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ABSTRACT 

If   is a permutation of , the graph G1, 2, ,n    has vertices 1,  where 2, , n xy  is an edge of G  if and 

only if  , x y  or  ,y x  is an inversion of  . Any graph isomorphic to G  is called a permutation graph. In 1967 

Gallai characterized permutation graphs in terms of forbidden induced subgraphs. In 1971 Pnueli, Lempel, and Even 
showed that a graph is a permutation graph if and only if both the graph and its complement have transitive orientations. 
In 2010 Limouzy characterized permutation graphs in terms of forbidden Seidel minors. In this paper, we characterize 
permutation graphs in terms of a cohesive order of its vertices. We show that only the caterpillars are permutation 
graphs among the trees. A simple method of constructing permutation graphs is also presented here. 
 
Keywords: Permutation; Inversion; Permutation Graph; Cohesive Order; Oriented Graph; Tournament Score Sequence; 

Caterpillar; Graph Composition 

1. Introduction 

A bijection   of   to itself is called a per- 
mutation of order . We shall write   




1, 2, , n
n

i a
 1 2, , , na a a  

,nto mean that  for i  i 1, 2,  . We shall de-  

note by  the set of all permutations of .  n  1, 2, , n
An inversion of   is an ordered pair  where   ,a ai j

i j  but . Equivalently, ia a j  ,x y  is an inversion  

if and only if x y  and   1 1 x y  . 

Definition 1.1 Let n  . The graph of inversions of 
 , denoted by G , is the graph with vertices  
where 

1, 2, , n
xy  is an edge of G  if and only if  ,x y  or 

 , y x  is an inversion of  . 
The term graph of inversions was used by Ramos in 

[1]. For our purpose in this paper, any graph isomorphic 
to G  for some permutation   will be called a per- 
mutation graph. There is an implementation Permu- 
tationGraph[p] in the Combinatorica package of Mathe- 
matica [2] that creates the permutation graph pG . 

In 1967 Gallai [3] characterized permutation graphs in 
terms of forbidden induced subgraphs. In 1971 Pnueli, 
Lempel, and Even [4] showed that a graph  is a per- 
mutation graph if and only if both  and its com- 
plement 

G
G

G  have transitive orientations. Recently in 
2010 Limouzy [5] gave a characterization of permutation 
graphs in terms of forbidden Seidel minors. 

A characterization of permutation graphs in terms of 
cohesive vertex-set order is established in this paper. We 

prove that the only permutation graphs among the trees 
are the caterpillars. In addition, we describe a simple 
method of constructing permutation graphs. 

2. Cohesive Vertex-Set Order 

The vertex-set of a graph  will be denoted by G  V G

ab

 
while the edge-set will be denoted by . An edge 
with end-vertices  and  will be denoted by  or 

. For graph theoretic terms used here without de- 
finition, the book by Harary [6] may be referred to. 

 E G
a b

ba

Consider the permutation . The in- 
versions of 

 3,1, 4,6,5, 2 
  are  3,1 , , ,  3, 2  4,2  6,5 , 

 6,2 , and  5,2 . It is convenient to draw the graph 
G  with the vertices in a line following their arrange- 
ment in  . A drawing of G  is shown in Figure 1. 

There are some important properties of the drawing 
that we need to take note of. 

(a) If  and bc  are two edges of the graph where 
 lies between  and  in the drawing, then  is 

also an edge.  

ab
b a c ac

 

3 1 4 6 5 2
 

σG ,  , , , , ,σ 3 1 4 6 5 2 . Figure 1. Permutation graph 
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(b) If uv  is an edge and x  is a vertex that lies be- 
tween u d v  in the drawing, then either uv  is an 
edge or

 an
 xv  is an edge.  

We de ne more precisely the properties that we ob- 
se

fi
rved. 
Definition 2.1 Let G  be a graph of order n . An ar- 

rangement  1 2, , nv v v   of the vertices f G  is 
called a coh der of G  (or simply cohe- 
sive order G ) if the following conditions are satisfied: 

(a) If i k j   and i kv v ,  k jv v E G , then  
 v

,
tex-s

o
esive ver et or

i

(b) If 
jv E

 and 
G . 
i k j   E G , then i jv v  k jv v E G  

by 


or

, den
 k jv v  
The ent of a oted 

 V G . 
omplemc  graph G G  has 

the same vertex-set as G  and two distinct vertices a  
and b  form the edge ab  in G  if and only if ab  is 
not a edge in G . 

