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ABSTRACT 

Let 0 π   be a fixed pythagorean angle. We study the abelian group H  of primitive integral triangles  , ,a b c  

for which the angle opposite side c is  . Addition in H  is defined by adding the angles   opposite side b and 

modding out by π- . The only H  for which the structure is known is π 2H , which is free abelian. We prove that for 

general  , H  has an element of order two iff  cos2 1   is a 

has a

rational square, and it has elements of order three iff 

the cubic  2cos tional solution 0 13 23 1x x  0   a r x  . T ws that the set of values of his sho   for whic  h

H  has two-torsion is dense in  0,π , and rly for three-torsion. We also show that there is at most one copy of 

either 2  or 3  in 

simila

H . Finally, we give some examples of higher order torsion elements in H . 
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1. Introduction 

In [1], Olga Taussky introduces a group operation on the 
set of primitive pythagorean triples 

    2 2 2, , : gcd , , 1,a b c a b c a b c   

The argument of a bi  is the angle   opposite 
side b of the triangle. Since we add the arguments of 
complex numbers when we multiply the numbers, we can 
interpret the group operation as addition of the angles 

1  and 2  to find a primitive triple whose correspond-  , 

that is, the set of primitive integral triangles  in 
which the angle 

 , ,a b c
  opposite side c is a right angle. 

Ernest J. Eckert spells out the details of the group opera-
tion in [2]: 

ing angle is 1 2  . A problem arises when 1 2

π

2
   ,  

   
 
 

, , , ,

, , if
:

, , if

a b c A B C

aA bB aB bA cC aA bB
aB bA bB aA cC aA bB



   


   




0,

0,



2

 

i.e. when 0aA bB  , since this no longer corresponds 
to a pythagorean triple with positive coordinates. To fix 
this, we mod out the angle by π 2 ; this is why we have 
the two cases in the definition of the group operation 
above.  

This group has been the subject of much interest over 
the years. In [3], Jean Mariani studies the group of ho-
mogeneous linear transformations with integral coeffi-
cients that preserve the triangles above as a set. In [4], 
Barbara Margolius uses a sequence of pythagorean tri-
ples derived from the group law above to prove that  

where we reduce the answer by a common factor if nec-
essary to obtain a primitive triple. The group has identity 

; the inverse of  is   . 1,0,1  , ,a b c , ,b a c
The construction arises from the famous identity on 

sums of squares: 

Plouffe’s constant 

1
arctan

2
π

 is transcendental, a special       22 2 2 2 .a b B B aA bB aB bA       

case of Hilbert’s seventh problem.  This identity, of course, corresponds to the rule  
z w zw  for complex numbers, and the group law on 

pythagorean triples has a similar geometric motivation: 
we identify the triangle  with the complex num- 
ber , and the group operation is then just complex 
multiplication.  

 , ,a b c

Eckert’s main result in [2] is that this group is free 
abelian, that is, isomorphic to a direct sum of copies of 
the integers. The sum is indexed by the triangles  , ,a b p

d 4
, 

where  and p is prime with . In 
particular, the group is torsion-free, that is, there do not 

a b 1 mop 


a bi
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Suppose first that  , ,a a c H  is a point of order 
two. We invoke the Law of Cosines: 

exist any nontrivial elements  with 0x  0nx   for 
. 0n 

In [5], Eckert and Preben Dahl Vestergaard generalize 
the construction above to the case when   is no longer 
a right angle. We define an angle 

2 2 2 2 cosc a b aa    

 
2

2
2 1 cos

c
a

   0 π   to be py-
thagorean if   or π-  is an angle in a pythagorean 
triangle, or, equivalently, if sin   and cos  are both 
rational. For a fixed pythagorean angle  , we define 

So  2 1 cos  is a rational square, as desired.  

