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ABSTRACT 

The following theorem is proved: A knight’s tour exists on all   chessboards with one square removed unless: n is 
even, the removed square is (i, j) with i + j odd, n = 3 when any square other than the center square is removed, n = 5, n 
= 7 when any square other than square (2, 2) or (2, 6) is removed, n = 9 when square (1, 3), (3, 3), (1, 7), (3, 7), (2, 4), 
(2, 6), (2, 2), or (2, 8) is removed, or  when square (1, 3), (2, 4), (3, 3), (1, n – 2), (2, n – 3), or (3, n – 2) is 
removed. 

11n 

m n

n

m n

3 n

3 n

 
Keywords: Knight’s Tour; Hamiltonian Cycle; Forced Edge; Extender Board 

1. Introduction 

A knight’s tour on a chessboard is a path, consisting of at 
least two moves, in which the knight chess piece visits 
each square on the chessboard exactly once. In a closed 
knight’s tour, the knight returns to the square on which it 
started. In an open knight’s tour, the knight does not re- 
turn to its starting square. For the purpose of this paper, 
any mention of knight’s tours will refer to closed knight’s 
tours, unless specified otherwise. In terms of graph theory, 
finding a knight’s tour on an  chess-board is 
equivalent to finding a Hamiltonian cycle made up of 
knight’s moves on an  graph, where the squares 
are the nodes and the moves are the edges. 

m

Euler worked on knight’s tours. He constructed an 8 × 
8 closed tour by joining open tours on two 4 × 8 boards 
[1, pp. 6-7]. The technique of combining two tours to 
create another tour is commonly used today for con- 
structing knight’s tours. In 1991, Allen Schwenk settled 
the question of which  chessboards contain knight’s 
tours and which do not [2]. 

Subsequently, interest shifted to the existence of 
knight’s tours on chess-boards with squares removed. 
DeMaio and Hippchen [3] presented a function whose 
value on any rectangular board is the number of squares 
that must be removed so that the board will have a closed 
knight’s tour. They determined that the removal of one 
square permits a knight’s tour on all  boards with n 
odd, except for n = 5. The particular location of the 
removed square or squares is unimportant for their re- 
sults, but it cannot be an arbitrary square. They give 
some speci? C examples such as closed knight’s tours on 

a 3 × 7 board with square (2, 2) removed and on a 3 × 9 
board with square (3, 5) removed. 

We determine which   chessboards have a closed 
knight’s tour, when each square is removed in turn. 

We color chessboards with alternating black and white 
squares and the upper-left corner square black, so that 
where matrix notation is used squares (i, j) with i + j odd 
are white. 

2. Knight’s Tours on 3 × n Boards with a 
Single Square Removed 

In this section, we show that all 3 × n boards with one 
square removed contain a knight’s tour, except for those 
listed in Lemma 1. 

Lemma 1. A knight’s tour does not exist on a 3 × n 
chessboard with one square removed if: 

n is even, 
the removed square is (i, j) with i + j odd, 
n = 1, 
n = 3 when any square other than the center square is 

removed, 
n = 5, 
n = 7 when any square other than square (2, 2) or (2, 6) 

is removed, 
n = 9 when square (1, 3), (3, 3), (1, 7), (3, 7), (2, 4), (2, 

6), (2, 2), or (2, 8) is removed, or  
11n   when square (1, 3), (2, 4), (3, 3), (1, n – 2), (2, 

n – 3), or (3, n – 2) is removed. 
Proof. Because each knight’s move alternates colors, 

for a tour to exist, there must be an equal number of 
black and white squares and an even number of total 
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squares. This implies that for a knight’s tour to exist on 
an m × n chessboard with one square removed, both m 
and n must be odd and the removed square must be black. 
So, on a 3 × n board with one square removed, a tour 
cannot exist if n is even or the removed square is (i, j) 
with i + j odd. The 3 × 1 board does not contain a 
knight’s tour because the knight is unable to move in the 
horizontal direction. 

Knight’s moves are often forced on 3 × n boards. 
Figure 1 shows the cycle that is forced on the 3 × 3 
board. Square (1, 1) is forced to connect to squares (3, 2) 
and (2, 3), square (2, 1) is forced to connect to squares 
(1,3) and (3, 3), and so forth. Eventually, a cycle is 
created that goes through all squares except for the center 
square. If any square other than the center square is 
removed, the knight ends up stuck and unable to move. 
This proves that a knight’s tour cannot exist on the 3 × 3 
board if any square other than the center square is 
removed. 

Figure 2 shows that each corner square on the 3 × 5 
board is forced to connect to the center square. For a 
knight’s tour to exist, each square must have exactly two 
connecting edges. Even if one corner square is removed 
from the 3 × 5 board, the center square still has 3 con- 
necting edges, preventing the existence of a knight’s 
tour. 