Lemma 2.1 Let G  a raph. Then  a 
co

n 
  be  g  is 

hesive order of if and only if   is a cohesive or- 
der of 

G  
G .

Proof. Let     be a cohesive order of 
 

1 2, , , nv v v
hat the same is a G . We claim t cohesive order of G . To 

ve  a  for pro G , let i kv v  and k jv v  be vertices of 
G  suc at i k j  . n i kv v d k jv v  are not 
e es in G . B ty 

h th The  an
dg y proper b  o cohesiv rder, the 

edge jivv is not in G . Hence, i jv v  is an edge of 
f a e o

 G . 
To prove  b  for  G et i jv v  be  edge of , l  an G  with 
i j . Let  be an ch that i k j   Since 

is in 
 k  integer su .

i jv v  G , then it is not in G . By property  a  of 
hesive o der (for G ) the edges i kv v  and kv v an- 

not be both in G . Hen  at least one hem is in 
a co r j  c

ce  of t G . 
The converse llows since  fo G G .  

e definition of The next result follows eas  thily from
permutation graph and cohesive order. We shall omit the 
proof of this theorem. 

Theorem 2.1 Let n  . Then 

   1 , n      2 , ,   
is a cohesive order of the permutation gra  ph G .

r of
 
 graph 

 to an edge
m

Note that  1 2, , , nv v v  is a cohesive orde  a
G  if and on 1, ,v  is a cohesive order of 

. 
To assign a direction  ab  of a graph G  

ly if  ,n nv v 1

G

eans to change ab  to either the o red pair rde  

the 

,a b  
or the ordered pair  , a . 

Definition 2.2 A ation of a graph G  is 
di

b
n orient

graph obtained by assigning a direction to e h edge 
of G . The directed edges, which are ordered pairs, are 
called arcs.  

A digraph D  is said to be transitive if  ,

ac

x z  is an 
arc of D  whenever  ,x y  and  ,y z  are n D . 

In a graph D , th -degre a vertex 
 arcs i

di e out e of x , 
d noted by  dege D x  or ly  simp  deg x  

hat  ,
is the num- 

r of is an  

ee

arc in

D . The in-degr  of x , denoted by  deg D x  r o
 deg x  is er of vertice D  such that the numb s  in z

 ,z x  is an arc i D . 
n oriented complete graph is called a tou [7]. 

e of a vertex 

n 
A

The 
rnament 

scor x  in a tourn ment, denoted by a
 s x  is defined by 

nbe  vertice  such ts y  in D x y  

 deg s x x

iffi

name

 . The scor

nt of order 

e se- 

is not d

ur

siti  

qu

T

Th

ence of a tournament is the sequence of scores ar- 
ranged in non-decreasing rder. 

 following theorem cult, and is stated 
without proof. 

Theorem 2.2 Let T  be a to

 o
 [8] he

n . 
e following statements are equivalent:  
1) T  is tran ve. 
2) For all vertices x  and y  in T , if  ,x y  is n 

arc of T , then 
a

   s x s y .  
3) For all vertices x  and y  in , if T    s x s y , 

then  ,x y  is an arc o T .  
4) Th  score se T  i

f 
e quence of s 2, , 1n0,1,  .  

perm

ation graph if

 then G

Our main result, hich aract izes 
graphs, is the following theorem

w h utation 
. 

p t  

n aph,  is 

c er

ermu

 gr

Theorem 2.3 A graph G is a  
an

iso

d only if it has a cohesive order. 
Proof. If G  is a permutatio
morphic to G  for som  permutation e  . By The- 

orem 2.1,   is a a cohesive order of G . Let   be 
an isomorphis  of G  to Gm  . Then 1    s a 
cohesive order o G . 

