genes are a
mixture of those of their parents. There are several
crossing techniques that can be either generic (robust)
i.e. applied in a wide variety of problems, or specific
to particular problems, or hybrid techniques combin-
ing generic and specific ones.

 As in natural evolution, the genes of some individuals
may undergo changes (mutations). This occurs in very
rare cases. The mutation plays a very important role in
the convergence of SGA and PGA algorithms. Indeed,
it will prevent their premature convergence by guid-
ing them to explore other more promising areas and
avoid a local optimum.

2.3.2. Parallel Genetic Algorithms
The PGAs are GAs running on parallel systems dis-
cussed in the second subsection.Their purpose is not only
accelerating the convergence and/or use a large memory
space but also improve the performance. There are two
models of PGAs: 1) Island model (or network model)
which runs an independent GA with a sub-population on
each processor, and the best individuals are communi-
cated either to all other sub-populations or to neighboring
population [20]; 2) Cellular model (or neighborhood
model) which runs an individual on each processor, and
cross with the best individual among its neighbors [21].
In fact, the second model is a particular case of the first
one. Indeed, its population is reduced to a single indi-
vidual on each processor.

The general algorithm of PGAs is given below:
Generate an initial population of n individuals randomly;
while not stop-condition do
Calculate the fitness f (x) for any individual x;
if Interval-Exchange then
Exchange of individuals;
end if
while not Filled-New-Population do
Select individual parents;
Cross them to make new people;
New individuals undergo eventual mutations;
Insert new individuals in the new population;
end while.
Replace the old population by the new one;
end while.

3. The Proposed Parallel Decoder Based on
Genetic Algorithms

This work is a parallelization of the decoder that we have
already used in [9,10], and [11] by exploiting some tech-
niques of parallel genetic algorithms used in other do-
mains like Optimization and Artificial Intelligence. It can
be run on a multiprocessor where the data exchanged are
saved in global or shared variables, or on a multi-com-
puter which exchange data between its processors via a
network.

 1 nLet , ,F F  and F 1 n be respec-
tively the fading vector and the received sequence (asso-
ciated to the transmitted sequence) at the decoder input
of a binary linear block code C(n,k,d) with a generator
matrix G. The parameters Np, Ne, Nc, Nm, Ns, Ng are re-
spectively the population size, elite number, offspring
number, migrant number, processor number and maxi-
mum number of generations such that

, ,R R R 

   1m p e c sN N N N N   

   1
1πR R  

is a positive integer.

3.1. The PGAD Algorithm

The sub-algorithm which will run in parallel on each pro-
cessor is given below:

Step 0: Initialization
 Sort the elements of the received vector R in de-

scending order of their magnitude to produce another
vector R(1) i.e. find a permutation π1 such that

 and    1 1 1
1 2 nR R R  

 1

. This will

put reliable elements in the first ranks. F is the
permutation of F by 1 i.e. 1π    1 πF F

π
. Then,

permute G by 2 to produce G′ such that the first k
columns of G′ are linearly independent i.e.

 πG G   1R  1
2 . The two vectors and F are

permuted by to  and 2π R F .
 

 So,

      1
2 2 1π π π πR R R R    and

Copyright © 2013 SciRes. IJCNS

A. AHMADI ET AL. 70

  1
2 2π π     1π πF F   F F

π π π 

, with

2 1

 Quantize the first k bits of R to obtain binary vec-
tor r and randomly generate Np − 1 information vec-
tors of k bits each one. These vectors form with vector
r the initial population of Np individuals  1, ,

.

NpI I ;
 1: ReprodStep on

ent generation number).

 of the current population, using

n dis-

 , 1, , pi N  

 Sort the current population individuals in descending

iduals (elites) from the current

 − Ne individuals of the

ty pc the selected parents to gen-

ls with a probability pm if

duals with their fitness in

  

ucti
gen←0 (gen is the curr
While (gen < Ng) do
Encode individuals
G′ to obtain code words: Ci = IiG′ (1 ≤ i ≤ Np);

 Compute individual fitness, defined as Euclidia
tance between Ci and R :

   2n

f C C R 
1

i ij j
j

order of their fitness;
 Copy the Ne best indiv

population to the new one;
 Select parents from the Np

current population;
 Cross with probabili

erate Nc new individuals;
 Mutate the new individua

their parents are crossed;
 Insert these Nc new indivi

the new population Figure 4;
 Send the best  1cN N  indi-

new

m the

ecision
   

1

mN N N p e

ir fitness) to the
s

viduals (with the populations of
Ns − 1 other processors as shown in Figure 5;

 Receive Nm migrant elites (with their fitness) fro
previous population of each Ns − 1 other processors,
to complete the new population as shown in Figure 6;

 Replace the current population with the new one;
 gen←gen+1;
end while

Step 2: D
Get the best individuals

s

i

i N
D

 
 of last popula-

tio best one Dns of all processors. The ′ of them is the

closest to R′. i.e.   argmin i ,1 sD  D R i N     .