A knight’s tour cannot exist if a non-Hamiltonian 
cycle is forced on a chessboard because a non-Hamilto- 
nian cycle prevents the knight from visiting each square. 
Figure 3 shows the cycle that is forced on the 3 × 7 
board. Squares (2, 2) and (2, 6) are each forced to 
connect to squares (1, 4) and (3, 4). The forced cycle can 
be broken if either of these four squares is removed. 
However, the removal of square (1, 4) or (3, 4) leaves the 
knight on square (2, 2) and (2, 6) unable to move. 
Therefore, if any square other than square (2, 2) or (2, 6) 
 

 

Figure 1. Forced cycle on the 3 × 3 board. 

 

Figure 2. Forced edges on the 3 × 5 board. 
 

 

Figure 3. Forced cycle on the 3 × 7 board. 
 
is removed, no tour can exist on the 3 × 7 board. 

Figure 4 shows edges that are forced on the 3 × 9 
board. Square (2, 1) is forced to connect to squares (1, 3) 
and (3, 3) and square (2, 9) is forced to connect to 
squares (1, 7) and (3, 7). This shows that squares (1, 3), 
(3, 3), (1, 7), and (3, 7) cannot be removed from the 3 × 9 
board. If they are removed, the knight on square (2, 1) or 
(2, 9) becomes unable to move. 

Figure 4 also shows that, unless a corner square is re- 
moved, square (2, 3) is forced to connect to squares (1, 1) 
and (3, 1) and square (2, 7) is forced to connect to 
squares (1, 9) and (3, 9). This makes squares (2, 3) and (2, 
7) unattainable to the knight on any other square. 

Figure 5 shows the cycle that is forced on the 3 × 9 
board if square (2, 4) is removed. Square (2, 2) is forced 
to connect to squares (1, 4) and (3, 4) and square (2, 8) is 
forced to connect to squares (1, 6) and (3, 6). Because 
squares (2, 3) and (2, 7) are unattainable, square (1, 5) is 
forced to connect to squares (3, 4) and (3, 6), and square 
(3, 5) is forced to connect to squares (1, 4) and (1, 6), 
thus producing a cycle. This proves that square (2, 4) 
cannot be removed from the 3 × 9 board. Due to the 
symmetry of the 3 × 9 board, showing that square (2, 4) 
cannot be removed also shows that square (2, 6) cannot 
be removed. 

Figure 6 shows the cycle that is forced on the 3 × 9 
board if square (2, 2) is removed. Square (2, 8) is forced 
to connect to squares (1, 6) and (3, 6). Because squares 
(2, 3) and (2, 7) are unattainable, square (1, 5) is forced 
to connect to squares (3, 4) and (3, 6), and square (3, 5) is 
forced to connect to squares (1, 4) and (1, 6). Since 
squares (1, 6) and (3, 6) have two connecting edges, 
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Figure 4. Forced edges on the 3 × 9 board. 
 

 

Figure 5. Forced cycle on the 3 × 9 board when square (2, 4) 
is removed. 

 

 

Figure 6. Forced cycle on the 3 × 9 board when square (2, 2) 
is removed. 
 
square (2, 4) must connect to squares (1, 2) and (3, 2), 
thus producing a cycle. Figure 6 shows that squares (2, 2) 
and (2, 8) cannot be removed from the 3 × 9 board. 

Figures 7 and 8 show the six squares that can never be 
removed from 3 × n boards, when n is odd and greater 
than or equal to 11. As seen in Figure 7, removing 
square (1, 3), (3, 3), (1, n – 2) or (3, n – 2) leaves the 
knight on square (2, 1) or (2, n) unable to move. Figure 8 
shows the cycles that are forced if square (2, 4) or (2, n – 
3) is removed. 

Lemma 2. A knight’s tour exists on a 3 × n chess- 
board with one square removed if: 

n = 3 when the center square is removed, 
n = 7 when square (2, 2) or (2, 6) is removed, 
n = 9 when square (1, 1), (1, 5), (3, 1), (3, 5), (1, 9), or 

(3, 9) is removed, or 
11n   and odd when any square (i, j) with i + j even 

other than (1, 3), (2, 4) (3, 3), (1, n – 2), (2, n – 3), or (3, 
n – 2) is removed. 

Proof. The forced cycle on the 3 × 3 board, shown in 
Figure 1, is a knight’s tour when the center square is 
removed. Table 1 shows a knight’s tour on the 3 × 7 
board when square (2, 2) is removed. In this figure, the 
numbers on the squares represent the order in which the 
knight visits each square. For example, the knight starts 
on square 1, then moves to square 2, then to square 3, 

 

Figure 7. Forced edges on 3 × n boards, n odd and greater 
than or equal to 11, that prevent the removal of squares (1, 
3), (3, 3), (1, n – 2), and (3, n – 2). 
 

 

Figure 8. Forced cycles on 3 × n boards, n odd and greater 
than or equal to 11, when square (2, 4) or (2, n – 3) is 
removed. 
 

Table 1. 3 × 7 tour with square (2, 2) removed. 

1 18 3 6 9 12 15 

4 Hole 20 17 14 7 10 

19 2 5 8 11 16 13 

 
and so forth. “Hole” indicates the removed square. Due 
to the symmetry of the 3 × 7 board, showing that the 
removal of square (2, 2) permits a tour also shows that 
the removal of square (2, 6) permits a tour. In the same 
way, Tables 2 and 3 show that the removal of the corner 
squares and squares (1, 5) and (3, 5) permit a knight’s 
tour on the 3 × 9 board. 