Conversely, let G  be a graph with a hesive der 

 i

o or
f 

c
 1 2, , , nv v v   . Or nt G o obtain a  as 

follows: For each 
i

edge
e t  d
  in 

 igraph D
 the diri jv v G , assign ection 

 ,i jv  if i jv  ; otherwise assign the direction  

 ,j i

roperty 

v v . 

By p    of a cohesive order, it follows that 
D  to a tournament by orient- 

a

e
D
ing t

 is 
he com

transitive. Extend 
nt plem G  of G  as follows: If i j  but 

iv v j  is not in assign the direction  ,D , j iv v  to the 
e i jv v  in edg G . By Lemma 2.1   is a cohesive 

order of G . So likew e, the rientation of is  o G  ined 
his manner is also transitive. Let us denote this 

digrap  

obta
in t

h by D . 
The un n of D  and io D  is an orientation of G G . 

Since G G  is complete, then T D D   is a tourna- 
ment. We claim that T  is a tr o ment. Let ansitive t urna
 ,x y  and  ,y z  be arc  T . If both arcs be  
D  or 

s of long to
 to D , then  ,x z  is in se both D  

and 
 T  becau

D  are transitive. So let us assume that one of the 
long to and the othe rc belong to arcs be  D  r a D . With- 

 loss ofout  generality, assume that  ,x y  is an arc in 
D , a  nd  ,y z  is an arc in D . If  ,x z  is in D , we 
are done. If  ,x z is not in D , then  ,z x  is in  D . 
Since D  is transitive and  ,z x ,  ,y z  are in D , 
then  ,y x  is in D . This is a con cause tradiction be
 ,x y  is in D . 
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B  Theorem 2, the score sequen T
1, , 1n  et 
y  2. ce of  is  

  L0, .   be he permutation defined by 
  1i s  , where  

 t
 i v is v  is the score  in . of 


iv T

We claim that the mapping   1: 1 iv s v   
 of G to G

i  is 
an isomorphism   . 

 The mapping   is b e since the scor  of the 
vertices are distinct. It rema

ijectiv es
ins to show that   

, w
p

e b n edge of here 
re- 

serves adjacency. L t iv v e aj  G
ji < . In D  we ave the arc  ,i jv v . Since the tour- 

nament T  is transitive, then by Theorem 2.2,  

   i j

 h

s v s v . Hence,    ,i j  is an inversion of  

 . Therefore,  iv  and  jv  are adjacent in G . 
Conversely, let ab  be an edge in G . Then either 

,b a  is an inversion. Without loss of  ,a b  or 
generality, assum


e that  a b is an inversion. Let 

   1 ia i s v    and    1
,  

jb j s v  , where 
  is an inversion, we have a b , or 

   i j


i  j . Since  ,a b
s v s v . Therefore, rc  ,i jv v  is in T . 

c  ,iv . Conse- 
ly, the ed i jv  is in G .  

illustration of the con f 
Theore 3. Consider th ph G  shown  Figure 2 
with a cohesive or  2 4 3, , , ,

the a
jv  musSince 

que
H

i j

 is 

, t

an 

he ar
ge v

t  D

uctive proof 

 be in

str
nt
ere o

m 2. e gra in
der 1 5x x x x x . 

To be able to follow the discussion in the proof of 
theorem without difficulty, let  

 , , ,v v v v , , , , ,v x x x x x . 

 dir s om left to right. For two 
vertices not adjacent in  we assign the ar that goes 
fr

1 2 3 4 5 2 4 1 3 5

Using the bottom drawing in Figure 2, we construct a 
digraph by ecting all edge fr

G ,

ly

c 
om right to left. Then the result is a transitive tour- 

nament. It is not difficult to get the score of any vertex in 
this tournament. We simp  count the eastbound arcs and 
the westbound arcs with a fixed tail. Consider for exam- 
ple, 2 4v x . The number of eastbound arcs with tail at 

4x  is 3. The number of westbound arcs is simply the 
number of vertices to its left that are not adjacent to to 

4x . The table below summarizes the scores of the vertices. 
 

Vertex v1 = x2 v2 = x4 v3 = x1 v4 = x3 v5 = x5 

Score, s(vi) 2 4 0 1 3 

 
Take the pe iormutat n   defined by    1 . 

n ph G
=i

a
is v

Th  m ten   3,5,1 4 ., 2, The per u atio gr   is 
shown in 

raphs 

n graphs are 

graph. The following are 

graph.  
(b) 

Figure 3. 

