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ABSTRACT

A proper edge t-coloring of a graph G is a coloring of its edges with colors 1,2, .t such that all colors are used, and no
two adjacent edges receive the same color. A cyclically interval t-coloring of a graph G is a proper edge t-coloring of G
such that for each its vertex X, either the set of colors used on edges incident to X or the set of colors not used on edges
incident to X forms an interval of integers. For an arbitrary simple cycle, all possible values of t are found, for which the

graph has a cyclically interval t-coloring.
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1. Introduction

We consider undirected, simple, finite and connected
graphs. For a graph G, we denote by V(G) and

E(G) the sets of its vertices and edges, respectively.
The set of edges of G incident with a vertex

xeV(G) is denoted by Jgs(x). For any xeV(G),
ds (X) denotes the degree of the vertex X in G. Fora
graph G, A(G) denotes the maximum degree of a
vertex of G. A simple cycle with n edges (n>3) is
denoted by C(n) . A simple path with n edges (n > 1)
is denoted by P(n). The terms and concepts that we do
not define can be found in [1].

For an arbitrary finite set A, we denote by |A| the
number of elements of A. The set of positive integers is
denoted by N. For any subset D of the set N, we
denote by D(O) and D(l) the subsets of all even and all
odd elements of D, respectively.

An arbitrary nonempty subset of consecutive integers
is called an interval. An interval with the minimum ele-
ment p and the maximum element q is denoted by
[ p,q] . Aninterval D iscalleda h-interval if
|D|=h.

For any real number &, we denote by |&] ([£])
the maximum (minimum) integer which is less (greater)
than or equal to &.

For any positive integer k define

el 2]

For any nonnegative integer k define
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0, if k=0
S(k)=3"
(k) {1 otherwise.

A function ¢:E(G)—[Lt] is called a proper edge
t -coloring of a graph G, if all colors are used, and no
two adjacent edges receive the same color.

The minimum value of t for which there exists a
proper edge t-coloring of a graph G is denoted by

7'(G) [21.
If G is a graph, and ¢ is its proper edge t-color-
ing, where te [;('(G), E(G)H , then we define

U(G.p)={ecE(G)/1<p(e)<t}.
If E cE(G), te[#(G)|E(G)], and ¢ is a
proper edge t -coloring of a graph G, then we set

o[B]={p(e)/eck,}.

A proper edge t-coloring (t € [;{'(G),|E(G)H) 1)
ofagraph G is called an interval t -coloring of G [3-
5]if forany xeV(G), the set (D|:JG (X)] isa
ds () -interval. For any te N, we denote by 9, the

set of graphs for which there exists an interval t -color-
ing. Let

n=UJn,.
t>1
Forany G e, we denote by w,, (G) and W, (G)
the minimum and the maximum possible value of t,
respectively, for which G e,. For a graph G, let us
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set 0(G)={teN/GeM,}.
A proper edge t-coloring (te[)(’(G),|E(G)|]) )

of a graph G is called a cyclically interval t -coloring
of G,ifforany xeV(G), at least one of the following
two conditions holds:

) ¢[Js(x)] isa dg(x)-interval,

2) [l,t]\w[JG (X)] isa (t—dg(x))-interval,

For any teN, we denote by 9, the set of graphs
for which there exists a cyclically interval t-coloring.
Let

m=Jm, .
t>1

For any GeM , we denote by w, (G) and
W, (G) the minimum and the maximum possible value
of t, respectively, for which G e 9,. For a graph G,
letusset O(G)={teN/GeM,}.

It is clear that for any G € 91, an arbitrary interval t -
coloring (te H(G)) of a graph G is also a cyclically
interval t -coloring of G . Thus, for any teN,
N, <M, and N <M. Let us also note that for an
arbitrary graph G, 6(G)< ©(G). It is also clear that
for any G e, the following inequality is true:

A(G)< 7'(G) < Wy () <w, (G)
and

W,

int

(G)<W,. (G)<|E(G)|.

In [5,6], for any tree G, it is proved that Ge,
6(G) is an interval, and the exact values of the para-
meters W, (G), W, (G) are found. In [7,8], for any
tree G, it is proved that ®(G)=6(G). Some interest-
ing results on cyclically interval t -colorings and related
topics were obtained in [9-14].

