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ABSTRACT 

This paper describes and compares a variety of algorithms for secure transmission of information via open communica- 
tion channels based on the discrete logarithm problem that do not require search for a generator (primitive element). 
Modifications that simplify the cryptosystem are proposed, and, as a result, accelerate its performance. It is shown that 
hiding information via exponentiation is more efficient than other seemingly simpler protocols. Some of these protocols 
also provide digital signature/sender identification. Numeric illustrations are provided. 
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1. Introduction and Basic Definition 

This paper describes and compares special cases of seve- 
ral protocols for secure transmission of information: se- 
cret key establishment [1], poly-alphabetic analogue of 
affine protocol [2], El Gamal cryptographic protocol [3] 
and an analogue of the RSA algorithm [4], which crypto- 
immunity is not based on the difficulty of factorization 
{see EvESE algorithm in Sections 7 and 8}. The latter 
protocol {as well as all other protocols} is exclusively 
based on the difficulty of solving a discrete logarithm 
problem (DLP) [5,6] where the base g is a generator in 
modular arithmetic with a modulus p that is a safe prime. 
Definition1.1: A prime integer p is called a safe prime 
if 

 : 1 2;q p 

mod20 3p 

4g p 

2 ;2g p 

     2 12 1 1 mo2 d
q q pqg p p    

 22 2 42 2 1(mod );

           (1.1) 

is also a prime. 
Therefore, for every  q is odd. Moreover, if p is 

a safe prime and , then  or 7 or 19. 
7p 

23p 
As it is demonstrated in [7], if p is a safe prime, then 

the algorithm finding a generator g is a computationally 
fast procedure. Some simplifications and innovations in 
this paper are based on the observation that  is 
the generator for every safe prime  7.p 

The major innovation {Encryption via Exponentiation 
with a secret encryptor} is provided in Section 7 and 
demonstrated in Section 8. 

2. System Parameters 

If p is a safe prime greater than or equal 7, then 

            (2.1) 

is a generator for every p. Indeed, (1.1) and the Fermat 
Little Theorem (FLT) [5] imply that 

;  (2.2) 

and 

g pp        (2.3) 

 otherwise 42 1 3 5 mod ;0 p   
7p 

2: 2 mod ;au p p 

2: 2 mod ;bw p p 

: mod ;ae w p

 which is impossi- 
ble if . 

Parameters p and g are used by all participating users. 

3. Establishment of Secret Encryptor 

Step3.1: The sender (Alice) selects a large safe prime p 
and transmits it to the receiver (Bob) via an open chan- 
nel; 
Step3.2: Respectively, Alice and Bob randomly select 
large integers a and b as their private keys; 
Step3.3: Alice and Bob independently compute their 
public keys: 

        (3.1) 

and 

        (3.2) 

Step3.4: Using the public key of the receiver, Alice com-
putes 

           (3.3) 
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Step3.5: Using the public key of the sender, 
Bob computes 

: modbe u p

2 2m p  

: modc me p

 : mod ;C m e p 

11e 12 ,e

 1 12 mod .m e p 



;             (3.4) 

where e is their mutual secret encryptor. 
Remark3.1: Parameters a, b and e must be distinct from 
q. 

4. Several Ways to Hide Information 

Suppose Alice wants to send a plaintext m {which is rep- 
resented in a numeric for m}, where the message m satis- 
fies 

.          (4.1) 

Encryption {Alice encrypts message m and sends it to 
Bob, who decrypts it}: 
Remark4.1: Alice has several alternatives: she can ei- 
ther create a ciphertext 

;           (4.2) 

which is an equivalent of the ElGamal scheme [3]; or 
consider 

        (4.3) 

which is a poly-alphabetic shift cipher [8,9]; or she can 
split the secret key e into two parts  and and 
then consider 

1 1:c e      (4.4) 

The encryption (4.4) is an equivalent of the poly-al- 
phabetic affine algorithm [2]. Yet another option is de- 
scribed in Section 6. 

In general, Bob can apply any ordered binary operator 
B: : modc mBe p

1: mod ;p b p 

 od ; .

 , provided that the inverse of e ex- 
ists, computable and it is unique for this operator. 