Conversely, suppose that  
2

2
2 1 cos

c
a

  , where a,   , ,ca b to be the set of primitive integral triangles H  
for which the angle opposite side c is  . We can add 
two triangles by adding their values for c  are relatively prime. Note that  

 0 2 1 cos 4   , so  , so 0 c 
 , modulo 

π- : 

   



, , , ,

co
:

2 c ,

a b c A B C

aA bB aB bA c

aB bA aA aA c





  
  




2a  , ,a a c  is a 
triangle, and the computation above shows that by the 
Law of Cosines, the angle opposite side c is  . Hence 
 , ,a a c H  is a point of order two.  , 2

os ,

bB

bB

 s , C

C

π-

 

To show that only one point of order two can exist, we 
note that any two triangles  , ,a a c  and  , ,a a c    in 
H  would have to be scalar multiples of each other, and 
would therefore be represented by a single primitive in-
tegral triangle. ∎ 

We use the first formula above in the case when 
, which corresponds to 1 20aA bB     , and 

the second when , which corresponds to 

1 2

0aA bB 
π-  

1,0






. As before, we stipulate that we will scale 
the answer by a common factor if necessary to obtain a 
primitive integral triangle. Eckert and Vestergaard prove 
that this construction again gives us a group, still with 
identity  and with the inverse of  being 

. Note that the original group considered in [2] is 
just the special case 

,1

We illustrate Theorem 1 with some quick examples: 
1) For π 2  , we have  2 1 cos 2  , and as 

shown in [2], has no point of order two.  
2) For π 3  , we have , and  2 1 cos 1  π 3H  

contains the point (1, 1, 1) of order two. 
 , ,a b c

 , ,b a c
3) For 

1
arccos

8
   

 
 , we have   9

2 1 cos
4

  , 

and H  contains the point (2, 2, 3) of order two. 

π 2H , whose structure we know 
completely.  

Eckert and Vestergaard ask a number of interesting 
questions about the structure of  in general. They  H Corollary 2. The set of   for which H  contains a 

point of order two is dense in  0,π . mention that when 
π

2
  ,  can have nontrivial  H  2 1Proof. This follows from the fact that cos  is 

a continuous function from  0,π  onto  0,4  and the 
rational squares are dense in  0,4 . ∎ 

torsion elements, that is, elements  such that 
 for some , but they do not give details. In 

this paper, we pursue the study of torsion elements in 

0x 
0nx 

H

0n 

 . Our main results give necessary and sufficient con-
ditions on   for H  to have two-torsion and three- 
torsion. From these theorems, it will be easy to see that 
the set of values of   for which H  has two-torsion is 
dense in the interval 0 π 

H

, and similarly for three- 
torsion. We will also show that there is at most one copy 
of either 2  or 3  in    . Finally, we will give some 
examples of higher-order torsion elements in H .  

2. Two-Torsion 

3. Three-Torsion 

Our result for three-torsion follows the same general 
spirit as that for two-torsion, but is significantly harder. 
We first prove the easy result that H  contains at most 
one copy of 3 ; this proof will help set the stage for the 
proof of our main theorem. 



Theorem 3. H  contains at most two points of order 
three. 

Proof of Theorem 3: Suppose  , ,a b c H
 , ,b a c

 has or-
der three. Note that its inverse  also has order 
three, so we may assume without loss of generality that 

. (If a b a b , then as we saw above,  has 
order two, so it cannot have order three). Let 

 , ,a b
Our results on two-torsion and three-torsion are similar 
in flavor, but the theorem on two-torsion is simpler and 
significantly easier to prove, so we will start there. 

c
  and   

be the angles opposite sides a and b respectively. Since 
, we have a b   , so 2 π-  . Thus, when we 

compute  2 , ,a b c , we are adding   to itself, and 
there is no modding out by π- . The resulting triangle is 
    , w2 hich has angle ,a b,c , ,b a c   opposite side a, 

so 2  . But since   is fixed, the equation 2   

Theorem 1. H  has a point of order two iff  
 2 1 cos

 , ,b a c


 is a rational square. When this is true, the 
point of order two is unique. 

