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ABSTRACT 

Genetic algorithms offer very good performances for solving large optimization problems, especially in the domain of 
error-correcting codes. However, they have a major drawback related to the time complexity and memory occupation 
when running on a uniprocessor computer. This paper proposes a parallel decoder for linear block codes, using parallel 
genetic algorithms (PGA). The good performance and time complexity are confirmed by theoretical study and by simu- 
lations on BCH(63,30,14) codes over both AWGN and flat Rayleigh fading channels. The simulation results show that 
the coding gain between parallel and single genetic algorithm is about 0.7 dB at BER = 10−5 with only 4 processors. 
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1. Introduction 

The error correcting codes began with the introduction of 
Hamming codes [1] in the same period that the remark- 
able work of Shannon [2]. They consist in correcting data 
corruption when saved in storage media (erasure CD/ 
DVD, etc.) or transmitted over noisy communication 
channel. Figure 1 shows the canonical system diagram 
of numerical communication. 

The encoder takes the information symbols and adds 
to them redundancy symbols, carefully chosen such that 
a maximum of errors, which are infiltrated throughout 
the process of signal modulation, noisy transmission 
channel, and demodulation, can be corrected. The result- 
ing binary code word is then transmitted over the noisy 
and memoryless channel under assumption that the 
sending messages are independent from the added noise. 
At the reception, the decoder attempts, given channel 
observations and using the redundancy symbols, to find 
the most probable message. The techniques used by the 
decoder are diverse. The most optimal criterion is Maxi- 
mum Likelihood [3]. Given its high complexity (compu- 
tation time, memory occupation), other suboptimal tech- 
niques with acceptable performance are used in practice 
like Turbo codes [4] and LDPC [5]. Several other decod- 
ers developed were inspired from the artificial intelli- 
gence field as Han decoding which using algorithm A* 
[6], Genetic Algorithms (GAs) [7] and Neural Networks 

[8]. In 2007, it was shown that decoders based on GAs 
have good performance and time complexity lower than 
those of classical algebraic decoders [9]. In 2008, the 
performance of these decoders has been further improved 
by using iterative decoding for product block codes in 
two dimensions [10]. In 2012, we made an extension of 
concatenated codes by passing to three dimensions [11]. 
In this last work, we have proposed two iterative decod- 
ing algorithms based on GAs, which can be applied to 
any arbitrary 3D binary product block codes, without the 
need of a Hard-In Hard-Out decoder. 

The first decoder outperforms the Chase-Pyndiah [12] 
one. The second algorithm, which uses the List-Based 
SISO Decoding Algorithm (LBDA) based on order-i re- 
processing [13], is more efficient than the first one. We 
have also showed that the two proposed decoders are less 
complex than both Chase-Pyndiah algorithm for codes 
with large correction capacity, and LBDA for large i pa- 
rameter. 

All these proposed decoders have been designed to run 
on a single processor machines. Their instructions are 
executed sequentially and then so slowly. In addition, we 
do not take advantage of the parallel nature of GAs, 
which is a major advantage related to their exploration 
and convergence. So, the aim of this new work is to 
overcome these drawbacks by applying Parallel Genetic 
Algorithms (PGAs) to decoding linear block codes. Thus, 
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Figure 1. The canonical diagram of numerical communica- 
tion. 
 
we have developed a new decoder using parallel genetic 
algorithms, which runs on a parallel computer with mul- 
tiple processors and a shared memory, or on a distributed 
system. So, it reduces the time complexity and increases 
little performance. 

This paper is organized as follows. Section 2 presents 
some background on Linear Block Codes, Parallel Sys- 
tem, and Genetic Algorithms. Section 3 describes the pro- 
posed Parallel Genetic Algorithms Decoder (PGAD), 
studies its time complexity and compares it with the one 
of SGAD. In Section 4 we discuss the simulation results 
obtained for PGAD. Finally, we give in Section 5 our 
conclusions and perspectives of this work. 

