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ABSTRACT

If o isa permutation of {1,2,-~-,n}, the graph G, has vertices 1,2,---,n where xy is an edge of G, if and

only if (x,y) or (y,x) isaninversionof o .Any graphisomorphicto G, is called a permutation graph. In 1967

Gallai characterized permutation graphs in terms of forbidden induced subgraphs. In 1971 Pnueli, Lempel, and Even
showed that agraph is a permutation graph if and only if both the graph and its complement have transitive orientations.
In 2010 Limouzy characterized permutation graphs in terms of forbidden Seidel minors. In this paper, we characterize
permutation graphs in terms of a cohesive order of its vertices. We show that only the caterpillars are permutation
graphs among the trees. A simple method of constructing permutation graphsis also presented here.
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1. Introduction

A bijection o of {1,2,---,n} to itself is called a per-
mutation of order n.We shall write o =(a,,a,,--,a,)
to mean that o(i)=g for i=12--,n. We shall de-

note by S, the set of al permutations of {1,2,---,n} .
An inversion of o is an ordered pair (a,aj) where
i<]j but a>a,. Equivaently, (xy) isaninversion
ifandonly if x>y and o*(x)<o*(y).

Definition 1.1 Let o €S, . The graph of inversions of
o, denoted by G_, isthe graph with vertices 1,2,---,n
where xy is an edge of G, if and only if (x,y) or
(v,x) isaninversionof o .

The term graph of inversions was used by Ramos in
[1]. For our purpose in this paper, any graph isomorphic
to G, for some permutation o will be caled a per-
mutation graph. There is an implementation Permu-
tationGraph[p] in the Combinatorica package of Mathe-
matica [2] that creates the permutation graph G,, .

In 1967 Gallai [3] characterized permutation graphsin
terms of forbidden induced subgraphs. In 1971 Pnueli,
Lempel, and Even [4] showed that a graph G is a per-
mutation graph if and only if both G and its com-
plement G have transitive orientations. Recently in
2010 Limouzy [5] gave a characterization of permutation
graphsin terms of forbidden Seidel minors.

A characterization of permutation graphs in terms of
cohesive vertex-set order is established in this paper. We
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prove that the only permutation graphs among the trees
are the caterpillars. In addition, we describe a simple
method of constructing permutation graphs.

2. Cohesive Vertex-Set Order

The vertex-set of agraph G will be denoted by V (G)
while the edge-set will be denoted by E(G). An edge
with end-vertices a and b will be denoted by ab or
ba. For graph theoretic terms used here without de-
finition, the book by Harary [6] may be referred to.

Consider the permutation o =(3,1,4,6,5,2). The in-
versions of o ae (31), (32), (42), (65),
(6,2), and (5,2). It is convenient to draw the graph
G, with the vertices in a line following their arrange-
mentin o .A drawingof G, isshowninFigurel.

There are some important properties of the drawing
that we need to take note of.

(@ If ab and bc are two edges of the graph where
b lies between a and c in the drawing, then ac is
also an edge.
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Figure 1. Permutation graph G,, ¢=(3,1,4,6,5,2).
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(b) If uv isan edge and x is a vertex that lies be-
tween u and v in the drawing, then either uv is an
edgeor xv isanedge.

We define more precisely the properties that we ob-
served.

Definition 2.1 Let G beagraph of order n. Anar-
rangement ¢ =(Vv,,v,,---,v,) of the vertices of G is
called a cohesive vertex-set order of G (or simply cohe-
siveorder G) if the following conditions are satisfied:

@If i<k<j and vy, vv, € E(G),then
vv, € E(G).

(b) If i<k<j and vv; € E(G), then v,v, e E(G)
or vv, €V(G). 3

The complement of a graph G, denoted by G has
the same vertex-set as G and two distinct vertices a
and b form the edge ab in G if and only if ab is
not an edgein G.

Lemma 21 Let G be a graph. Then ¢ is a
cohesive order of G if and only if ¢ isa cohesive or-
der of G.

