
Int. J. Communications, Network and System Sciences, 2013, 6, 1-6
http://dx.doi.org/10.4236/ijcns.2013.61001 Published Online January 2013 (http://www.scirp.org/journal/ijcns)

Public-Key Cryptosystems with Secret Encryptor and
Digital Signature

Boris S. Verkhovsky
Computer Science Department, New Jersey Institute of Technology, Newark, USA

Email: verb73@gmail.com

Received October 20, 2012; revised November 28, 2012; accepted December 25, 2012

ABSTRACT

This paper describes and compares a variety of algorithms for secure transmission of information via open communica-
tion channels based on the discrete logarithm problem that do not require search for a generator (primitive element).
Modifications that simplify the cryptosystem are proposed, and, as a result, accelerate its performance. It is shown that
hiding information via exponentiation is more efficient than other seemingly simpler protocols. Some of these protocols
also provide digital signature/sender identification. Numeric illustrations are provided.

Keywords: Digital Signature; Discrete Logarithm; El Gamal Algorithm; Generator; Modular Exponentiation; Public

Key Cryptosystem; Secure Communication; Sender Identification

1. Introduction and Basic Definition

This paper describes and compares special cases of seve-
ral protocols for secure transmission of information: se-
cret key establishment [1], poly-alphabetic analogue of
affine protocol [2], El Gamal cryptographic protocol [3]
and an analogue of the RSA algorithm [4], which crypto-
immunity is not based on the difficulty of factorization
{see EvESE algorithm in Sections 7 and 8}. The latter
protocol {as well as all other protocols} is exclusively
based on the difficulty of solving a discrete logarithm
problem (DLP) [5,6] where the base g is a generator in
modular arithmetic with a modulus p that is a safe prime.
Definition1.1: A prime integer p is called a safe prime
if

 : 1 2;q p 

mod20 3p 

4g p 

2 ;2g p 

     2 12 1 1 mo2 d
q q pqg p p    

 22 2 42 2 1(mod);

 (1.1)

is also a prime.
Therefore, for every q is odd. Moreover, if p is

a safe prime and , then or 7 or 19.
7p 

23p 
As it is demonstrated in [7], if p is a safe prime, then

the algorithm finding a generator g is a computationally
fast procedure. Some simplifications and innovations in
this paper are based on the observation that is
the generator for every safe prime 7.p 

The major innovation {Encryption via Exponentiation
with a secret encryptor} is provided in Section 7 and
demonstrated in Section 8.

2. System Parameters

If p is a safe prime greater than or equal 7, then

 (2.1)

is a generator for every p. Indeed, (1.1) and the Fermat
Little Theorem (FLT) [5] imply that

; (2.2)

and

g pp    (2.3)

 otherwise 42 1 3 5 mod ;0 p   
7p 

2: 2 mod ;au p p 

2: 2 mod ;bw p p 

: mod ;ae w p

 which is impossi-
ble if .

Parameters p and g are used by all participating users.

3. Establishment of Secret Encryptor

Step3.1: The sender (Alice) selects a large safe prime p
and transmits it to the receiver (Bob) via an open chan-
nel;
Step3.2: Respectively, Alice and Bob randomly select
large integers a and b as their private keys;
Step3.3: Alice and Bob independently compute their
public keys:

 (3.1)

and

 (3.2)

Step3.4: Using the public key of the receiver, Alice com-
putes

 (3.3)

Copyright © 2013 SciRes. IJCNS

B. VERKHOVSKY 2

Step3.5: Using the public key of the sender,
Bob computes

: modbe u p

2 2m p  

: modc me p

 : mod ;C m e p 

11e 12 ,e

 1 12 mod .m e p 



; (3.4)

where e is their mutual secret encryptor.
Remark3.1: Parameters a, b and e must be distinct from
q.

4. Several Ways to Hide Information

Suppose Alice wants to send a plaintext m {which is rep-
resented in a numeric for m}, where the message m satis-
fies

. (4.1)

Encryption {Alice encrypts message m and sends it to
Bob, who decrypts it}:
Remark4.1: Alice has several alternatives: she can ei-
ther create a ciphertext

; (4.2)

which is an equivalent of the ElGamal scheme [3]; or
consider

 (4.3)

which is a poly-alphabetic shift cipher [8,9]; or she can
split the secret key e into two parts and and
then consider

1 1:c e (4.4)

The encryption (4.4) is an equivalent of the poly-al-
phabetic affine algorithm [2]. Yet another option is de-
scribed in Section 6.