2. Background 

2.1. Linear Block Codes 

Let  be the binary alphabet and  2

The set of all words of length n i.e.: 

  2 1 / ,
n

x x  

A linear code C of length n on  is a subspace of 
the vector space  [14]. i.e.: n

2, , , ,x y C x y C x C  

,
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y . The Hamming distance between x and y,  

noted , is defined by: 

 , card /H id x y i x   

The minimum Hamming distance d of a code C is the 
Smallest non zero distance between all its vectors, taken 
two by two. i.e.: 
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2.2. Parallel Systems 

The choice of parallel machines or distributed systems is 
more imposed for applications requiring a very high 
processing power and/or a big memory space. There are 
plenty of parallel systems which are classified as below 
[15]. 

2.2.1. Taxonomy of Parallel Systems 
These systems have been classified by Flynn (1972) ac- 
cording to two independent concepts: the stream of in- 
structions and the stream of data used by these instruc- 
tions. There are four possible combinations: 
 SISD (Single Instruction, Single Data): The machine 

executes one instruction on one data at each clock cy- 
cle. It is not really a parallel machine but a classical 
computer (Von Newman). 

 SIMD (Single Instruction Multiple Data): A processor 
having a single Control Unit (CU) and multiple Ar- 
ithmetical and Logical Units (ALUs) executes the 
same instruction on different data at each clock cycle. 

 MISD (Multiple Instruction, Single Data): Systems 
running multiple instructions on the same data at each 
clock cycle. 

 MIMD (Multiple Instruction Multiple Data): These 
systems are multiple independent processors i.e. each 
processor has its CU and its ALU. At the same clock 
cycle, each processor executes a different instruction 
on a different data. These instructions can be synchro- 
nous or asynchronous. The majority of parallel sys-
tems are MIMD. The MIMD system can be either a 
Multiprocessor or a Multi-computer or a hybrid of 
them. We explain in the next subsections the architec- 
ture of each one. 

2.2.2. Multiprocessor 
It is a MIMD parallel system with certain number of 
autonomous processors (CU+ALU) and a single shared 
memory. i.e. All processors use a common physical 
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memory which composed of several memory blocks 
Figure 2. These blocks are interconnected with the pro- 
cessor and between them [15]. 

If two processors want to communicate, it suffices that 
the first one writes data (or message) in the memory and 
the other one recuperates it. So their programming is 
easy since the programmer does not have to focus on the 
explicit communication (message exchange) between the 
different processors. These allowed multiprocessors mak- 
ing a great success. However, it would be difficult to 
build a multiprocessor when the number of its commu- 
nicating elements (processors and memory blocks) is 
very important. Indeed, the interconnection of all these 
elements is not always an easy task. 

2.2.3. Multi-Computer 
A multi-computer is also a MIMD system but relatively 
simple to build. It contains a number of computers (CU + 
ALU + private memory) linked together by an intercon- 
nection network. Each computer has its own memory 
Figure 3. This reduces significantly the number of ele- 
ments to be interconnected. The communication between 
computers is achieved by exchanging messages as primi- 
tives Send/Receive, programmed and integrated by the 
programmer in its application [15]. This may complicate 
more his task. The following points must be taken into 
account for each parallel programming: 
 For an efficient communication between different 

elements (processors and memory blocks) of a paral- 
lel or distributed system, the suitable choice of the 
topology, routing and switching mode of its inter- 
connection network affects its performance remarka- 
bly. 

 To benefit from the advantages of a multiprocessor 
and those of a multi-computer and minimize the dis- 
advantages of each one of them, hybrid systems have 
been designed. 

 To take advantage of parallel systems, we must exe- 
cute on them parallel programs or containing a sig- 
nificant part of parallel instructions. 

2.3. Genetic Algorithms 

The Genetic Algorithm (GA), initiated in 1970 by Hol- 
land [16] is an Evolutionary Algorithm (EA) inspired 
from the natural biological evolution. It use search sto- 
chastic techniques to solve problems not having an ana- 
lytical resolution or when the time to resolve them by 
classical algorithms is not reasonable [17]. Their applica- 
tions cover, in addition to error correcting codes in tele- 
communication, several other fields as optimization, arti- 
ficial intelligence, economic markets, etc. As shown in 
algorithm below [18], an EA especially a GA has an it- 
erative character: 
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Figure 2. A multiprocessor with 16 processors sharing a 
commonmemory. 
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Figure 3. A multi-computer with 16 interconnected proces-
sors where each one has its own memory. 
 
t=0; 
initialize and evaluate [P(t)] ; 
while not stop-condition do 
P’(t)=variation [P(t)] ; 
Evaluate [P’(t)] ; 
P(t+1) =select [P’(t), P(t)]; 
t=t+1; 
end while. 