Proof. Let ¢=(v,V,,--,V,) be a cohesive order of
G . We claim that the same is a cohesive order of G. To
prove (a) for G, let vv, and v,v;, be vertices of
G such that i<k<j. Then vy, and v,v; are not
edges in G. By property (b) of a cohesive order, the
edge viv, isnotin G.Hence, Vv, isanedgeof G.
To prove (b) for G, let vyv, beanedgeof G with
i<j.Let k bean integer such that i<k< j. Since
vy, isin G, thenitisnotin G. By property (a) of
a cohesive order (for G) the edges vv, and v,v, can-
not be bothin G. Hence at least one of themisin G.

The converse followssince G=G.

The next result follows easily from the definition of
permutation graph and cohesive order. We shall omit the
proof of this theorem.

Theorem 2.1 Let o €S, . Then

o= (0'(1),0'(2),---,0'(n))

isa cohesive order of the permutation graph G, .

Notethat (v;,v,,--,V,) isacohesiveorder of agraph
G if and only if (V,,V,,--,V;) isa cohesive order of
G.

To assign a direction to an edge ab of a graph G
means to change ab to either the ordered pair (a,b)
or the ordered pair (b,a).

Definition 2.2 An orientation of a graph G is the
digraph obtained by assigning a direction to each edge
of G. The directed edges, which are ordered pairs, are
called arcs.

A digraph D is said to be transitive if (x,z) isan
arcof D whenever (x,y) and (y,z) arearcsin D.

In a digraph D, the out-degree of a vertex x,
denoted by deg(x) or simply deg’(x) is the num-
nber of vertices y in D suchthat (x,y) isanarcin
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D . The in-degree of x, denoted by deg,(x) or
deg (x) isthe number of vertices z in D such that
(zx) isanarcin D.

An oriented complete graph is called a tournament [7].
The score of a vertex x in a tournament, denoted by
s(x) is defined by s(x)=deg’(x). The score se-
guence of a tournament is the sequence of scores ar-
ranged in non-decreasing order.

The following theorem [8] is not difficult, and is stated
without proof.

Theorem 2.2 Let T be a tournament of order n.
The following statements are equivalent:

1) T istrangtive.

2) For al vertices x and y in T,if (x,y) isan
arcof T,then s(x)>s(y).

3) For all vertices x and y in T,if s(x)>s(y),
then (x,y) isanarcof T.

4) The score sequenceof T is (0,1,2,---,n-1).

Our main result, which characterizes permutation
graphs, is the following theorem.

Theorem 2.3 A graph G is a permutation graph if
and only if it has a cohesive order.

Proof. If G is a permutation graph, then G is
isomorphic to G, for some permutation o . By The-
orem 2.1, o is aa cohesive order of G, . Let ¢ be
an isomorphism of G to G,. Then a=¢ ‘oo is a
cohesive order of G.

Conversely, let G be a graph with a cohesive order
a=(V,V,,--,V,). Orient G toobtainadigraph D as
follows: For each edge viv; in G, assign the direction
(v,v;) if i<j; otherwise assign the direction
(vj,vi .

By property (a) of a cohesive order, it follows that
D istransitive. Extend D to a tournament by orient-
ing the complement G of G asfollows: If i< but
Vv, isnot in D, assign the direction (v;,v) to the
edge vv, in G. By Lemma 21 « is a cohesive
order of G. So likewise, the orientation of G obtained
in this manner is also transitive. Let us denote this
digraphby D .

Theunionof D and D isanorientationof GUG.
Since GUG iscomplete, then T=DUD isatourna
ment. We claim that T is a transitive tournament. Let
(xy) and (y,z) bearcsof T.If both arcs belong to
D orto D, then (x,z) isin T because both D
and D are transitive. So let us assume that one of the
arcsbelongto D and the other arc belongto D . With-
out loss of generality, assume that (x,y) is an arc in
D,and (y,z) isanacin D.If (x,z) isin D,we
are done. If (x,z) isnotin D, then (z,x) isin D.
Since D is transitive and (z,x), (y,z) aein D,
then (y,x) isin D. This is a contradiction because
(x,y) isin D.
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By Theorem 2.2, the score sequenceof T is
(01,--,n-1). Let o be the permutation defined by
o(i)=1+s(v;), where s(v,) isthescoreof v, in T.
We claim that the mapping ¢:v, >1+s(v)=o(i) is
anisomorphismof G to G, .