In general, Bob can apply any ordered binary operator
B: : modc mBe p

1: mod ;p b p 

 od ; .

 , provided that the inverse of e ex-
ists, computable and it is unique for this operator.

Below we describe Alice’s and Bob’s actions if (4.2)
or (4.3) are used. If (4.2) is applied, Alice transmits the
ciphertext c to Bob via an open channel.
Decryption: Using Alice’s public key u and his private
key b, Bob computes a decryptor

d u (4.5)

and finally, he recovers the plaintext:

: mf dc p m 

: mod ;b

 (4.6)

In (4.3) case the receiver computes his decryptor

D u p (4.7)

and

   : mod ;p m

m

km



F C D  . (4.8)

Furthermore, there are several ways {see (4.5) and
(4.7)} to compute the decryptors d and D respectively.
One requires exponentiation p−1−a and another a. In the

following Example4, a=35 and p‒1‒a=837 have binary
“weights” 3 and 7 respectively. Therefore, D requires
fewer multiplications than d. Hence, it is faster to com-
pute D than d. In general, it is computationally advanta-
geous if both Alice and Bob select their secret keys a and
b with “smaller” binary “weights”. However, these addi-
tional constraints provide clues for a potential intruder/
cryptanalyst.

Yet, there is an alternative algorithm for modular
multiplicative inverse (AAMMI) proposed by the author
of this paper in [10] and analyzed in [11]. Extensive
computer experiments demonstrated that the AAMMI
algorithm is computationally more efficient than (4.5);
{see Tables 1-3 below}.

In spite of computational simplicity, applications of
the encryptor e either in (4.2) or in (4.3) have negative
sides: if at least one plaintext block, i , becomes
known, an intruder can deduce every plaintext . In-
deed, since (4.2) implies

1: modi ie c m p

 1 modk k i im c m c p

,m

.km

 : modi ie c m p 

  modk k i im c c m p  

; (4.9)

then

. (4.10)

Analogously, the encryption (4.3) is vulnerable for
cryptanalysis if at least one plaintext block, i be-
comes known, the intruder can compute every plaintext

 Indeed, since (4.3) implies

; (4.11)

then

. (4.12)

In order to overcome these deficiencies, the sender must
compute dedicated encryptor e(m) for every plaintext

Table 1. Computation of MMI.

q=53 e=49 4 1

Stack 1 12 ***

z=13 12 1 0

Table 2. Computation of MMI of 195 modulo p‒1=862.

862 195 82 31 20 11 9 2 1

Stack 4 2 2 1 1 1 4 ***

z=389 88 37 14 9 5 4 1 0

 Table 3. Algorithm for MMI 1 1  a t

0a t

.

1a a  2a 1na  na..

stack 1q 2q 1nq 

0b z

 .. ***

 1b 2b 1 1nb   0nb ..  

Copyright © 2013 SciRes. IJCNS

B. VERKHOVSKY 3

block m, and respectively, the receiver must compute
dedicated decryptor d(m) to recover this plaintext. Need-
less to say that this requires additional computational
efforts, i.e., it slows the transmission of information.

5. Dynamic Establishment of Secret Key
between Sender and Receiver

Step5.1: The sender (Alice) selects a large safe prime p
and transmits it to the receiver (Bob) via an open chan-
nel;
Step5.2: Respectively, Alice and Bob randomly select
large integers a and b as their private keys;
Step5.3: Alice and Bob independently compute their
public keys:

2: 2 mod ;a p 

2: 2 mod ;b p 

: mod ;xe w p

2: 2 mod ;x p 

: mod ;c me p

1: mod ;p b p 

 : mod

u p (5.1)

and

w p (5.2)

Step5.4: The sender (Alice) selects an ephemeral secret
key x, and using the public key of the receiver, she com-
putes an ephemeral encryptor

 (5.3)

and her hint

h p (5.4)

Remark5.1: Parameters a, b, e and x must be distinct
from 1, q and p−1.
Step5.5: The sender computes the ciphertext

 (4.2);

and transmits {c,h} to the receiver;
Step5.6: Using his public key, the receiver computes an
ephemeral decryptor

d h (5.5)

and then computes

f dc p m 

 : modC m e p 

: mod ;b

 (4.6);

Remark5.2: As an alternative, the sender computes the
ciphertext

 (4.3);

and sends (C,h) to the receiver.
In this case, the receiver computes his ephemeral de-

cryptor D h p
 od . ;

 (4.7) and then computes
 : mF C D  p m (4.8), i.e., he recovers the

original plaintext.