3. Construction and Examples of 
Permutation G

Some fundamental facts about permutatio
given in the next theorem. 

Theorem 3.1 Let G  be a 
equivalent:  

(a) G  is a permutation 
G  

G x2

x1

x3

x4 x1 x3 x5

 

Figure 2. A graph with cohesive order  

x4 x5 x2 

G  

   , , , , , , ,v v v v v x x x x1 2 3 4 5 4 1 3 5 . 

 

,x2

1 2 3 45

 

σG ,  , , , ,  3 5 1 2 4Figure 3. The permutation graph . 

 
(c) Every induced subgraph of is a permutation 

graph.  
nt of  is a per- 

utation graph. 
 a

if 

G  

(d) Every connected compone G
m

Proof. From Lemma 2.1, G  has  cohesive order if 
and only G  has a cohesive order. Therefore, (a) and 
(b) are equivalent. 

If  n  1 2, , ,v v v is a cohesive order of , then the 
su  se

G
bgraph of G  induced by a t of vertices  

 1 2
, , ,

ki i iv v v , where 1 2 ki i i    has cohesive or-  

der  1 2
, , ,

ki i iv v v
d (

 and therefore is a permu tion graph. 
Hence, (a) an c) are equivalent. 

Statement (c) im ment (d) 

ta

nected compon is an induced
remains to sho

nts  and 
le

plies state because a con- 
ent of G  subgraph of G .  

It w that (d) implies any of (a), (b), (c). 
Let G  have connected compone  1 2, , , kG G G

t in  be the order of iG . Let  

 , , ,i i iv v v   1 2 ii n

be a hesive order of iG . Then  co

 , , ,

 
1 2

1 1 1 2 2 2
1 2 1 2 1 2, , , , , , , , , , , ,

k

k

k k k
n nv v v v v v v v v 

    

  
 

1 2

is a cohesive order o . There

n

f fore  is a permu- 
tation graph. 

We can now identify permutation graphs throu e 
existence of a cohesive order. Moreover, we can even 

hic to the graph having a cohesive order. 

 G G

gh th

determine a permutation that generates a permutation 
graph isomorp

Paths nP  and stars 1,nK  are permutation graphs 
because they have cohesive orders as illustrated in 
Figure 4. 

In the drawing of the path nP , we have  

1 2 3 4 52, 1, 3, 6v v v4,v v     , etc. 

Condition (a) is vacuously satisfied because there is no is a permutation graph. 
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pair of arcs , and i jv v j k

r example that  2,3  is an rc and the v
v v

 in the

 such that . Note 
fo  a  1 and 
4 are betwee  drawing.  adja- 
cent to 2 and 4 adj

i j k 
ertices

W  1n 2 and 3 e have
acent to 3. This illustrates condition 

). (b
In the drawing of the star 1,nK  we see that for every 

arc  0,k  where 1k   all vertices i  with 0 i k   
are between 0  and k . Moreover, the vertex i  is adja- 
cent to 0. Therefore condition (b) is satisfied. Condition 
(a) is satisfied vacuously. 

Paths and stars are trees but not all trees are perm- 
utation graphs. Consider the tree 1,3K   formed by sub- 
dividing each edge of the star 1,3K  into two edges, as 
shown in Figure 5. 

It is not difficult to argue indirectly that 1,3K   has no 
cohesive order. Therefore this is not  permutation graph. 
This result is also established by mouzy [5] where he 
used the symbol T  fo

 a
 Li

2 r 1,3K  . 
Harary and Schwenk [9] defined a caterpillar to be a 

tree with the property that the removal of all pendant 
vertices results into a path. Figure 6 shows a caterpillar 
with 25 pendant vertice The s. removal of these 25 
pendant vertices yields the path 8P . 

The next lemma is easy and its proof is omitted. 
Lemma 3.1 A tree is a caterpillar if and only if it does 

not contain 1,3K   as a subgraph. 
Theorem 3.2 A tree is a permutation graph if an
it is a caterpillar. 

d only 
if 

Proof. A tree that contains 1,3K   is not a permutation 
 

 

2 1 4 3 6 5 0 1 2 3 4

Path, Pn Star, K1,n  

Figure 4. Cohesive order of paths and stars. 
 