The mapping ¢ is bijective since the scores of the
vertices are distinct. It remains to show that ¢ pre-
serves adjacency. Let vv; be an edge of G, where
I <].In D we havethearc (v,v;). Since the tour-
nament T istransitive, then by Theorem 2.2,
s(v)>s(v;) . Hence, (o(i),o(j)) is an inversion of
o . Therefore, (v;) and ¢(v;) are adjacent in G, .
Conversely, let ab be an edge in G, . Then either
(a,b) or (b,a) is an inversion. Without loss of
generality, assume that (a,b) is an inversion. Let
a=o(i)=1+s(v) ad b=o(j)=1+s(v;), where
i<j.Since (ab) isaninversion, we have a>b, or
s(v)>s(v;) . Therefore, the arc (v,v;) is in T .
Since i< |, the arc (v,v;) must be in D . Conse-
quently, theedge vv; isin G.

Here is an illustration of the constructive proof of
Theorem 2.3. Consider the graph G shown in Figure 2
with acohesive order (X, X,, %, X3, %) -

To be able to follow the discussion in the proof of
theorem without difficulty, let

(V11V2’V31V4’V5) :(X21X41X1'X3’X5) :

Using the bottom drawing in Figure 2, we construct a
digraph by directing all edges from left to right. For two
vertices not adjacent in G, we assign the arc that goes
from right to left. Then the result is a transitive tour-
nament. It is not difficult to get the score of any vertex in
this tournament. We simply count the eastbound arcs and
the westbound arcs with a fixed tail. Consider for exam-
ple, v, =x,. The number of eastbound arcs with tail at
X, is 3. The number of westbound arcs is smply the
number of vertices to its left that are not adjacent to to
X, . The table below summarizes the scores of the vertices.

Vertex Vi =X Vo =Xy V3 =X V4= X3 V5= Xs
Score, s(vi) 2 4 0 1 3

Take the permutation o defined by o (i)=1+s(v,).

Then o=(3512,4). The permutation graph G, is
shownin Figure 3.

3. Construction and Examples of
Permutation Graphs

Some fundamental facts about permutation graphs are
given in the next theorem.

Theorem 3.1 Let G be a graph. The following are
equivalent:

(8 G isapermutation graph.

(b) G isapermutation graph.
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Figure2. A graph G with cohesive order

(vl,vz,v3,v4,v5) = (xz,x4,x1,x3,x5) .

Figure 3. The permutation graph G,, o=(35,1,2,4).

(c) Every induced subgraph of G is a permutation
graph.

(d) Every connected component of G
mutation graph.

Proof. From Lemma 2.1, G has a cohesive order if
and only if G has a cohesive order. Therefore, (a) and
(b) are equivalent.

If (V,V,,--+,V,) is a cohesive order of G, then the

''n

subgraph of G induced by a set of vertices
{\41,\42,---,v },Where i, <i, <---<i, has cohesive or-

Ik

is a per-

der (\/il,vi2 ,-+-,V, ] and therefore is a permutation graph.
Hence, (a) and (c) are equivalent.
Statement (c) implies statement (d) because a con-
nected component of G isan induced subgraphof G.
It remains to show that (d) implies any of (a), (b), (c).
Let G have connected components G,,G,,---,G, and
let n betheorderof G, . Let

‘, =(viv'2v:})

be acohesive order of G, . Then
=0y, 05, 0y)

2 2 2 k | K k
= (VEVa e Vi VPG o VR Ve V)

is a cohesive order of G. Therefore G is a permu-
tation graph.

We can now identify permutation graphs through the
existence of a cohesive order. Moreover, we can even
determine a permutation that generates a permutation
graph isomorphic to the graph having a cohesive order.

Paths P, and stars K, are permutation graphs
because they have cohesive orders as illustrated in
Figure 4.

In the drawing of the path P, , we have

Vi =2,V,=1Vv;=4,v, =3V, =6, €tc.

Condition (a) is vacuously satisfied because thereisno
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pair of arcs vv;, and v;v, such that i< j<k. Note
for example that (2,3) isan arc and the vertices 1 and
4 are between 2 and 3 in the drawing. We have 1 adja
cent to 2 and 4 adjacent to 3. This illustrates condition
(b).