6. Numeric Illustrations-1

In the Examples 1 and 2 modifications that simplify the
computation are introduced, and as a result, accelerate

the secure transmission of information.
First of all, notice that there is no necessity to search

for a generator in order to compute the hints and public
keys.
Example1 {Alice sends message m to Bob}:

Let p=47; g=4; b=25; x=33; and m=42.
Encryption:
Step6.1.1: Bob pre-computes his public key

   2 50mo: 2 2 16 mod 4 ;d 7b b pw g  

 2 66: 2 2 6 mod 47x xh g   

 33: mod 16 3 mod 476xe w p  

Step6.2.1: Alice computes her hint

Step6.3.1: Using Bob’s public key w, Alice computes her
encryptor e and the ciphertext C:

;

   : mod 42 36 ;d 473 mo1C m e p    
Step6.4.1: Alice sends the ciphertext and her hint to Bob:
   , 31, 6C h 

 25: 6 mod 47 36 ;b bxD h g e    

;
Decryption:
Step6.5.1: Using his private key b, Bob computes his
decryptor

Step6.6.1: Bob decrypts the ciphertext:

   : 31 36 mod 47 42 .F C D m     

i.e., he recovers the plaintext m.
Example2: Let now p=863; g=4; a=35; y=21; m=754;
and suppose Bob wants to send a secret message m to
Alice.
Encryption:
Step6.1.2: Alice pre-computes her public key

 70: 2 mod863 660au g  ;

Step6.2.2: Bob computes his hint

 42: 2 mod863 392yh g  

 21: 660 mod863 171;ye u   

;

Step6.3.2: Bob computes the ephemeral secret encryptor
e and ciphertext C:

 : 754 171 mod863 62C m e    

  35: 392 mod863 171 ;a ayD h g   

 (5.1);

Step6.4.2: Bob sends the ciphertext C and his hint h to
Alice.
Decryption:
Step6.5.2: Using her private key a and hint h, Alice
computes her ephemeral decryptor D:

Step6.6.2: Alice decrypts the ciphertext:

   : 62 171 mod863 754 ;f C D m     

i.e., she recovers the plaintext m.

Copyright © 2013 SciRes. IJCNS

B. VERKHOVSKY 4

Remark6.3: If the plaintext is intelligible, Alice accepts it
as legitimate, i.e. this protocol also provides a digital
signature.

7. Encryption via Exponentiation with Secret
Encryptor (EvESE)

The following encryption/decryption scheme requires
fewer exponentiations than the schemes described above.
System design:
a). Users Alice and Bob select their private keys a and b
respectively and then compute their public keys:

2 mod ;au g q

mod ;bw g q



 (7.1)

and

2 (7.2)

b). each user computes his/her common secret encryptor

2 2 om db aw p



:e u  ; (7.3)

c). if e and p−1 are relatively prime,
i.e., if

gcd , 1 1;e p   (7.4)

then the users compute an integer d that satisfies the
equation

 d 1 1;p  

 , 1e p v 

moed (7.5)

else, {if }, gcd
they consider

: ;e e v



 (7.6)

and compute d in (7.5). To find d (decryptor), both users
compute

2qd e : mod 1 ;p 

: modec m p

c

 od ; ;p m



 (7.7)

Remark7.1: As an alternative the users can apply the al-
gorithm for MMI, [10,11]; {see Examples 3, 4 and Table
3};
Encryption:
d). A sender of message m computes the ciphertext

2 ; (7.8)

e). the ciphertext 2 is sent to a receiver via an open
communication channel{notice that no any hint is neces-
sary!};
Decryption:
f). The receiver computes

2 2: mdf c (7.9)