Proof of Theorem 1. Since the inverse of  is 
, a point has order two iff it has the form 

 , ,a b c

, ,a a c .  
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completely determines the three angles of the triangle, so 
there is only one primitive triple with these angles. (The 
other point of order three, of course, is the inverse 

). ∎  , ,b a c

4 2 2 3 2 2 3 4 22 cos 4 8 cos 4 cosa a b a b a b ab b       

Rearrange: 
4 2 2 3 3 4 23 2 cos 8 cos 4 cos 0a a b a b ab b        

We will continue to use some of the ideas above in the 
proof of our main theorem on three-torsion. Factor: 

Theorem 4. H  has a point of order three iff the cu-
bic 

  3 2 32cos 3 2 cos 0b ab a a b         

  3 22cos 3 1 0x x     We claim that 2 cos 0a b   . To prove this claim,  

suppose that 2 cos 0a b   ; then cos
2

ab   . Plug-  has a rational solution 0 1x  .  
The cubic criterion gives easy answers to two ques-

tions: First, given a specified  , we can ask whether ging this into the second scaling equation, we get ac = ab, 
so b = c. Plugging this into the first scaling equation, we 
get , contradicting the fact that a and b are both 
integers. This proves our claim, so we may cancel the 
factor of 

2 2a b
H  has three-torsion. Assuming that   is pythagorean, 
we can use the Rational Root Theorem to check quickly 
whether the cubic above has a rational solution between 
0 and 1. If it does, the proof below will give a construc-
tive algorithm to produce a triangle   of order 
three. 

2

2 cosa b  : 

, ,a b c   3 2 32cos 3 0b ab a     

Divide by  3 :aSecond, if we don’t have a specific   in mind, we 
can use the cubic criterion to find values of   for which 

 
3 2

3 2
2cos 3 1 0

b b
a a

     H  has three-torsion. Indeed, we can solve the equation 
above for cos : 

Set :
bx
a

 , which is a rational number with 0 < x < 1, 

and we have 

2

3

3 1
cos

2

x
x

 
  

The rational function on the right takes values less 
than −1 for 0 < x < 1/2, and it maps the interval 1/2 ≤ x ≤ 
1 continuously onto the range  1,1 . Therefore, to find 
angles whose groups have three-torsion, we can take any 
rational 1/2 ≤ x ≤ 1 and then find the corresponding  .  

  3 22cos 3 1 0,x x     

as desired. 
Conversely, suppose we have a rational solution 0 < x 

< 1 to  
Proof of Theorem 4. First, suppose that  has 

order three. As in the proof of Theorem 3 above, we may 
assume that a > b and that when we compute 

 , ,a b c

 2 ,a b,c , 
there is no modding out by π- . So we use the first set 
of equations for the group operation: 

  3 22cos 3 1 0,x x     

Define  to be positive relatively prime integers  a b

     2 2 2 2, , 2 2 cos , ~ , ,a b c a b ab b c b a c  

such that 
bx
a

 , and define c to satisfy  

 2 cosac b a b   . (Note that c > 0). Scale a, b, and c 
by a common factor, if necessary, to be relatively prime  

 2 ,

The common factor between the two triangles on the 
right is c, giving us the following “scaling equations”: integers; note that this scaling will preserve both 

bx
a

   

and  2 cosac b a b   .  2 2bc a b   

 22 2 cos 2 cosac ab b b a b      
By reversing the equations from the forward direction 

of the proof, we can work back to  

  3 2 32cos 3 0.b ab a     Solve the second scaling equation for c: 

2 1 cos
bc b
a

   
 

 We can solve this for cosb   and then build up to 
 2 cosb a b   as follows: 

Plug this into the Law of Cosines: 

2
2 2 2 2

2
2 cos 4 1 2 cos cos

b ba b ab b
a a

  
 

    
 

2 3

2

3
cos

2

ab ab
b

 
  

 
2 2

2

2 3
cos

2

ab ab aa b
b

  
 

3

 
Multiply by : 2a
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3) Let 
7

arccos
128

  
 

3 2

2
cos

2

a aba b
b

 
   

 . Then the cubic becomes 

3 27
3 1

64
x x 

3 2

2 cos
a abb a b

b
 

   0    , which has the rational solution 

4

7
x  . This leads to the triangle  28,16,33 ?H , which 

has order three. 