 
Star, K1,3                    *

1,3K  

Figure 5. The tree obtained by subdividing the edges 

of 

 ,
K1 3  

,K1 3 . 

 

 

Figure 6. A caterpillar with 25 pendant vertices. 

graph because 1,3K   
 show is t
 
 C  

is not a permutation graph. Therefore, 
all we need to hat a caterpillar is a permutation 
graph. Let be a caterpillar and let  be the path 
obtained fr by removing the pen t vertices. If 

C
om

nP
dan

1n  , the is either the trivial gr or the star n C  aph 

1, pK  for some 1p  . Since the trivial graph and the 

t

n e
verte

stars are permutation graphs, we assume that 2n  . 
Let us form the cohesive order of nP  as shown in 

Figure 4. Le  iS  be a set of pendant vertices of C  all 
adjacent to the same vertex i  of nP . If i  is odd, we 
i s rt the vertices in iS  immediately to the left of the 

x 1i   of the path (see Figure 4). If i  is even we 
insert the vertices in iS  between i  and i  he re- 
su C

1 . T

r

lt is a cohesive order of C . Therefore  is a permu- 
tation graph. 

Definition 3.1 Let G  be a g aph with vertices 

1 2, , , n

 

x x x  and let 1 2, , , nH H H  be a collection of 
arbitrary aphs. The composition by G  of  

1 2, , , n

 gr
H H H , denoted by  1 2, ,G H H   is the 
graph formed by taking the disjoint union f the graphs 

i

, nH
 o

H  and then adding all e es of the form a b  where 
a

dg i j

i  is in iH , jb  is in jH  whenever i jx x  is an edge 

If each i

of G .  
H  is equal to a fixed grap  h H , we use the 

symbol    to denote the c
The sum of two graphs L  and 

G H omposition. 
M  , denoted by 

L M  is formed by taking the disjoint union  L  and  of
M  and then a ding all dges of the f r  ab  where d e mo

 a V L  and  b V M . Thus, the composition 
 1 2, , , nH H H  is formed by takin the disjoint 

union of graphs i

G 
the 

g 
 H  and then forming the sum 

i jH H  if the associated vertices ix  and jx  of G  
cent. 

heorem 3.3 Let G  be a graph of order and let 

n

are adja
T n  

1 2, , ,H H H  be graphs. Then   a ry rbitra

 1 2, , , nG H H H  

is a mutation graph if and only if G , 1 2, , ,per nH H H  
are permutation graphs. 

Proof. First, assum that  1 2, , , nG H H H is a per- 
h. Each graph i

 e 
mutation grap H  is an induced bgraph  su
of   . Therefore, each 1 2, , , nG H H H iH  

vertex i

is a per- 
mu take a tation graph. If we x  from each iH , 

. 
then the subgraph induced by these v - 
morphic to G . Therefore G  is a per ta

er
mu tion g

tices is iso
raph

, Conversely, assume that nG 1 2, , ,H H H  are all 
permutation graphs. Then t e is a cohesive order her
 1v v v  of G  Let in  be the order of i2, , , n . H . Then 
the vertices of iH  has a cohesive order  

 1 2, , ,
i

i i i
i nx x x  . 

It is easy to check that    a cohe- 

sive order of 

 1 2, , , n      is

 1 2, , , nG H H H .  
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Theorem 3 y o
uta ition. To illu- 

strate this, let be the star 

.3 actually gives us an easy wa f con- 
structing perm tion graphs by compos

Conversely, assume that is a caterpillar with no 
two pendant vertices havi mmon neighbor. Sup- 
pose that is a not a prim permutation graph. Then 
for some rivial graph  with vertices  

, 

Without loss of generality, we may assume that 

G  1,3K  with central vertex 

1x  and penda rtices nt ve 2 3 4, ,x x x , then  

gure 7. 

m

 and 

ways can be written as a com- 
po

ee that among t

 2 ,G P C

is shown in Fi

3 1 3, ,P P  

All graphs of order at most 4 are permutation graphs 
[1]. Therefore,  2 3 1 3, , ,G P C P P  is a permutation graph. 