Below we describe Alice’s and Bob’s actions if (4.2) 
or (4.3) are used. If (4.2) is applied, Alice transmits the 
ciphertext c to Bob via an open channel. 
Decryption: Using Alice’s public key u and his private 
key b, Bob computes a decryptor 

d u          (4.5) 

and finally, he recovers the plaintext: 

: mf dc p m 

: mod ;b

       (4.6) 

In (4.3) case the receiver computes his decryptor 

D u p             (4.7) 

and 

   : mod ;p m

m

km



F C D  .     (4.8) 

Furthermore, there are several ways {see (4.5) and 
(4.7)} to compute the decryptors d and D respectively. 
One requires exponentiation p−1−a and another a. In the 

following Example4, a=35 and p‒1‒a=837 have binary 
“weights” 3 and 7 respectively. Therefore, D requires 
fewer multiplications than d. Hence, it is faster to com- 
pute D than d. In general, it is computationally advanta- 
geous if both Alice and Bob select their secret keys a and 
b with “smaller” binary “weights”. However, these addi-
tional constraints provide clues for a potential intruder/ 
cryptanalyst. 

Yet, there is an alternative algorithm for modular 
multiplicative inverse (AAMMI) proposed by the author 
of this paper in [10] and analyzed in [11]. Extensive 
computer experiments demonstrated that the AAMMI 
algorithm is computationally more efficient than (4.5); 
{see Tables 1-3 below}. 

In spite of computational simplicity, applications of 
the encryptor e either in (4.2) or in (4.3) have negative 
sides: if at least one plaintext block, i , becomes 
known, an intruder can deduce every plaintext . In-
deed, since (4.2) implies 

1: modi ie c m p

 1 modk k i im c m c p

,m

.km

 : modi ie c m p 

  modk k i im c c m p  

;          (4.9) 

then 

.       (4.10) 

Analogously, the encryption (4.3) is vulnerable for 
cryptanalysis if at least one plaintext block, i  be-
comes known, the intruder can compute every plaintext 

 Indeed, since (4.3) implies 

;         (4.11) 

then 

.   (4.12) 

In order to overcome these deficiencies, the sender must 
compute dedicated encryptor e(m) for every plaintext 
 

Table 1. Computation of MMI. 

q=53 e=49 4 1 

Stack 1 12 *** 

z=13 12 1 0 

 
Table 2. Computation of MMI of 195 modulo p‒1=862. 

862 195 82 31 20 11 9 2 1 

Stack 4 2 2 1 1 1 4 ***

z=389 88 37 14 9 5 4 1 0 

 
 Table 3. Algorithm for MMI 1 1  a t

0a t

. 

1a a    2a 1na  na..   

stack 1q 2q 1nq 

0b z

 ..  *** 

 1b 2b 1 1nb   0nb  ..     
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block m, and respectively, the receiver must compute 
dedicated decryptor d(m) to recover this plaintext. Need- 
less to say that this requires additional computational 
efforts, i.e., it slows the transmission of information. 

5. Dynamic Establishment of Secret Key 
between Sender and Receiver 

Step5.1: The sender (Alice) selects a large safe prime p 
and transmits it to the receiver (Bob) via an open chan-
nel; 
Step5.2: Respectively, Alice and Bob randomly select 
large integers a and b as their private keys; 
Step5.3: Alice and Bob independently compute their 
public keys: 

2: 2 mod ;a p 

2: 2 mod ;b p 

: mod ;xe w p

2: 2 mod ;x p 

: mod ;c me p

1: mod ;p b p 

 : mod

u p         (5.1) 

and 

w p         (5.2) 

Step5.4: The sender (Alice) selects an ephemeral secret 
key x, and using the public key of the receiver, she com-
putes an ephemeral encryptor 

           (5.3) 

and her hint 

h p         (5.4) 

Remark5.1: Parameters a, b, e and x must be distinct 
from 1, q and p−1. 
Step5.5: The sender computes the ciphertext 

           (4.2); 

and transmits {c,h} to the receiver; 
Step5.6: Using his public key, the receiver computes an 
ephemeral decryptor 

d h          (5.5) 

and then computes 

f dc p m 

 : modC m e p 

: mod ;b

 (4.6); 

Remark5.2: As an alternative, the sender computes the 
ciphertext 

 (4.3); 

and sends (C,h) to the receiver. 
In this case, the receiver computes his ephemeral de-

cryptor D h p
 od . ;

 (4.7) and then computes  
 : mF C D  p m (4.8), i.e., he recovers the 

original plaintext. 