Substitute: 
3 2a abac

b


  
Although it is not quite so obvious, we have the same 

corollary as for two-torsion: Simplify: 
Corollary 5. The set of   for which H  contains a 

point of order three is dense in  0,π . 2 2bc a b   
Proof. The rationals are dense in the interval 1/2 ≤ x ≤ 

1, which, as noted above, is mapped continuously by  
Now we check that  is a triangle. First, we 

already saw that , so . Second, to see 
that , we can reorganize the equation immedi-
ately above: 

 , ,a b c
b


a  b a c 

a b c 
2

3

3

2

x 1

x


 onto  1,1  and in turn by arccos onto 0 ≤ y ≤  

π. Hence the set of   corresponding to a rational x is 
dense in  0,π . ∎ 

2 2bc b a ab    

 b b c ab   
4. Examples of Higher Order Torsion b c a   
We close with some examples of higher order torsion 
points in H : Third, we can continue to reverse the equations from 

the forward direction of the proof until we get back to  

2 2

2
2 2

2

2 cos

4 1 2 cos cos

a b ab

b bb c
a a



 

 


    

 
2 ,





 

1) Let 
31

arccos
32

  . Then the triangle (10, 8, 3) has 

order four in H . 

2) Let 
475

arccos
486

  . Then the triangle (105, 81, 31) 

has order five in H . which gives us . It also shows by the Law of 
Cosines that the triangle , has angle 

c a b 
 , ,a b c   opposite 

side c, so  , ,a b c H .  3) Let 
8143

arccos
8192

  . Then the triangle (1220, 1024, 

231) has order six in H . 
Finally, we have already established the scaling equa-

tions 
2 2bc a b   

 2 cosac b a b    

which show that  

    
 

2 2 2 22 , , , 2 2 cos , ~ , ,

, , ,

a b c a b ab b c b a c

a b c

  

 





 

I found these essentially by a brute force search on a 
computer, finding multiples of integral triangles and see-
ing which ones have finite order. As patterns start to 
emerge for smaller values, we can narrow and speed up 
the search for larger values by restricting to those trian-
gles that satisfy similar patterns. In particular, there is a 
clear pattern in the values of b here: .  From 
computer-generated evidence, the pattern on the expo-
nents seems to be genuine, but the pattern on the bases is 
a red herring: other examples of points of order six are  

3 4 52 3 , 4, ,

so  has order three, as desired. ∎  , ,a b c
Here are some sample applications of Theorem 4: 

(5555, 3125, 3024) for 
14167

arccos
15625

  , (17214, 7776, 

12155) for 
72863

arccos
93312

  , and (42833, 16807, 34320) 

for 
76751

arccos
117649

  . The consistent pattern seems to  

1) Let π 2  . Then the cubic degenerates to  
, which has no rational solutions at all, and 23 1x   0

π 2H  has no point of order three.  

2) Let 
9

arccos
16

  . Then the cubic becomes  

3 29
3 1

8
x x   0 , which has the rational solution 

2

3
x  .  

be that a point of order n must have the form  1, ,na k c  
(or, of course,  1, ,nk b c ), but I do not have a proof of 
this. I invite you to prove this or find a counterexample.  

Following this through the proof above leads to the tri-
angle  6,4,5 H , which has order three. 
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5. Conclusions and Further Questions 

We have seen that although π 2H  is torsion-free, there 
are many values  0,π   for which H  has torsion 
points of various orders. In fact, the set of   for which 
H  has two-torsion (respectively, three-torsion) is dense 
in  0,π , and we can easily characterize all such   in 
terms of conditions on cos . We have also seen that in 
such cases, H  contains a unique copy of  (respec-
tively, ). 

2
2

There remain many intriguing open questions on 


H . 
Obviously we would like to have a complete determina-
tion of the isomorphism type of H  for all  , but 
since that doesn’t seem feasible in the near future, there 
are plenty of more approachable issues: 

1) For what values of n do there exist H  with 
n-torsion? 

2) For any n for which this is true, how can we char-
acterize the   for which H  has n-torsion?  

3) Is the set of such   dense in   0,π ? (Note that in 
all the examples of higher order torsion above, we had 

π 2  ). 
4) Is it possible for H  to contain more than one 

copy of ?  n
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