 PIt generates an intermediate population t  by ap- 
plying variation operators (often stochastic) on individu- 
als (which may be here, information sequences or code- 
words) of the current population P(t). Then, it evaluates 
the quality (of being solution) of individuals from  P t

 
using a criterion known as fitness. It finally creates the 
new population P(t+1) in which individuals are selected 
from those of  P t  and eventually from P(t). The pro- 
cess is repeated until the stopping condition is satisfied. 
In general, the process is stopped when the optimal solu-
tion is found or when the maximum number of itera- 
tions is reached. 

The Genetic Algorithms can be singles (SGA) or Par- 
allels (PGA). 

2.3.1. Single Genetic Algorithms 
The previous general algorithm can be adapted in SGA 
as follows: 
Generate an initial population of n individuals randomly; 
while not stop-condition do 
Calculate the fitness f (x) for any individual x; 
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while not Filled-New-Population do 
Select two parent individuals; 
Cross them to have a new(s) individual(s); 
The new individuals undergo eventual mutations; 
Insert the new individual in the new population; 
end while 
Replace the old population by the new one; 
end while. 

The three classical operators inspired from natural 
evolution to generate a new population from the current 
one in both SGA and PGA are selection, crossover and 
mutation: 
 The selection operator describes how to select the 

parents in the current population to cross them and 
generate new individuals (offspring) which will be 
inserted in the new population. The individuals are 
sorted in ascending order of their fitness to give more 
chances to the best ones (fittest) to be selected (as- 
suming that better parents reproduce better children). 
However, there are cases where the crossing of bad 
parents can generate good offspring. The most popu- 
lar selection methods are: Proportional, Linear Rank- 
ing, Whitley’s Linear Ranking and Uniform Ranking 
[19]. 

 The crossover operator generates new individuals 
inheriting from their parents. i.e. Their genes are a 
mixture of those of their parents. There are several 
crossing techniques that can be either generic (robust) 
i.e. applied in a wide variety of problems, or specific 
to particular problems, or hybrid techniques combin- 
ing generic and specific ones. 

 As in natural evolution, the genes of some individuals 
may undergo changes (mutations). This occurs in very 
rare cases. The mutation plays a very important role in 
the convergence of SGA and PGA algorithms. Indeed, 
it will prevent their premature convergence by guid-
ing them to explore other more promising areas and 
avoid a local optimum. 

2.3.2. Parallel Genetic Algorithms 
The PGAs are GAs running on parallel systems dis-
cussed in the second subsection.Their purpose is not only 
accelerating the convergence and/or use a large memory 
space but also improve the performance. There are two 
models of PGAs: 1) Island model (or network model) 
which runs an independent GA with a sub-population on 
each processor, and the best individuals are communi-
cated either to all other sub-populations or to neighboring 
population [20]; 2) Cellular model (or neighborhood 
model) which runs an individual on each processor, and 
cross with the best individual among its neighbors [21]. 
In fact, the second model is a particular case of the first 
one. Indeed, its population is reduced to a single indi-
vidual on each processor. 

The general algorithm of PGAs is given below: 
Generate an initial population of n individuals randomly; 
while not stop-condition do 
Calculate the fitness f (x) for any individual x; 
if Interval-Exchange then 
Exchange of individuals; 
end if 
while not Filled-New-Population do 
Select individual parents; 
Cross them to make new people; 
New individuals undergo eventual mutations; 
Insert new individuals in the new population; 
end while. 
Replace the old population by the new one; 
end while. 

3. The Proposed Parallel Decoder Based on 
Genetic Algorithms 

This work is a parallelization of the decoder that we have 
already used in [9,10], and [11] by exploiting some tech- 
niques of parallel genetic algorithms used in other do- 
mains like Optimization and Artificial Intelligence. It can 
be run on a multiprocessor where the data exchanged are 
saved in global or shared variables, or on a multi-com- 
puter which exchange data between its processors via a 
network. 