In the drawing of the star K, , we see that for every
arc (0,k) where k>1 al vertices i with O<i<k
arebetween 0 and k. Moreover, thevertex i isadja
cent to 0. Therefore condition (b) is satisfied. Condition
(a) is satisfied vacuoudly.

Paths and stars are trees but not al trees are perm-
utation graphs. Consider the tree K/, formed by sub-
dividing each edge of the star K, ; into two edges, as
shownin Figureb.

It is not difficult to argue indirectly that K, has no
cohesive order. Therefore thisis not a permutation graph.
This result is also established by Limouzy [5] where he
used thesymbol T, for K.

Harary and Schwenk [9] defined a caterpillar to be a
tree with the property that the remova of al pendant
vertices results into a path. Figure 6 shows a caterpillar
with 25 pendant vertices. The removal of these 25
pendant verticesyieldsthe path P, .

The next lemmais easy and its proof is omitted.

Lemma 3.1 Atreeisa caterpillar if and only if it does
not contain K, asasubgraph.

Theorem 3.2 Atreeisa permutation graph if and only
ifitisa caterpillar.

Proof. A tree that contains K, is not a permutation

e A S
2—1 W3 &3 \g{(' v @2 /x3/ &)
W s
Path, P, Star, Kin

Figure 4. Cohesive order of pathsand stars.
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Star, Ky 3

Figure5. Thetree K, obtained by subdividing the edges
of K, ;.
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Figure 6. A caterpillar with 25 pendant vertices.
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graph because K, isnot a permutation graph. Therefore,
all we need to show is that a caterpillar is a permutation
graph. Let C be a caterpillar and let P, be the path
obtained from C by removing the pendant vertices. If
n=1, then C is either the trivia graph or the star
K., for some p>1. Since the trivia graph and the
stars are permutation graphs, we assumethat n>2.

Let us form the cohesive order of P, as shown in
Figure4. Let § be aset of pendant verticesof C all
adjacent to the same vertex i of P,. If i isodd, we
insert the vertices in § immediately to the left of the
vertex i+1 of the path (see Figure 4). If i isevenwe
insert the vertices in § between i and i-1. The re-
sult isacohesive order of C. Therefore C isapermu-
tation graph.

Definition 3.1 Let G be a graph with vertices
X, %, -, %, and let H;,H,,---,H, be a collection of
arbitrary graphs. The compositionby G of
Hy,H,,---,H,, denoted by G(H,H,,--,H,) is the
graph formed by taking the digoint union of the graphs
H; and then adding all edges of the form ab; where
g isin H;, b, isin H, whenever xx; isan edge
of G.

If each H, isequal to afixed graph H , we use the
symbol G(H) to denote the composition.

The sum of two graphs L and M , denoted by
L+M isformed by taking the digoint union of L and
M and then adding all edges of the form ab where
aeV(L) and beV(M) . Thus the composition
G(H.,H,,--,H,) is formed by taking the disjoint
union of the graphs H; and then forming the sum
H; +H, if the associated vertices x and x; of G
are adjacent.

Theorem 3.3 Let G be a graph of order n and let
H,,H,,---,H, bearbitrary graphs. Then

G(Hy, Hy,o Hy)

is a permutation graph if and only if G, H,,H,,---,H,
are permutation graphs.

Proof. First, assume that G(H,,H,,---,H,) isaper-
mutation graph. Each graph H, is an induced subgraph
of G(H;,H,,-,H,). Therefore, each H, is a per-
mutation graph. If we take a vertex x from each H,,
then the subgraph induced by these vertices is iso-
morphicto G. Therefore G isapermutation graph.

Conversely, assume that G, H,,H,,---,H, are all
permutation graphs. Then there is a cohesive order
(v, Vy,e+,v,) of G.Let n betheorder of H,. Then

n

theverticesof H, hasacohesive order
0= (XK X ).
It is easy to check that ¢=((,,(,,--,(,) isa cohe-
siveorder of G(H,,H,,---,H,).
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Theorem 3.3 actually gives us an easy way of con-
structing permutation graphs by composition. To illu-
strate this, let G be the star K,; with centra vertex
X, and pendant vertices x,, x;, X, , then

G(R,.Cs, R, R)

isshownin Figure7.
All graphs of order at most 4 are permutation graphs
[1]. Therefore, G(P,,C;,R,P,) isapermutation graph.
Every graph G of order n may be written as

n

G:G(Fi,ﬂ, ,F;J and G=K,(G).