6. Numeric Illustrations-1 

In the Examples 1 and 2 modifications that simplify the 
computation are introduced, and as a result, accelerate 

the secure transmission of information. 
First of all, notice that there is no necessity to search 

for a generator in order to compute the hints and public 
keys. 
Example1 {Alice sends message m to Bob}: 

Let p=47; g=4; b=25; x=33; and m=42. 
Encryption: 
Step6.1.1: Bob pre-computes his public key 

   2 50mo: 2 2 16 mod 4 ;d 7b b pw g  

 2 66: 2 2 6 mod 47x xh g   

 33: mod 16 3 mod 476xe w p  

 
Step6.2.1: Alice computes her hint 

 

Step6.3.1: Using Bob’s public key w, Alice computes her 
encryptor e and the ciphertext C: 

; 

   : mod 42 36 ;d 473 mo1C m e p      
Step6.4.1: Alice sends the ciphertext and her hint to Bob:  
   , 31,  6C h 

 25: 6 mod 47 36  ;b bxD h g e    

; 
Decryption: 
Step6.5.1: Using his private key b, Bob computes his 
decryptor 

 

Step6.6.1: Bob decrypts the ciphertext: 

   : 31 36 mod 47 42 .F C D m       

i.e., he recovers the plaintext m. 
Example2: Let now p=863; g=4; a=35; y=21; m=754; 
and suppose Bob wants to send a secret message m to 
Alice. 
Encryption: 
Step6.1.2: Alice pre-computes her public key 

 70: 2 mod863 660au g  ; 

Step6.2.2: Bob computes his hint 

 42: 2 mod863 392yh g  

 21: 660 mod863 171;ye u   

; 

Step6.3.2: Bob computes the ephemeral secret encryptor 
e and ciphertext C: 

 

 : 754 171 mod863 62C m e    

  35: 392 mod863 171  ;a ayD h g   

   (5.1); 

Step6.4.2: Bob sends the ciphertext C and his hint h to 
Alice. 
Decryption: 
Step6.5.2: Using her private key a and hint h, Alice 
computes her ephemeral decryptor D: 

 
Step6.6.2: Alice decrypts the ciphertext: 

   : 62 171 mod863 754 ;f C D m       

i.e., she recovers the plaintext m. 
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Remark6.3: If the plaintext is intelligible, Alice accepts it 
as legitimate, i.e. this protocol also provides a digital 
signature. 

7. Encryption via Exponentiation with Secret 
Encryptor (EvESE) 

The following encryption/decryption scheme requires 
fewer exponentiations than the schemes described above. 
System design: 
a). Users Alice and Bob select their private keys a and b 
respectively and then compute their public keys:  

2 mod ;au g q

mod ;bw g q



          (7.1) 

and 

2           (7.2) 

b). each user computes his/her common secret encryptor 

2 2 om db aw p



:e u  ;      (7.3) 

c). if e and p−1 are relatively prime, 
i.e., if 

gcd , 1 1;e p             (7.4) 

then the users compute an integer d that satisfies the 
equation  

 d 1 1;p  

 , 1e p v 

moed          (7.5) 

else, {if }, gcd
they consider 

: ;e e v



                (7.6) 

and compute d in (7.5). To find d (decryptor), both users 
compute 

2qd e : mod 1 ;p 

: modec m p

c

 od ; ;p m



      (7.7) 

Remark7.1: As an alternative the users can apply the al-
gorithm for MMI, [10,11]; {see Examples 3, 4 and Table 
3}; 
Encryption: 
d). A sender of message m computes the ciphertext 

2 ;          (7.8) 

e). the ciphertext 2  is sent to a receiver via an open 
communication channel{notice that no any hint is neces- 
sary!}; 
Decryption: 
f). The receiver computes 

2 2: mdf c      (7.9) 

Validation of EvESE Algorithm: 
Since gcd , 1 1e p  

 1 1 .ed p k  

   
2 2

1 mo1 d .

d ed

kp k

f c m

m m m mp

  

, i.e., e is odd and distinct from 
q, then (7.5) implies the existence of an integer k such 
that 

           (7.10) 

Therefore, (7.8) and the FLT imply that 

    
  (7.11) 

Remark7.2: Although (7.8) and (7.9) resemble the RSA 
protocol [4], there are three distinct features: 
1). the encryptor e is a secret (not public!) key; 
2). modulo reduction is executed with the public prime p 
rather than with the product of two secret primes indi-
vidually selected for each user; 
3). this scheme does not require additional computations 
for sender identification; in other words, it automatically 
provides the digital signature. 

8. Numeric Illustrations-2 

Example3: Let p=107; g=4; a=33; b=28; and m=42. 
System design: {either a or b must be selected in such 

a way that  gcd , 1e q   otherwise the MMI of e mo- 
dulo q does not exist}; 33

2 : mod 4 mod53 7au g q  

28
2 : mod 4 mod53 16bw g q

; 
and 

  

28 33
2 2: 7 16 mod53 49b ae u w

; 

    

2 51: mod 49 mod53 13qd e q

; 

  

mod 13 49mod53 1de q

.      (8.1) 

Remark8.1: If q is a very large integer, the computation 
of the multiplicative inverse in (8.1) requires many mul-
tiplications even if the “square-and-multiply” algorithm 
is used. Yet, computation of the MMI is much simpler 
using the algorithm described in [10] as it is shown in the 
Table 1: 

Since the number of columns in the Table 1 is even, 
then d:=z. 
Verification:   

2 ,c

49
2 : mod 42 mod107 48;ec m p  

13: mod 48 mod107 42.df c p  

35
2 : mod 4 mod863 660;au g q  

49
2 : mod 4 mod863 213;bw g q  

. 
Explanations are provided in Section 9. 