Validation of EvESE Algorithm:
Since gcd , 1 1e p  

 1 1 .ed p k  

   
2 2

1 mo1 d .

d ed

kp k

f c m

m m m mp

  

, i.e., e is odd and distinct from
q, then (7.5) implies the existence of an integer k such
that

 (7.10)

Therefore, (7.8) and the FLT imply that

    
 (7.11)

Remark7.2: Although (7.8) and (7.9) resemble the RSA
protocol [4], there are three distinct features:
1). the encryptor e is a secret (not public!) key;
2). modulo reduction is executed with the public prime p
rather than with the product of two secret primes indi-
vidually selected for each user;
3). this scheme does not require additional computations
for sender identification; in other words, it automatically
provides the digital signature.

8. Numeric Illustrations-2

Example3: Let p=107; g=4; a=33; b=28; and m=42.
System design: {either a or b must be selected in such

a way that  gcd , 1e q  otherwise the MMI of e mo-
dulo q does not exist}; 33

2 : mod 4 mod53 7au g q  

28
2 : mod 4 mod53 16bw g q

;
and

  

28 33
2 2: 7 16 mod53 49b ae u w

;

    

2 51: mod 49 mod53 13qd e q

;

  

mod 13 49mod53 1de q

. (8.1)

Remark8.1: If q is a very large integer, the computation
of the multiplicative inverse in (8.1) requires many mul-
tiplications even if the “square-and-multiply” algorithm
is used. Yet, computation of the MMI is much simpler
using the algorithm described in [10] as it is shown in the
Table 1:

Since the number of columns in the Table 1 is even,
then d:=z.
Verification:   

2 ,c

49
2 : mod 42 mod107 48;ec m p  

13: mod 48 mod107 42.df c p  

35
2 : mod 4 mod863 660;au g q  

49
2 : mod 4 mod863 213;bw g q  

.
Explanations are provided in Section 9.

Encryption: A sender computes the ciphertext and
transmits it to the receiver:

Decryption: {using the decryptor d, the receiver recovers
the plaintext}:

2 2 Therefore, the me-
ssage m is correctly recovered by the receiver.
Example4: Let now p=863; g=4; a=35; b=49; and
m=756.
System design:

and

Copyright © 2013 SciRes. IJCNS

B. VERKHOVSKY 5

49 35
2 2: 660 213 mb ae u w    od863 195.

1z p d  

389 473.  

od 863 166;

3 756 .

Each user computes the MMI of 195 modulo 862; de-
tails are shown in the Table 2:

Since the number of columns in the Table 2 is odd,
then ; therefore

2d q

Encryption:
195

2 : mod 756 mec m p 

Decryption:
473

2 2: mod 166 mod 86df c p  m 

0 1; : ;a t a a 

9. Algorithm for MMIazmodt=1

In this section, Table 3 briefly describes the algorithm
for the MMI. For more details, see [10] and [11].

In the following Table 3 both integers a and t are the
inputs and integer z is the output.

Assign :

1,2, , 1k n 

for iterate and store in a stack the quo-
tients

1 ;k k kq a a   

1 1:k k k ka a q a  

1;a 
0
1a : 0b

;

repeat until or 0;na  n

if , then the MMI does not exist; na 
if n , then assign n  ; and b for k

from n−1 down to 1 iterate
1 : 1;n 

1 1k kb bk kb q  
0b

;2te s  3;s 

4 3:e p

;
if n is odd, then , else . 0bz z t 

10. Complexity Analysis of EvESE
Cryptosystem

On the system design level, each user performs two ex-
ponentiations to compute their public key (7.1) and (7.2),
and the secret encryptor (7.3).

For the encryption, it is necessary to perform only one
exponentiation (7.5). Analogously, for decryption, every
receiver performs only one exponentiation (7.7). Al-
though for the purpose of maintaining a high security
level we need periodically select new private keys and
re-compute the encryptor and decryptor, we do not need
to send the hints with every block of transmitted message
like it is done in the ElGamal algorithm. Since this algo-
rithm is based on the difficulty of the DLP, it has certain
advantages over the RSA algorithm based on factoriza-
tion. One of them is that the encryptor and decryptor pro-
vide a digital signature (sender identification) since they
are computed for communication between the specific
pair of users (Alice and Bob). On the other hand, in the
described form the algorithm cannot be applied for
broadcasting of secret messages to several users. How-

ever, using the “carrousel” DHKE, we can generalize the
proposed algorithm for communication among several
users.