In this paper, for any integer n>3, it is proved that
C(n)e M, and the set @(C(n)) is found.

2. Main Results

Remark 1. Clearly, for any integer n>3,
7'(C(n))=3-¢(n), |[E(C(n))|=n.

Therefore, if t¢ [3—g(n), n] , then a proper edge t -
coloring of C(n) does not exist, and C(n)gMN,.

Remark 2. Tt is not difficult to see that for any integer
k>2, C(2k)eM and 6(C(2k))=[2,k+1].

Proposition 1. For any integer n>3, C(n)e M,
ne®(C(n)). ©(C(3))={3}, ®(C(4))={2.3.4}.

Proof is trivial.

Theorem 1. For any integers n and t, satisfying the
conditions N>5 and te [3—g(n), n] , C(n)em, if
and only if

Copyright © 2013 SciRes.

te {4+g(n)-[ngg(ED—zj,n—1Ln)) .

Proof. First let us prove, that if neN, n>5 and

te [4+6(”)'(3*8&%}_ZJ’n_an»

then C(n)e 9.
Assume the contrary: there are n, e N, n, =5 and

{2 o],

for which a cyclically interval t;-coloring o of the
graph C(n,) exists.

Let us construct a graph H,, removing from the
graph C(n,) the subset U(C(n,),a) of its edges.
Let us construct a graph H, removing from the graph
H,, allits isolated vertices.

Case A. H, isa connected graph.

Let us denote by F the simple path with pendant
edges € and €" which is isomorphic to the graph
P?no—|E(HO)|+2).

CaseAll. n, isodd.

Clearly, t, e [4,n0 —1] o - 1t means that t, is an even
number, satisfying the inequality 4<t, <n,-1.

CaseA.l.l. [E(H,)| isodd.

Clearly, |E(H0)| >3. Since «a is a cyclically inter-
val t,-coloring of C(no) , we conclude from the defini-
tion of H,, that for a graph F, there exists an interval
(t,—1) -coloring B, with p (€)=p(€") . Conse-
quently, the number n, —|E(H0 )| +2 is odd, what con-
tradicts the same parity of n, and |E( H, )| .

CaseA.1.2. |E(H0)| is even.

Clearly, |E(H0)| >2. Since « is a cyclically inter-
val t,-coloring of C(no) , we conclude from the defini-
tion of H,, that for a graph F, there exists an interval
t, -coloring B, with B,(¢)=1 and p,(€")=t,
Consequently, the number n, —|E(H 0 )| +2 is even,
what contradicts the different parity of n, and
[E(H,)|.

Case A2. n, iseven.

Clearly, t, € |:%+2 + g[%j,no —1} . It means that
O

t, is an odd number, satisfying the inequality

%+2+g(%jsto <n -1.

CaseA2.1. |E(H,)| isodd.
Clearly, |E(H0)| >3. Since a is a cyclically inter-

val t, -coloring of C(n,), we can conclude from the
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definition of H,, that for a graph F, there exists an
interval (t,—1) -coloring B, with f,(€)=p,(e") .
Consequently,

n, >n,—|E(H

22t0—32n0+1+2~g[

N|o3

o)|+2=E(F)|
e
which is impossible.

CaseA2.2. E(H )| is even.

Clearly, |E |>2 Since « is a cyclically inter-
val t, -coloring of C(n,), we can conclude from the de-
ﬁnition of H,, that for a graph F, there exists an in-
terval t,-coloring S, with S,(€)=1 and B, (€")=t,.

Since t, is odd, the number n0—|E |+2 is also

odd, but it is impossible because of the same parity of

n, and |E(HO)|.

Case B. H, is a graph with m connected compo-
nents, m>2.

Assume that:

1) H,,---,H, are connected components of H,

numbered in succession at bypassing of the graph
C(n,) in some fixed direction,

2) Voo,V are vertices of C(n,) numbered in
succession at bypassing mentioned in 1),

3) g,,§, are edges of C(n,) numbered in suc-
cession at bypassing mentioned in 1),

4) vyeV(H,), v, eV(H,), Vi, ¢V (H,),

g =(V1’Vz)'

Define functions
C [ -1),
ol [ -1,
y:[1,2m] - {0,1}
as follows. For any ie[l,m], set:
£ (1) =minfis, <E(H,).
(i) = max ke, < E(H,)}.