Tables 4-7 show that all black squares can be removed 
from the 3 × 11 board, except for squares (1, 3), (2, 4), (3, 
3), (1, 9), (2, 8), and (3, 9). These 3 × 11 tours can be 
extended into 3 × (11 + 4) tours using the 3 × 4 extender 
board shown in Table 8. The regular 3 × 11 knight’s tour 
is followed from square (1, 1) through square (3, 11) on 
the 3 × 11 board. The 3 × 11 tour is then broken as the 
knight jumps from square (3, 11) on the 3 × 11 board to 
square (1, 1) on the extender board. The tour continues 
throughout the extender board until it reaches square (2, 
1). The tour continues back into the 3 × 11 board as the 
knight jumps from square (2, 1) on the extender board to 
square (1, 10) on the 3 × 11 board and continues the rest 
of the 3 × 11 tour. The extender board was used in a 
similar way in [1, p. 46], [2, p. 329], and [3, p. 221]. 

Two 3 × 4 extender boards can be combined to make a 
3 × 8 extender board. Therefore, any 3 × 11 tour can be 
extended into a 3 × (11 + 4 k) tour, k = 1, 2, 3,···. This 
proves that all black squares can be removed from 3 × n 
boards, n ≥ 11, n ≡ 3 mod 4, n odd, except for the six 
squares that were specified in Lemma 1. 
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Table 2. 3 × 9 tour with square (3, 1) removed. 

1 4 7 18 21 24 11 16 13 

6 19 26 3 8 17 14 23 10 

Hole 2 5 20 25 22 9 12 15 

 
Table 3. 3 × 9 tour with square (1, 5) removed. 

1 24 21 8 Hole 6 19 16 13 

22 9 26 3 20 11 14 5 18 

25 2 23 10 7 4 17 12 15 

 
Table 4. 3 × 11 tour with square (2, 2) removed. 

1 30 3 6 9 12 27 24 21 18 15

4 Hole 32 28 26 7 10 13 16 23 20

31 2 5 8 11 28 25 22 19 14 17

 
Table 5. 3 × 11 tour with square (2, 6) removed. 

1 4 31 18 21 6 23 26 15 12 9 

30 19 2 5 28 Hole 16 7 10 25 14

3 32 29 20 17 22 27 24 13 8 11

 
Table 6. 3 × 11 tour with square (1, 11) removed. 

1 30 27 6 23 4 25 12 19 16 Hole

28 7 32 3 26 9 22 17 14 11 20 

31 2 29 8 5 24 13 10 21 18 15 

 
Table 7. 3 × 11 tour with square (1, 5) removed. 

1 30 3 20 Hole 8 27 24 17 14 11

4 21 32 29 6 23 18 9 12 25 16

31 2 5 22 19 28 7 26 15 10 13

 
Table 8. 3 × 4 extender board. 

1 4 7 10 

12 9 2 5 

3 6 11 8 

 
Specifically, all black squares can be removed from 3 

× n boards, n ≥ 13, n ≡ 1 mod 4, n odd, except for the six 
squares that were specified in Lemma 1. Tables 9-13 
show with examples that all black squares can be 
removed from a 3 × 13 board, except for squares (1, 3), 
2, 4), (3, 3), (1, 11), (2, 10), and (3, 11). The 3 × 4 (

Table 9. 3 × 13 tour with square (3, 1) removed. 

1 36 33 10 7 4 29 12 27 24 21 18 15

34 9 2 37 32 11 26 5 30 13 16 23 20

Hole 38 35 8 3 6 31 28 25 22 19 14 17

 
Table 10. 3 × 13 tour with square (2, 2) removed. 

1 4 7 10 35 12 19 32 17 14 25 30 27

6 Hole 2 37 20 9 34 13 22 31 28 15 24

3 38 5 8 11 36 21 18 33 16 23 26 29

 
Table 11. 3 × 13 tour with square (1, 5) removed. 

1 4 7 32 Hole 34 9 12 27 24 21 28 15

6 31 2 37 8 29 26 35 10 13 16 23 20

3 38 5 30 33 36 11 28 25 22 19 14 17

 
Table 12. 3 × 13 tour with square (2, 6) removed. 

1 36 33 16 13 4 31 6 19 8 29 26 23

34 15 38 3 32 Hole 18 11 30 21 24 9 28

37 2 35 14 17 12 5 20 7 10 27 22 25

 
Table 13. 3 × 13 tour with square (1, 7) removed. 

1 36 3 30 33 28 Hole 18 21 24 11 16 13

4 31 38 35 6 19 22 27 8 17 14 25 10

37 2 5 32 29 34 7 20 23 26 9 12 15

 
extender board can also expand these 3 × 13 tours into 3 
× (13 + 4 k) tours, k = 1, 2, 3,··· . 

Combining Lemmas 1 and 2 gives Theorem 1.  
Theorem 1. A knight’s tour exists on all 3 × n chess- 

boards with one square removed except for the boards 
listed in Lemma 1. 
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