 1πD D  . So, the decided codeword is

. .
. . .
. .

Nm elites

. .
. . .
. .

Current
population

New
population

Figure 4. The ith processor which works on the current
population to give the next one.

. .
. . .
. .

. .
. . .
. .

N elitese

Ncchildre
n

Nm elites
Nm elites

. .
. . .
. .

. .
. . .
. .

Neelites

Ncchildre
n

. .
. . .
. .

. .
. . .
. .

Ne elites

Nc children

. .
. . .
. .

. .
. . .
. .

Ne elites

Nc children

…
…..

Figure 5. In a given generation, the ith processor sends its
best N individuals to other processors.

Nm elitesNm elites

m

Nm elites

. .
. . .
. .

. .
. . .
. .

Ne elites

Nc children

. .
. . .
. .

. .
. . .
. .

Ne elites

Nc children

. .
. . .
. .

. .
. . .
. .

Ne elites

Nc children

. .
. . .
. .

. .
. . .
. .

Ne elites

Nc children

…
…..

Figure 6. In a given generation, the ith process eceives
the best N individuals from each other processor

ustrated

haracteristics

 PGA are [19]:

 of the evolution step in a

ucing Operators

1e e cN N   
 in the new

like in our wor

or r
. m

The flowchart of the previous algorithm is ill

in Figures 7 and 8.

3.2. The PGAD C

The main elements characterizing a basic
evolution mode, reproduction operators (crossover and
mutation), selection and replacement policy of individu-
als (local and foreign) and migration.

3.2.1. Evolution Mode
It defines the granularity
sub-algorithm of the PGA. i.e. how the new population is
created from the current one. There are two techniques
that are often used. The first one is the generational GA
(GGA) where the new population replaces all the old
ones. The second technique inserts only a few new (gen-
erated) individuals in the current population. In our im-
plementation, we have used the GGA evolution mode
with elitism.

3.2.2. Reprod
To generate Nc individuals  i N i

I

population, we have used, ks [10], and
[11], these operators:

Copyright © 2013 SciRes. IJCNS

A. AHMADI ET AL. 71

ܰ(݉݅1) best indiv.
 .best indiv (1−ݏܰ݅݉)ܰ

Loop

Initialization step

To the new populations of
Ns-1 other
processors

Crossing the selected
parents and mutating
the children

Coding and fitness
computing

Forming the
new population

Sorting
fitness

gen  gen+1 gen =Ng

Nc new
individuals

Ne first
individuals

Ne +Nc

individuals

Np

individualsNo

Yes

Np sorted
individuals

….
….

Nm best

individuals
Nm best

individuals

Np - Ne
individuals

......

......

From previous
populations of Ns-1
other processors

Np sorted
individuals

R’

R,F,G

Np sorted
individuals

Descending
sort of the

magnitudes
and

permutations

Adding r
to Np-1
individuals
of k bits
randomly
generated

Coding wit
G’, fitn
computing,
and sorting
of the Np
individuals

 F’,G’

h
ess Np

individuals

Quantizing of
the first k bits

r

′ܦ (݅) = ′ܫ 1(݅)
 ݂݅ = ݂ ቀ1′ܫ(݅)ቁ

݃݁݊ ← 0

Figure 7. The flowchart of the proposed PGAD sub-algo-
rithm running on the ith processor.

 Figure 8. The codeword decision flowchart of the proposed
PGAD algorithm.

o individuals as parents (,) using
the following linear ranking:

 Selection of tw P Q

   

 

max maxweight 2 1 weight 1
weight i

i

N

  
 ,

1

1, , .

p

pi N



  
 (2)

where weighti is the ith individual weight and weightmax
is the weight assigned to the fittest (closest) individual.