 1 nLet , ,F F  and F 1 n  be respec- 
tively the fading vector and the received sequence (asso- 
ciated to the transmitted sequence) at the decoder input 
of a binary linear block code C(n,k,d) with a generator 
matrix G. The parameters Np, Ne, Nc, Nm, Ns, Ng are re- 
spectively the population size, elite number, offspring 
number, migrant number, processor number and maxi- 
mum number of generations such that 

, ,R R R 

   1m p e c sN N N N N   

   1
1πR R  

 
is a positive integer. 

3.1. The PGAD Algorithm 

The sub-algorithm which will run in parallel on each pro- 
cessor is given below: 

Step 0: Initialization 
 Sort the elements of the received vector R in de-

scending order of their magnitude to produce another 
vector R(1) i.e. find a permutation π1 such that 

 and    1 1 1
1 2 nR R R  

 1

. This will 

put reliable elements in the first ranks. F  is the 
permutation of F by 1  i.e. 1π    1 πF F

π
. Then, 

permute G by 2  to produce G′ such that the first k 
columns of G′ are linearly independent i.e. 

 πG G   1R  1
2 . The two vectors  and F  are 

permuted by  to   and 2π R F .
 

 So, 

      1
2 2 1π π π πR R R R     and 
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  1
2 2π π     1π πF F   F F

π π π 

, with 

2 1

 Quantize the first k bits of R  to obtain binary vec-
tor r and randomly generate Np − 1 information vec-
tors of k bits each one. These vectors form with vector 
r the initial population of Np individuals  1, ,

. 

NpI I ; 
 1: ReprodStep on 

ent generation number). 

 of the current population, using 

n dis-

 , 1, , pi N    

 Sort the current population individuals in descending 

iduals (elites) from the current 

 − Ne individuals of the 

ty pc the selected parents to gen-

ls with a probability pm if 

duals with their fitness in 
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ucti
gen←0 (gen is the curr
While (gen < Ng) do 
Encode individuals 
G′ to obtain code words: Ci = IiG′ (1 ≤ i ≤ Np); 

 Compute individual fitness, defined as Euclidia
tance between Ci and R : 

   2n

f C C R 
1

i ij j
j

order of their fitness; 
 Copy the Ne best indiv

population to the new one; 
 Select parents from the Np

current population; 
 Cross with probabili

erate Nc new individuals; 
 Mutate the new individua

their parents are crossed; 
 Insert these Nc new indivi

the new population Figure 4; 
 Send the best  1cN N   indi- 

new

m the 

ecision 
   

1

mN N N p e

ir fitness) to the 
s

viduals (with the  populations of 
Ns − 1 other processors as shown in Figure 5; 

 Receive Nm migrant elites (with their fitness) fro
previous population of each Ns − 1 other processors, 
to complete the new population as shown in Figure 6; 

 Replace the current population with the new one; 
 gen←gen+1; 
end while 

Step 2: D
Get the best individuals
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Figure 4. The ith processor which works on the current 
population to give the next one. 
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Figure 5. In a given generation, the ith processor sends its 
best N  individuals to other processors. 
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Figure 6. In a given generation, the ith process eceives 
the best N  individuals from each other processor
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The flowchart of the previous algorithm is ill

in Figures 7 and 8. 

3.2. The PGAD C

The main elements characterizing a basic
evolution mode, reproduction operators (crossover and 
mutation), selection and replacement policy of individu-
als (local and foreign) and migration. 

3.2.1. Evolution Mode 
It defines the granularity
sub-algorithm of the PGA. i.e. how the new population is 
created from the current one. There are two techniques 
that are often used. The first one is the generational GA 
(GGA) where the new population replaces all the old 
ones. The second technique inserts only a few new (gen-
erated) individuals in the current population. In our im-
plementation, we have used the GGA evolution mode 
with elitism. 

3.2.2. Reprod
To generate Nc individuals  i N i

I

population, we have used, ks [10], and 
[11], these operators: 
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PGAD algorithm. 

o individuals as parents ( , ) using 
the following linear ranking: 

 
 Selection of tw P Q

   

 

max maxweight 2 1 weight 1
weight i

i

N

  
 ,

1

1, , .

p

pi N



  
 (2) 

where weighti is the ith individual weight and weightmax 
is the weight assigned to the fittest (closest) individual. 