Forany je [l,2m] , set

5(0{%@)}—1} if  is odd
5[0{%3]—1} if | is even.

Now let us define subgraphs H/,---,H
C(n,)-

For any ie[l,m-1], let H/ be the subgraph of
C(n,) induced by the subset

y(i)=

n of the graph
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{Vr](i) > Vy;(i)+1 [ Vg(i+1) > V;(i +H)+1 }

of its vertices. Let H; be the subgraph of C(n,) in-
duced by the subset

{V'Y(m)’vn(m)n’ 5V s Vi V}

of its vertices.
Let

M, ={ie[Lm]/1ea[E(H))]},
Mzz{ie[l,m]/toea[E(Hi')]}.

For any je [l,Zm] , we define a point =; of the 2-
dimensional rectangle coordinate system by the follow-

ing way: _(j y(j))
Let us deﬁne a graph

H .
V(I—])z{nl, . an}
U

E(A) = {(maom )} U{ (=),

Clearly, H =C(2m).
Let

Set

7,/ e[l,zm—l]}.

E1(|:|)E{(nzq_l,nzq)/qe[l,m]} ,
E,(H)=E(H)\E(H).

r ”

An edge (n',n") of the graph H is called horizon-
tal if the points n' and =n" have the same ordinate.

Let us denote by Ef(H) the set of all horizontal
edges of the graph H . Set ﬁ( )E ( )\E (H) It
is easy to note that the numbers ‘E (I:I ‘ and ‘ﬁ ‘
are both even.

Now let us define a function y : E( )—)[1 n, —1]

by the following way. For an arbitrary ee E( H ) set:

v(e)
‘E q ‘, if e=(7l'2q71,7l'2q),where qe[l,m]
‘E Hg ‘, if e:(ﬁzq,ﬁ2q+1),where qe[l,m-1]
[E(Hp)|. if e=(mym 7).
Clearly,
> w(e)=n+2m.
ecE(H)
CaseB.1. n, isodd.

Clearly, t, €[4,n, 1] . It means that t, is an even
number, satisfying the inequality 4 <t, <n, —1. It is not
difficult to see that in this case, for an arbitrary
ecE (I:| ), w(e) is odd, and, moreover, for an arbi-

(I—NI)‘ is
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even, we conclude that the odd number

n+2m= > w(e)+ > w(e)
e<E(H)

EEE,(I:|)
is represented as a sum of two even numbers, which is
impossible.
CaseB.2. n, iseven.

Clearly,
toe{&+2+g[&j,no—l} .
2 2 )

It means that t; is an odd number, satisfying the ine-
quality

%+2+5(%]£t <n -1.

It is not difficult to see that in this case, for an arbitrary
ecE, (H )U E (H8’ w(e) is odd, and, moreover, for

H ﬂa('ﬂ»
JNE(H)=2

In this case, evidently, there are different integers i’
and i" in the set [I,m|, for which there exist interval

an arbitrary ec E w(e) iseven.

CaseB2.1. ‘E

t, -colorings S’ and p" of the graphs H,) and H/,
respectively. Consequently,
n, =|E(C(n))|2[E(H/)U ( )|
=[E(H)|+[E(H)|-[E(HNE(H)

>[E(H/)[+|E(H!)| -2
> n0+2+25(%j> N>

which is impossible.
CaseB22. |E,(H

22t -2

JNE(H)[=1.

Without loss of generality assume that

B, (H)NE(H)={e'}.
Since ‘Eﬁ(ﬁ)‘ is even, we conclude that the even
number

n, +2m

= Z y/(e)+

= z w(e)+ >
e<E, (H)NE(H) e<E;(H)NE(H)

v(E)r T v(E+ X v

e<Ei(H)NE(H) e<E_(H)

is represented as a sum of one odd and two even numbers,
which is impossible.
JNE(H) -0

CaseB.2.3. ‘E

Copyright © 2013 SciRes.

Clearly, for any ie[l, m], the set a[E(H
tains exactly one of the colors 1 and t, .