-
 Let pc, pm be respectively, the probabilities of cross-

over and mutation, and let Rand be a uniformly ran
dom value between 0 and 1, generated at each time.

if Rand < pc then

   1, , , 1, , :N N j k      ei N e c

 
0

4
if Rand 1

1 e
else

j

j j

j
j j j j R F

Nij

j

P Q
P P P Q

I

Q

 


     



 (3)

and then
1 if Randij mI I pij  

if Rand 0.5

 else

P

Q





end if.
We note that on an AWGN (Additive White Gaussian

hannel) channel, we have

else

iI 

Noise C

 1, 1, ,jF j k     .

3.2.3. Selection and Replacement Str gies
They define the selection of individuals to replace in the

d those to

more

domly. In

This is an operation that helps to diversify and enrich the
 a sub-algorithm which runs in a pro-

ate

current population of a sub-algorithm PGA an
migrate from other processors. The individuals can be
replaced by new local ones or by the migrant ones:
 The main replacement policies are [19]: 1) Inverse

Proportional; where the worst individual is
likely to be replaced; 2) Uniform Random; where all
individuals have the same chance of being replaced; 3)
Worst; where the worst individual is always re-
placed. In some problems, it is replaced only if it is
worse than the new one; 4) Generational; where the
entire current population is replaced by a new one. In
our work, we keep the best local individuals (elitism)
and the bad ones are replaced by new local offspring
and by the migrants from other processors.

 There are two cases to choose migrant individuals:
choose the best ones, or choose them ran
our algorithm, we chose the best migrants.

3.2.4. Migration

new population of
cessor by migrant individuals from other cooperator pro-
cessors of the PGA. There are two parameters character-
izing the migration operation: Migration Gap and Migra-
tion Rate. The first one specifies the frequency of ex-
change of individuals. i.e. The number of steps that a
sub-algorithm must run before sending or receiving mi-
grant individuals. It can also specify the probability of
migration at each stage. The second migration parameter
defines the number of exchanged individuals (migrants).

Copyright © 2013 SciRes. IJCNS

A. AHMADI ET AL. 72

The exchange (send/receive) of individuals is done in
two modes: synchronous or asynchronous.

The synchronous mode suspends, periodically, the
execution of a sub-algorithm of the PGA and waits for
th

  

e receiving migrant individuals from other nodes be-
fore continuing its execution. In asynchronous mode, the
sub-algorithm does not wait. Once the migrant individu-
als arrive, it deals with them.

In our algorithm, we send/receive at each new popula-
tion the  1N  first best indi-

duce the num

ty
A PGA is called homogeneous if its nodes run the same

erwise, it is called heterogeneous.

 of the different stages
m PGAD in the

e almost always,
ability is close to 1. So its time com

ion will occur rarely since its pro-

T e PGAD.

m p e cN N N N   s

ualsto/from every other processor according to the
asynchron ber of messages
that flow through the network connecting processors, the
number of migrant individuals should be less than the
number of individuals locally generated for each new
population. i.e. m e cN N N  .

3.2.5. Heterogenei

vid
ous mode. To re

type of algorithm. Oth
Our PGAD is homogeneous. Indeed, all nodes are sym-
metric and perform the same genetic algorithm having
same parameters and operators.

3.3. PGAD Time Complexity

We give in Table 1 the complexity
of the proposed decoding algorith

order

-

oftheir appearance in the flowcharts of Figures 7 and 8
before deducting its global complexity.

We note that:
 The crossover operation will be mad

since its prob
plexity is O(kNc).

 The complexity of mutation operation is neglected.
Indeed, this operat
bability is close to 0.

The total time complexity of PGAD is then:

able 1. Time complexities of different steps of th

Initialization step Time complexity

Descending sort of the magnitude
of R

O(nln n)

Quantizing the first k bits

Coding with

O(k2n)

G , fitness computing,
duals

O(knNp) + O O(NplnNp)

vectors

g O(knN nNc)

uals O p p)

and sorting of the Np indivi
(nNp) +

Loop steps

Crossover and mutation of

Time complexity

information
O(kNc)

Coding and fitness computin

Sorting of Np individ

c) + O(

(N lnN

Decision step Time complexity

Sorting of   , 1i

sD i N   O(NslnNs)


  

 


2

2

1 ln n

ln

ln ln

p p p

 l

ln ln p

g c c c p p s s

p g c

g p p s s

k n knN nN N

N kn nN N N N

O n n k n kn N N N

N N N N N

  

  

  