-
 Let pc, pm be respectively, the probabilities of cross-

over and mutation, and let Rand be a uniformly ran
dom value between 0 and 1, generated at each time. 

if Rand < pc then 

   1, , , 1, , :N N j k       ei N e c

 
0

4
if  Rand 1

1 e
else

j

j j

j
j j j j R F

Nij

j

P Q
P P P Q

I

Q

 


     



 (3) 

and then 
1 if  Randij mI I pij    

if Rand 0.5

 else

P

Q





 

end if. 
We note that on an AWGN (Additive White Gaussian 
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 1, 1, ,jF j k     . 

3.2.3. Selection and Replacement Str gies 
They define the selection of individuals to replace in the 

d those to 

more 

domly. In 

This is an operation that helps to diversify and enrich the 
 a sub-algorithm which runs in a pro- 

ate

current population of a sub-algorithm PGA an
migrate from other processors. The individuals can be 
replaced by new local ones or by the migrant ones: 
 The main replacement policies are [19]: 1) Inverse 

Proportional; where the worst individual is 
likely to be replaced; 2) Uniform Random; where all 
individuals have the same chance of being replaced; 3) 
Worst; where the worst individual is always re- 
placed. In some problems, it is replaced only if it is 
worse than the new one; 4) Generational; where the 
entire current population is replaced by a new one. In 
our work, we keep the best local individuals (elitism) 
and the bad ones are replaced by new local offspring 
and by the migrants from other processors. 

 There are two cases to choose migrant individuals: 
choose the best ones, or choose them ran
our algorithm, we chose the best migrants. 

3.2.4. Migration 

new population of
cessor by migrant individuals from other cooperator pro- 
cessors of the PGA. There are two parameters character- 
izing the migration operation: Migration Gap and Migra- 
tion Rate. The first one specifies the frequency of ex- 
change of individuals. i.e. The number of steps that a 
sub-algorithm must run before sending or receiving mi- 
grant individuals. It can also specify the probability of 
migration at each stage. The second migration parameter 
defines the number of exchanged individuals (migrants). 
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The exchange (send/receive) of individuals is done in 
two modes: synchronous or asynchronous. 

The synchronous mode suspends, periodically, the 
execution of a sub-algorithm of the PGA and waits for 
th

  

e receiving migrant individuals from other nodes be- 
fore continuing its execution. In asynchronous mode, the 
sub-algorithm does not wait. Once the migrant individu- 
als arrive, it deals with them. 

In our algorithm, we send/receive at each new popula- 
tion the  1N   first best indi- 

duce the num

ty 
A PGA is called homogeneous if its nodes run the same 

erwise, it is called heterogeneous. 

 

 of the different stages
m PGAD in the 

e almost always, 
ability is close to 1. So its time com

ion will occur rarely since its pro- 

T e PGAD. 

m p e cN N N N   s

ualsto/from every other processor according to the 
asynchron ber of messages 
that flow through the network connecting processors, the 
number of migrant individuals should be less than the 
number of individuals locally generated for each new 
population. i.e. m e cN N N  . 

3.2.5. Heterogenei

vid
ous mode. To re

type of algorithm. Oth
Our PGAD is homogeneous. Indeed, all nodes are sym-
metric and perform the same genetic algorithm having 
same parameters and operators. 

3.3. PGAD Time Complexity

We give in Table 1 the complexity
of the proposed decoding algorith

 
order 

-

oftheir appearance in the flowcharts of Figures 7 and 8 
before deducting its global complexity. 

We note that: 
 The crossover operation will be mad

since its prob
plexity is O(kNc). 

 The complexity of mutation operation is neglected. 
Indeed, this operat
bability is close to 0. 