CaseB23a). M zd, M,=0.

It is not difficult to see that in this case there is
i, €M, , for which the set a[E(Hi; )J contains the
color t;—1. It means that there exiSts an interval
(t0 - 1) -coloring of the graph Hi; which colors pendant
edges of H/ by the color 1. Consequently,

/)] con-

n, >[E(H; )= 2t, —3>n0+1+2g(n°j>no,

which is impossible.

CaseB23.b). M=, M, =J.

It is not difficult to see that in this case there is
i, e M,, for which the set « E(Hi’z) contains the
color 2. It means that there exists an interval (to —1)—
coloring of the graph H; which colors pendant edges
of H; by the color 1. Consequently,

n, > [E(H; )= 21, —3>n0+1+2g(n°]>n0,

which is impossible.
CaseB.2.3.c). M, =0, M,=J.
Let us choose i; €M, and i, eM,
conditions

satisfying the

e[ E(H; )] =max[a[E(H)].
o E(H; )| = max[a[E(H)].

be the maximum color of the set
[ E(H;)]

be the minimum color of the set
o [ E( H/ )] .
Clearly, j(3) > j(4)

It is not difficult to see that there exists an interval
j(3) -coloring of the graph Hi; which colors pendant
edges of Hi; by the color 1. Hence,

Let j(3)

Let j(4)

‘E(Hi;)‘zzj“)—

It is not difficult to see that there exists an interval
(to— j(4) +1) -coloring of the graph Hi; which colors
pendant edges of Hi; by the color 1. Hence,

‘E(Hi;)‘zz(to—j(4)+1)—1:2t0—2j(4)+1
Consequently, we obtain that
el U - e

>2t,+2( - )2 21, —2>n0+2+2g(n°j>n0,
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which is impossible.
Thus, we have proved thatif neN, n>5 and

w3 o]

then C(n)e 9M,.
Now let us prove that if

neN, nx5, te[3-&(n),n], C(n)em,,

el

Assume the contrary. It means that there are n, e N,
n 25, and t, e[3-&(n),n, |, which satisfy the con-
ditions C(n,)e oM, and

t, e{4+e(f‘o)'[%+gu%ﬁ_2}nﬁ _1}(5(@)'

Casel. n, isodd.
In this case t,e[3,n,] and t, e[4,n0—1](0), and,

then

therefore, t, 6[3’n0](|) . It means that there exists

m, € N, for which

t,+1 _n, +1
2<m, =2—< .
m 2 2
1
Let us note that the equality m, = n°2+ implies

t,=n, , which is incompatible with the condition
C(n,) &M, . Hence, n,—2m,>1.

Now, to see a contradiction, it is enough to note that
the existence of an interval t; -coloring of a graph
P(2m, —1) with the existence of an interval 2-coloring
of a graph P(n, —2m, +1) provides the existence of a
cyclically interval t, -coloring of the graph C(n).

Case2. n, iseven.

In this case t, €[2,n,] and

t, ¢ &+2+e[&}no—l )
2 2 "

and, therefore,

(3] )

It follows from Remark 2 that

N Ny
s e{_ﬁ_g(_],no} |
2 2 )

Clearly, there exists m, e N,

Copyright © 2013 SciRes.

for which

tO:%H—g(%}rzm).

Let us note that the equality

vei{3(3

implies t, =n,, which is incompatible with the condi-
tion C(n,)e M, . Hence,

%+g[%j—l—2mo

is an even number, satisfying the inequality
i) N
—+&|— |-1-2m, >2.
2 ( 2 j "

Now, to see a contradiction, it is enough to note that
the existence of an interval t, -coloring of a graph

o oieel 3)om]

with the existence of an interval 2-coloring of a graph

{2 re{ 3 )r-m)]

provides the existence of a cyclically interval t;-color-
ing of the graph C(n,).
Thus, we have proved, thatif neN, n>5,

te[3-&(n),n], C(n)gMm,,

Jom s o],

Theorem 1 is proved.
It means that we also have
Theorem 2. For an arbitrary integer n>5,

o(c(n)

[3.n],-
- 2,E+1 U E+3—g(E ,n , ifniseven.
2 2 2 ()
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