 


(4)

From the formula (4), it is clear that the complexity of
PGAD is lower than that of SGAD. Indeed, there are
te

essors (Ns = 4). To study the
d PGAD decoder, we have

lation Size

de-

O n n  N

N k N  N

rms that are common to both decoders (initialization
and sorting at the end of the loop). The term NslnNs can
be neglected when the processor number is small. The
difference between SGAD and PGAD consists in the
crossing, coding, and fitness computing in the loop. For
each generation, we must cross parents to have Np ‒ Ne
new individuals in the case of SGAD against only Nc in
PGAD (Nc < Np ‒ Ne). Likewise we encode in the loop
only Nc individuals in our decoder against Np ‒ Ne in
SGAD. For the fitness in the loop, it is also computed for
Nc individuals instead of Np ‒ Ne.

From the foregoing, we can summarize the advantages
of our decoder as follows:
 Improvement of performance. Indeed, It corrects er-

rors better than simple algorithms studied in [9,10] as
shown in simulation section.

 Reducing the time complexity of the decoding pro-
cess: 1) It is run in parallel on multiple processors for
almost the same number or lower of total individuals
(NgNp) used in a single decoder; 2) It reduces the time
of encoding and fitness computing, since the algo-
rithm receives (Np − Ne − Nc) migrant individuals
(encoded) with their fitness already computed; 3) It
reduces the reproduction time since the number of
parents to cross is reduced to Nc(Nc < Np − Ne).

4. Simulation Results

Our PGAD is run on 4 proc
performance of the presente
simulated a binary communication system with BPSK
modulation and both AWGN and Rayleigh fading chan-
nels. We give in this section, the impact of each parame-
ter Ng, Np, pc, pm, Ne, Nc and code rate on the performance
of our decoder and we finish with a comparison with the
SGAD decoder. The chosen code is the linear block
BCH(63,30,14) code. The minimum number of sent er-
roneous frames is 30. The performance will be given as
figures showing the Bit Error Rate (BER) versus the en-
ergy per bit to noise power spectral density ratio Eb/N0.

The figures corresponding to each channel are given in
Table 2.

4.1. Effect of Generation Number and
Popu

Generally, increasing the number of evaluated co

Copyright © 2013 SciRes. IJCNS

A. AHMADI ET AL. 73

Tab corresponding to each channel. le 2. Simulation figures

AWGN channel Fading channel

Figures 1 to 14 Figure 15

words N ability to find the codeword closest

 the in becomes high. T ossi-

The crossover is a very important operation insofar as it
an effective exploitation.

The effect of mutation rate for BCH(63,30,14) is de-
n that pm = 0.03 is the op-

Among the best individuals of the current population,
 new population. This

pNg, the prob
put sequence to his makes it p

ble to improve the BER performances. The effect of in-
creasing the number of evaluated code words on the BER
improvement for code BCH(63,30,14) at the 12th itera-
tion is presented in Figures 9 and 10. The values Ng =
100 and Np = 100 can be the optimal values in a large
range Eb/N0. The other genetic parameters for the first
optimization are: Np = 100, Nc = 80, Ne = 5, pc = 0.99, pm =
0.03 and Ng = 100, Nc = 80, pc = 0.99, pm = 0.03 for the
second one.

4.2. Crossover Rate Effect

Figure 9. Effect of the generation number for BCH(63,30,14).

allows a large exploration, and
In Indeed, it creates new individuals may be good solu-
tions to the problem. For most problems, the probability
of crossover is high. This is the case also for the error
correcting. The Figure 11 shows that among the studied
probabilities pc= 0.99 offers the best performance. For
this simulation, we have fixed the other parameters as
follows: Ng = 10, Np = 100, Nc = 80, Ne = 5, and pm =
0.03.

4.3. Mutation Rate Effect

Figure 10. Effect of the population size for BCH(63,30,14).

picted in Figure 12. It is show
timal BER value for all SNRs. One reason of this value
close to 0 may be the stability of members in vicinity of
optima for low mutation rates. The fixed values are: Ng =
100, Np = 100, Nc = 80, Ne = 5, and pc = 0.99.

4.4. Elite Number Effect

some may survive and move to the
can be justified by the fact that their elitism may give
birth to other best descendants. As shown in the Figure
13, the greater the number of elites survived, more per-
formances improve. However, when we exceed five el-
ites the performances begin to decline. We deduce that
worse individuals can also create, by crossover and mu-
tation, better individuals. So we choose Ne = 5. The fixed
values for this simulation are: Ng = 100, Np = 100, Nc =
80, pc = 0.99 and pm = 0.03.