11. Algorithm EvESE Modification

If e is a power of 2, or where and s is
a small integer, then the algorithm does not work, since
the decryptor either does not exist or the encryptor is too
small. One option is to select new private keys a and b in
hope that new e will be more suitable. However, this is a
non-deterministic procedure. Besides it requires many
multiplications of multidigit-long integers.

There are other simple options if p>11, e is even and
  

1,e q

  : 1;e e 
1,e q

then assign a). if
  : 1e e 

: 2e q
then assign . b). if

 

mod .em p

. Finally, if e=2, then

12. Conclusions

Notice that the ElGamal algorithm is just one of several
constructive demonstrations how to dynamically apply a
secret key for secure communication. Indeed, the inverse
value of the decryptor is the same as encryptor. There-
fore, both parties are dynamically establishing the com-
mon secret key (encryptor e) and then use it to hide the
message m by multiplying it on the encryptor. Another
possibility: instead of multiplying, they add the encryptor
e to m or can consider exponentiation There-
fore, in the case of addition in (4.3), they eliminate two
multiplications for every plaintext since D=e.

However, both protocols require twice more exponen-
tiations than the EvESE algorithm described in the Sec-
tion 7 and demonstrated in Section 8. As the analysis
shows, the most efficient is to use the exponentiation (7.5)
for the encryption.

I wish to express my appreciation to Dr. Roberto
Rubino for his comments that improved the style of this
paper.

REFERENCES
[1] W. Diffie and M. E. Hellman, “New Directions in Cryp-

tography”, IEEE Transactions on Information Theory,
Vol. 22, No. 6, 1976, pp. 644-654.
doi:10.1109/TIT.1976.1055638

[2] A. J. Menezes, P. C. van Oorschot and S. A. Vanstone,
“Handbook of Applied Cryptography”, CRC Press, Boca
Raton, 1997.

[3] T. ElGamal, “A Public Key Crypto-System and a Signa-
ture Scheme Based on Discrete Logarithms”, IEEE Trans-
actions on Information Theory, Vol. 31, No. 4, 1985, pp.
469-472. doi:10.1109/TIT.1985.1057074

[4] R. L. Rivest, A. Shamir and L. M. Adleman, “A Method
of Obtaining Digital Signature and Public-Key Crypto-

Copyright © 2013 SciRes. IJCNS

http://dx.doi.org/10.1109/TIT.1976.1055638
http://dx.doi.org/10.1109/TIT.1985.1057074

B. VERKHOVSKY

Copyright © 2013 SciRes. IJCNS

6

systems”, Communication of ACM, Vol. 21, No. 2, 1978,
pp. 120-126. doi:10.1145/359340.359342

[5] C. F. Gauss, “Disquisitiones Arithme Ticae”, 2nd Edition,
Springer, New York, 1986.

[6] P. Garrett, “Making, Braking Codes: An Introduction to
Cryptology”, Prentice Hall, Upper Saddle River, 2001.

[7] B. Verkhovsky, “Deterministic Algorithm Computing All
Generators: Application in Cryptographic Systems De-
sign”, International Journal of Communications, Network
and System Sciences, Vol. 5, No. 11, 2012, pp. 715-719.
doi:10.4236/ijcns.2012.511074

[8] J. Katz and Y. Lindell, “Introduction to Modern Cryptog-
raphy”, Chapman and Hall/CRC Press, New York, 2008.

[9] B. A. Forouzan, “Cryptography and Network Security”,
McGraw Hill, Boston, 2008.

[10] B. Verkhovsky, “Multiplicative Inverse Algorithm and Its
Space Complexity”, Annals of European Academy of
Sciences, EAS, Liege, 2004, pp. 110-124.

[11] B. Verkhovsky, “Space Complexity of Algorithm for
Modular Multiplicative Inverse”, International Journal of
Communications, Network and System Sciences, Vol. 4,
No. 6, 2011, pp. 357-363. doi:10.4236/ijcns.2011.46041

http://dx.doi.org/10.4236/ijcns.2012.511074
http://dx.doi.org/10.4236/ijcns.2011.46041