Encryption: A sender computes the ciphertext  and 
transmits it to the receiver: 

 

Decryption: {using the decryptor d, the receiver recovers 
the plaintext}: 

2 2  Therefore, the me- 
ssage m is correctly recovered by the receiver. 
Example4: Let now p=863; g=4; a=35; b=49; and 
m=756. 
System design: 

 

and 
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49 35
2 2: 660 213 mb ae u w    od863 195.

1z p d  

389 473.  

od 863 166;

3 756 .

 

Each user computes the MMI of 195 modulo 862; de-
tails are shown in the Table 2: 

Since the number of columns in the Table 2 is odd, 
then ; therefore 

2d q  

Encryption: 
195

2 : mod 756 mec m p   

Decryption: 
473

2 2: mod 166 mod 86df c p  m 

0 1;  : ;a t a a 

 

9. Algorithm for MMIazmodt=1 

In this section, Table 3 briefly describes the algorithm 
for the MMI. For more details, see [10] and [11]. 

In the following Table 3 both integers a and t are the 
inputs and integer z is the output. 

Assign :

1,2, , 1k n 

 

for  iterate and store in a stack the quo-
tients

 
1 ;k k kq a a   

1 1:k k k ka a q a  

1;a 
0
1a : 0b

 

; 

repeat until  or  0;na  n

if , then the MMI does not exist; na 
if n , then assign n  ; and b  for k 

from n−1 down to 1 iterate 
1 : 1;n 

1 1k kb bk kb q  
0b

;2te s  3;s 

4 3:e p

; 
if n is odd, then , else . 0bz z t 

10. Complexity Analysis of EvESE 
Cryptosystem 

On the system design level, each user performs two ex- 
ponentiations to compute their public key (7.1) and (7.2), 
and the secret encryptor (7.3). 

For the encryption, it is necessary to perform only one 
exponentiation (7.5). Analogously, for decryption, every 
receiver performs only one exponentiation (7.7). Al- 
though for the purpose of maintaining a high security 
level we need periodically select new private keys and 
re-compute the encryptor and decryptor, we do not need 
to send the hints with every block of transmitted message 
like it is done in the ElGamal algorithm. Since this algo- 
rithm is based on the difficulty of the DLP, it has certain 
advantages over the RSA algorithm based on factoriza- 
tion. One of them is that the encryptor and decryptor pro- 
vide a digital signature (sender identification) since they 
are computed for communication between the specific 
pair of users (Alice and Bob). On the other hand, in the 
described form the algorithm cannot be applied for 
broadcasting of secret messages to several users. How- 

ever, using the “carrousel” DHKE, we can generalize the 
proposed algorithm for communication among several 
users. 

11. Algorithm EvESE Modification 

If e is a power of 2, or  where  and s is 
a small integer, then the algorithm does not work, since 
the decryptor either does not exist or the encryptor is too 
small. One option is to select new private keys a and b in 
hope that new e will be more suitable. However, this is a 
non-deterministic procedure. Besides it requires many 
multiplications of multidigit-long integers. 

There are other simple options if p>11, e is even and 
  

1,e q
 

  : 1;e e 
1,e q

then assign  a). if 
  : 1e e 

: 2e q
then assign . b). if 

 

mod .em p

. Finally, if e=2, then 

12. Conclusions 

Notice that the ElGamal algorithm is just one of several 
constructive demonstrations how to dynamically apply a 
secret key for secure communication. Indeed, the inverse 
value of the decryptor is the same as encryptor. There- 
fore, both parties are dynamically establishing the com- 
mon secret key (encryptor e) and then use it to hide the 
message m by multiplying it on the encryptor. Another 
possibility: instead of multiplying, they add the encryptor 
e to m or can consider exponentiation  There- 
fore, in the case of addition in (4.3), they eliminate two 
multiplications for every plaintext since D=e. 

However, both protocols require twice more exponen- 
tiations than the EvESE algorithm described in the Sec- 
tion 7 and demonstrated in Section 8. As the analysis 
shows, the most efficient is to use the exponentiation (7.5) 
for the encryption. 

I wish to express my appreciation to Dr. Roberto 
Rubino for his comments that improved the style of this 
paper. 
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