4.5. Offspring Number and Migration Rate
Effects

Figure 11. Effect of the crossover probability for
BCH(63,30,14).

The number of individuals migrating from each nodeis

     1 9 3.p e c s cN N N N N     So when
er decreases, t

 this num-
he number of individuals created locally

c increases. From the curves plotted
formances increase when Nc increases

b
N in Figure 14, per-

 up to a threshold

Copyright © 2013 SciRes. IJCNS

A. AHMADI ET AL. 74

Figure 12. Effect of the mutation rate for BCH(63,30,14).

Figure 13. Effect of the elite number for BCH(63,30,14).

Figure 14. Effect of the offspring number for BCH(63,30,14).

Nc = 80. We also note that when there is no ex- change of

ls is equal to 0) the performance is worse than with the

51). From the
when the rate decreases, per-

 is explained by the fact that

ance of our PGAD on a
n-
 3.

We and 17 that the parallel de-

 applied to any linear block
ions show that it provides better per-
ecoder based on SGA and the gain is

individuals (Nc = 95 i.e. the number of migrant individu-
a
exchange. The fixed values of parameters are: Ng = 100,
Np = 100, Ne = 5, pc = 0.99 and pm = 0.03.

4.6. Code Rate Effect

We have studied the performance of the following BCH
codes: (63,30), (63,39), (63,45), and (63,
Figure 15, we note that
formance increases. This
when the code length n increases for the same dimension
k; the number of redundancy bits (check) increases. i.e. it
corrects better with more redundancy; which makes
sense. In this simulation, we adopted the optimal values
in Table 3 previously found.

4.7. Performance Comparison between PGAD
and SGAD

We have studied the perform
Gaussian channel AWGN and flat Rayleigh fading cha
nel with flat fading using the same parameters in Table

remark from Figures 16
coder not only reduces the time complexity, but also has
good performance compared to simple decoder studied in
[9] and just for 4 processors.

5. Conclusion

We have presented a new decoder based on parallel ge-
netic algorithms which can be
code. The simulat
formance than a d

Table 3. Time complexities of different steps of the PGAD.

Ng 100

Np 100

0

Ne 5

Nc 80

pc 0.99

pm .03

Figure 15. Effect of code rate.

Copyright © 2013 SciRes. IJCNS

A. AHMADI ET AL. 75

Figure 16. Pe n SGAD and
PGAD on AWGN channel for BCH(63,30,14).

rformance comparison betwee

Figure 17. Performance comparison between SGAD and
PGAD on Rayleigh channel for BCH(63,30,14).

about 0.7 dB with 4 processors only. This is due to its
parallel architecture which can exploit and explore more
individuals and avoid the premature convergence to
optimum. In addition, this decoder has a lower com
ity because it runs on multiple processors simultaneously
and because it reduces the time of encoding and fitness
computing, and the time of generation of new individuals.
Its performance can be further improved by adju
algorithm parameters and characteristics (processor num-
ber, topology, migration, selection and replacement, ...)
and by parallelizing tasks running on the same processor
or by putting it in hybrid with other decoders. We could
also envisage an iterative decoding based on PGAs.

 local
plex-

,

sting

,

REFERENCES
[1] R. W. Hamming, “Error Detecting and Error Correcting

Codes,” Bell System Technical Journal, Vol. 29, No. 2,
1950, pp. 47-160.

[2] C. E. Shannon, “A Mathematical Theory of Communica-

tion,” Bell System Technical Journal, Vol. 27, 1948, pp.
379-423, 623-656.

[3] S. Roman, “Introduction to Coding and Information The-
ory,” Spring Verlag, New York, 1996.

[4] C. Berrou and A. Glavieux, “Near Optimum Error Cor-
recting Coding and Decoding: Turbo Codes,” IEEE Trans-
actions on Communications, Vol. 44, No. 10, 1996, pp.
1261-1271. doi:10.1109/26.539767

[5] D. J. C. Mackay and R. M. Neal, “Good Codes Based on
Very Sparse Matrices,” 5th IMA Conference on Cry
raphy and Coding, Lecture Notes in Computer Sc

ptog-
ience

number 1025, Oc 00-111.
doi:10.1007/3-

tober 1995, Springer, Berlin, pp. 1
540-60693-9_13

[6] Y. S. Han, C. R. P. Hartmann and C.-C. Chen, “Efficient
Maximum Likelihood Soft-Decision Decoding of Linear
Block Codes Using Algorithm A*,” Technical Report

s for Soft Decision Decoding of Lin-

SU-CIS-91-42, Syracuse University, Syracuse, 1991.