The total time complexity of PGAD is then: 
 

able 1. Time complexities of different steps of th

Initialization step Time complexity 

Descending sort of the magnitude 
of R 

O(nln n) 

Quantizing the first k bits 

Coding with 

O(k2n) 

G , fitness computing,
duals 

O(knNp) + O  O(NplnNp)

vectors 

g O(knN nNc) 

uals O p p) 

and sorting of the Np indivi
(nNp) +

Loop steps 

Crossover and mutation of 

Time complexity 

information 
O(kNc) 

Coding and fitness computin

Sorting of Np individ

c) + O(

(N lnN

Decision step Time complexity 

Sorting of   ,  1i

sD i N    O(NslnNs) 


  

 


2

2

1 ln n

ln

ln ln

p p p

 l

ln ln p

g c c c p p s s

p g c

g p p s s

k n knN nN N

N kn nN N N N

O n n k n kn N N N

N N N N N

  

  

  

 


(4) 

From the formula (4), it is clear that the complexity of 
PGAD is lower than that of SGAD. Indeed, there are 
te

essors (Ns = 4). To study the 
d PGAD decoder, we have 

lation Size 

de- 

O n n  N

N k N  N

rms that are common to both decoders (initialization 
and sorting at the end of the loop). The term NslnNs can 
be neglected when the processor number is small. The 
difference between SGAD and PGAD consists in the 
crossing, coding, and fitness computing in the loop. For 
each generation, we must cross parents to have Np ‒ Ne 
new individuals in the case of SGAD against only Nc in 
PGAD (Nc < Np ‒ Ne). Likewise we encode in the loop 
only Nc individuals in our decoder against Np ‒ Ne in 
SGAD. For the fitness in the loop, it is also computed for 
Nc individuals instead of Np ‒ Ne. 

From the foregoing, we can summarize the advantages 
of our decoder as follows: 
 Improvement of performance. Indeed, It corrects er-

rors better than simple algorithms studied in [9,10] as 
shown in simulation section. 

 Reducing the time complexity of the decoding pro- 
cess: 1) It is run in parallel on multiple processors for 
almost the same number or lower of total individuals 
(NgNp) used in a single decoder; 2) It reduces the time 
of encoding and fitness computing, since the algo- 
rithm receives (Np − Ne − Nc) migrant individuals 
(encoded) with their fitness already computed; 3) It 
reduces the reproduction time since the number of 
parents to cross is reduced to Nc(Nc < Np − Ne). 

4. Simulation Results 

Our PGAD is run on 4 proc
performance of the presente
simulated a binary communication system with BPSK 
modulation and both AWGN and Rayleigh fading chan- 
nels. We give in this section, the impact of each parame- 
ter Ng, Np, pc, pm, Ne, Nc and code rate on the performance 
of our decoder and we finish with a comparison with the 
SGAD decoder. The chosen code is the linear block 
BCH(63,30,14) code. The minimum number of sent er- 
roneous frames is 30. The performance will be given as 
figures showing the Bit Error Rate (BER) versus the en- 
ergy per bit to noise power spectral density ratio Eb/N0. 

The figures corresponding to each channel are given in 
Table 2. 

4.1. Effect of Generation Number and 
Popu

Generally, increasing the number of evaluated co
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Tab  corresponding to each channel. le 2. Simulation figures

AWGN channel Fading channel 

Figures 1 to 14 Figure 15 

 
words N ability to find the codeword closest 

 the in becomes high. T ossi-

The crossover is a very important operation insofar as it 
an effective exploitation. 

The effect of mutation rate for BCH(63,30,14) is de- 
n that pm = 0.03 is the op- 

Among the best individuals of the current population, 
 new population. This 

  

pNg, the prob
put sequence to his makes it p

ble to improve the BER performances. The effect of in-
creasing the number of evaluated code words on the BER 
improvement for code BCH(63,30,14) at the 12th itera-
tion is presented in Figures 9 and 10. The values Ng = 
100 and Np = 100 can be the optimal values in a large 
range Eb/N0. The other genetic parameters for the first 
optimization are: Np = 100, Nc = 80, Ne = 5, pc = 0.99, pm = 
0.03 and Ng = 100, Nc = 80, pc = 0.99, pm = 0.03 for the 
second one. 

4.2. Crossover Rate Effect 

 

Figure 9. Effect of the generation number for BCH(63,30,14). 
 

allows a large exploration, and 
In Indeed, it creates new individuals may be good solu- 
tions to the problem. For most problems, the probability 
of crossover is high. This is the case also for the error 
correcting. The Figure 11 shows that among the studied 
probabilities pc= 0.99 offers the best performance. For 
this simulation, we have fixed the other parameters as 
follows: Ng = 10, Np = 100, Nc = 80, Ne = 5, and pm = 
0.03. 