Every graph  of order n  ay be written as 

n 

G

1 1 1, , ,G G P P P   
 


  1G K G . 

If these are the only G  
sition, then we say that G  is prime. 
It is easy to s he complete graphs, only 

1K  and 2K  are prime perm tation graphs. u
Am s with diameter not exceeding 3, it is easy 

to check that only the paths , and e prime 
permutation graphs. These all caterpillars that do not 
ha

ne

h tw

ong tree

1P , 2P ar4P  
are 

ve two pendant vertices adjacent to a common vertex. 
Note that 3P  which is exclude from the list is a ca- 
te

d 
rpillar with two pendant vertices having a common 
ighbor. 
Theorem 3.4 A tree is a prime permutation graph if 

and only if it is a caterpillar w ere no o pendant 
vertices have a common neighbor.   

Proof. In view of our observation about trees with 
diameter not exceeding 3, we assume throughout that T 
has diameter at least 4. 

Let T  be a tree of order n . Assume that T  is a 
prime permutation graph. By Theorem 3.2 T is a cater- 
pillar. Suppose that 1x  and 2x  are pendant vertices 
with a common neighbor y . Let G  be the tree ob- 
tained from T  by identifying 1x  and 2x . Let  

1 2 1, , , ny y y   be the vertices of G  Without loss of ge- 
nerality, assume that y  is the vertex resulting from the 
id

1

entifi tion of 1ca x  and 2x . Let 1H  be the grap  with 
two vertices but without an edge, and let i

h
H  be the 

trivial graph for 2, , 1i n  . Then  

 1 2, , , nT G H H H  . 

dicts the fact that T s prime. 
 

3,

This contra i 

 
Figure 7. The composition by  of  ,K1 3 , , ,P C P P2 3 1 3 . 

T  
ng a co

e 
G

T  
 non-t

1 2, , , ky y y  1 2, , , kT G H H H  . 

1H  
on- 
be

contains at least two vertices. Now, must be c
nec scon d. Let
ad

G  
eted for otherwise, T  is di nect   1y  

jacent to 2y  without loss of generality. Then  

1 2H H  

is a subgraph of T . If 2H  has at least two vertices, 
then there will be a cycle  1 2in H H . Therefore, 2H  

nt 
ould 

has only one ve ex. In be adjace
anymore to any r ve wise, we w
al

rt
 othe

 G
rtex f

, 1y  cannot 
or other

 

so create a cycle of length 4. Now consider 1 2H H . 
There cannot be adjacent vertices in 1H  for otherwise 
we will create a cycle of length 3. But then all vertices in 

1H  are pendant vertices of T  and they have a common 
neighbor, the vert  ex in 2H . T

e a
his is a contradiction.   

Theorem 3.5 Le G  b  decomposable permutation 
graph. Then there exists a non-trivial prime permutation 
graph U  and permutation grap   

1 2, , , k

t 

hs

H H H  

which are subgraphs of G  such that  

 1 2, , , kG U H H H  . 

Proof. Let  

 1 2, , , kG U H H H   

be a decomposition of G , where U  is non-trivial. If 
we take one vertex ix  from each iH , then the sub- 
graph induced by rtices is iso orphic to 

h. Each 
 these ve m

p
U . 

iHence, U  must be a pe utation grarm H  is 
ore,an induced subgraph of  1 2, , ,H H  U  refkH . The  

each iH  

 

is a perm  that  
sm am  
cl is a prim h. S  
that prim

utation 
u

 

graph. e
ch decompositions of 

e perm rap

 Assu

utation g

m U
G
upp

 has
. We

ose
allest order 

aim that U  
ong all s

e. Let U is not 

 1 2, , , pU V L L   

be a decomposition of U , where V  is non-triv l. 
Since V is a decomposition of U  and vertices of U  
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 1 2, , , pG V L L L  . But this contradicts the choice of 
U . T refore, U  must be a prime permutation graph. 
  

he

4. Concluding Remarks 

Theore  3.5 is a fair structural escription of a p - m  d er
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