[7] H. S. Maini, K. G. Mehrotra, C. Mohan and S. Ranka,
“Genetic Algorithm
ear Block Codes,” Journal of Evolutionary Computation,
Vol. 2, No. 2, 1994, pp. 145-164.
doi:10.1162/evco.1994.2.2.145

[8] J. L. Wu, Y. H. Tseng and Y. M. Huang, “Neural Net-
works Decoders for Linear Block Codes,” International
Journal of Computational Engineering Science, Vol. 3,
No. 3, 2002, pp. 235-255.
doi:10.1142/S1465876302000629

[9] F. El Bouanani, H. Berbia, M. Belkasmi and H. Ben-Azza,
“Comparison between the Decoders of Chase, OSD and
Those Based on Genetic Algorithms,” 21 Colloquium of
GRETSI (Group of Study and Signal and Pictures Pro-
cessing), Troyes, 11-14 September 2007, pp. 1153-1156.

[10] M. Belkasmi, H. Berbia and F. El Bouanani, “Iterative
Decoding of Product Block Codes Based on the Genetic
Algorithms,” 7th International ITG Conference on Source
and Channel Coding (SCC’08), Ulm, 14-16 January 2008,
pp. 1-6.

[11] A. Ahmadi, F. El Bouanani, H. Ben-Azza and Y. Beng-
habrit, “Reduced Complexity Iterative Decoding of 3D-

odes,” IEEE Proceed-

Product Block Codes Based on Genetic Algorithms,” Jour-
nal of Electrical and Computer Engineering, Vol. 2012,
2012, Article ID: 609650.

[12] R. Pyndiah, A. Glavieux, A. Picart and S. Jacq, “Near
Optimum Decoding of Product C
ings of Global Telecommunications Conference, San Fran-
cisco, 28 November-2 December 1994, Vol. 1, pp. 339-
343.

[13] P. A. Martin, D. P. Taylor and M. P. C. Fossorier, “Soft-
Input Soft-Output List-Based Decoding Algorithm,” IEEE
Transactions on Communications, Vol. 52, No. 2, 2004,
pp. 252-264.

[14] S. Lin and D. Costello, “Error Control Coding: Funda-
mentals and Applications,” Prentice-Hall, Upper Saddle
River, 1983.

[15] A. Tanenbaum, “Computer Architecture,” Dunod, Paris,
2001.

[16] J. H. Holland, “Adaptation in Natural and Artificial Sys-

Copyright © 2013 SciRes. IJCNS

http://dx.doi.org/10.1007/3-540-60693-9_13

A. AHMADI ET AL.

Copyright © 2013 SciRes. IJCNS

76

Algorithms in Search, Optimi-

on, Vol. 6, No. 5, 2002, pp. 443-462.

tems,” University of Michigan Press, Ann Arbor, 1975.

[17] D. E. Goldberg, “Genetic
zation, and Machine Learning,” Addison-Wesley, Boston,
1989.

[18] E. Alba and M. Tomassini, “Parallelism and Evolutionary
Algorithms,” IEEE Transactions on Evolutionary Com-
putati

[19] E. Alba and J. M. Troya. “A Survey of Parallel Distrib-
uted Genetic Algorithms,” Complexity, Vol. 4, No. 4,
1999, pp. 31-52.

doi:10.1002/(SICI)1099-0526(199903/04)4:4<31::AID-C
PLX5>3.0.CO;2-4

[20] T. Starkweather, D. Whitley and K. Mathias, “Optimiza-
tion Using Distributed Genetic Algorithm,” Springer
Verlag, New York, 1991, pp. 176-185.
doi:10.1007/BFb0029750

[21] V. S. Gordon and D. Whitley, “A Machine-Independent
Analysis of Parall
tems, Vol. 8, 1994, pp. 181-214.

el Genetic Algorithms,” Complex Sys-

http://dx.doi.org/10.1002/(SICI)1099-0526(199903/04)4:4%3c31::AID-CPLX5%3e3.0.CO;2-4