4.3. Mutation Rate Effect 
 

Figure 10. Effect of the population size for BCH(63,30,14). 
 

picted in Figure 12. It is show
timal BER value for all SNRs. One reason of this value 
close to 0 may be the stability of members in vicinity of 
optima for low mutation rates. The fixed values are: Ng = 
100, Np = 100, Nc = 80, Ne = 5, and pc = 0.99. 

4.4. Elite Number Effect 

some may survive and move to the
can be justified by the fact that their elitism may give 
birth to other best descendants. As shown in the Figure 
13, the greater the number of elites survived, more per- 
formances improve. However, when we exceed five el- 
ites the performances begin to decline. We deduce that 
worse individuals can also create, by crossover and mu- 
tation, better individuals. So we choose Ne = 5. The fixed 
values for this simulation are: Ng = 100, Np = 100, Nc = 
80, pc = 0.99 and pm = 0.03. 

4.5. Offspring Number and Migration Rate 
Effects 

 

Figure 11. Effect of the crossover probability for 
BCH(63,30,14). 
 

The number of individuals migrating from each nodeis

     1 9 3.p e c s cN N N N N     So when
er decreases, t

 this num- 
he number of individuals created locally 

c increases. From the curves plotted 
formances increase when Nc increases

b
N in Figure 14, per-

 up to a threshold 
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Figure 12. Effect of the mutation rate for BCH(63,30,14). 
 

 

Figure 13. Effect of the elite number for BCH(63,30,14). 
 

 

Figure 14. Effect of the offspring number for BCH(63,30,14). 
 
Nc = 80. We also note that when there is no ex- change of 

ls is equal to 0) the performance is worse than with the 

51). From the 
when the rate decreases, per- 

 is explained by the fact that 

ance of our PGAD on a 
n- 
 3. 

We  and 17 that the parallel de-

 applied to any linear block 
ions show that it provides better per- 
ecoder based on SGA and the gain is 

individuals (Nc = 95 i.e. the number of migrant individu-
a
exchange. The fixed values of parameters are: Ng = 100, 
Np = 100, Ne = 5, pc = 0.99 and pm = 0.03. 

4.6. Code Rate Effect 

We have studied the performance of the following BCH 
codes: (63,30), (63,39), (63,45), and (63,
Figure 15, we note that 
formance increases. This
when the code length n increases for the same dimension 
k; the number of redundancy bits (check) increases. i.e. it 
corrects better with more redundancy; which makes 
sense. In this simulation, we adopted the optimal values 
in Table 3 previously found. 

4.7. Performance Comparison between PGAD 
and SGAD 

We have studied the perform
Gaussian channel AWGN and flat Rayleigh fading cha
nel with flat fading using the same parameters in Table

remark from Figures 16
coder not only reduces the time complexity, but also has 
good performance compared to simple decoder studied in 
[9] and just for 4 processors. 

5. Conclusion 

We have presented a new decoder based on parallel ge- 
netic algorithms which can be
code. The simulat
formance than a d
 
Table 3. Time complexities of different steps of the PGAD. 

Ng 100 

Np 100 

0  

Ne 5 

Nc 80 

pc 0.99 

pm .03

 

 

Figure 15. Effect of code rate. 
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Figure 16. Pe n SGAD and
PGAD on AWGN channel for BCH(63,30,14). 
 

rformance comparison betwee  

 

Figure 17. Performance comparison between SGAD and 
PGAD on Rayleigh channel for BCH(63,30,14). 
 
about 0.7 dB with 4 processors only. This is due to its 
parallel architecture which can exploit and explore more
individuals and avoid the premature convergence to
optimum. In addition, this decoder has a lower com
ity because it runs on multiple processors simultaneously
and because it reduces the time of encoding and fitness 
computing, and the time of generation of new individuals.
Its performance can be further improved by adju
algorithm parameters and characteristics (processor num- 
ber, topology, migration, selection and replacement, ...)
and by parallelizing tasks running on the same processor
or by putting it in hybrid with other decoders. We could
also envisage an iterative decoding based on PGAs. 

 
 local 
plex- 

, 

 
sting 

 
, 
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