If these arethe only ways G can be written as a com-
position, thenwe say that G isprime.

It is easy to see that among the complete graphs, only
K, and K, are prime permutation graphs.

Among trees with diameter not exceeding 3, it is easy
to check that only the paths B, B, and P, are prime
permutation graphs. These are all caterpillars that do not
have two pendant vertices adjacent to a common vertex.
Note that P, which is excluded from the list is a ca-
terpillar with two pendant vertices having a common
neighbor.

Theorem 3.4 A tree is a prime permutation graph if
and only if it is a caterpillar where no two pendant
vertices have a common neighbor.

Proof. In view of our observation about trees with
diameter not exceeding 3, we assume throughout that T
has diameter at least 4.

Let T be atree of order n. Assume that T is a
prime permutation graph. By Theorem 3.2 T is a cater-
pillar. Suppose that x, and x, are pendant vertices
with a common neighbor y. Let G be the tree ob-
tained from T by identifying x, and Xx,.Let
Vi, Yo.ro, Y, betheverticesof G Without loss of ge-
nerality, assume that y, is the vertex resulting from the
identification of x, and x,.Let H, be the graph with
two vertices but without an edge, and let H, be the
trivial graphfor i=2,3,---,n—1. Then

T=G(H,,H,,H,).
This contradictsthefactthat T isprime.

Figure7. Thecompositionby K,, of P, C,,P,P,.
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Conversely, assume that T is a caterpillar with no
two pendant vertices having a common neighbor. Sup-
pose that T is a not a prime permutation graph. Then
for some non-trivial graph G with vertices

YirYor s Vs T :G(Hl’HZ-”':Hk)-

Without loss of generality, we may assume that H,
contains at least two vertices. Now, G must be con-
nected for otherwise, T is disconnected. Let y, be
adjacentto y, without loss of generality. Then

H +H,

is a subgraph of T. If H, has at least two vertices,
then there will be a cyclein H,+H,. Therefore, H,
has only one vertex. In G, y, cannot be adjacent
anymore to any other vertex for otherwise, we would
aso create a cycle of length 4. Now consider H, +H,.
There cannot be adjacent vertices in H, for otherwise
we will create a cycle of length 3. But then al verticesin
H, arependant verticesof T and they have acommon
neighbor, thevertexin H,. Thisisacontradiction. [J

Theorem 3.5 Let G be a decomposable permutation
graph. Then there exists a non-trivial prime permutation
graph U and permutation graphs

H, H,, H,
which are subgraphsof G such that
G=U(H,,H,, - H,).
Proof. Let
G=U(H,H,, - H)

be a decomposition of G, where U is non-trivid. If
we take one vertex X from each H;, then the sub-
graph induced by these vertices is isomorphic to U .
Hence, U must be a permutation graph. Each H, is
an induced subgraph of U (H,,H,,---,H,). Therefore,
each H, is a permutation graph. Assume that U has
smallest order among all such decompositionsof G.We
clam that U is a prime permutation graph. Suppose
that U isnot prime. Let

U=V(L,L,L,)

be a decomposition of U , where V is non-trivial.
Since V isadecomposition of U and vertices of U
are the induced subgraphs H, then each L, is a as
sociated with subset of {H,H,,---,L, } . We may assume
that L, isaninduced subgraph of G.Hence
G=V(L,L,,L,). But this contradicts the choice of
U . Therefore, U must be a prime permutation graph.
O

4. Concluding Remarks

Theorem 3.5 is a fair structural description of a per-

0OJDM



38 S.V.GERVACIO ET AL.

mutation graph. Each H,; in the decomposition
G=U(H,H,,,Hy)

is a permutation graph and so is itself prime permutation
graph or a composition of permutation graphs by a prime
permutation graph. So we see that a permutation graph is
expressible in terms of prime permutation graphs by
compositions.

We have determined already the prime permutation
trees, given in Theorem 3.4. One interesting problem to
consider is the characterization of prime permutation

graphs.
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