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ABSTRACT 

Riemann zeta function is an important tool in signal analysis and number theory. Applications of the zeta function in-
clude e.g. the generation of irrational and prime numbers. In this work we present a new accelerated series for Riemann 
zeta function. As an application we describe the recursive algorithm for computation of the zeta function at odd integer 
arguments. 
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1. Introduction 

The Riemann zeta function  s
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 defined as for com-
plex numbers s with   R s 
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has a central role in number theory and appears in many 
areas of science and technology [1]. The Riemann zeta 
function is closely related to the prime numbers via (1) 
and it is an important tool in cryptography. Algorithms 
for evaluating  s  are vitally developing initialised 
by Euler, who invented the basic equation (1). Much of 
the research effort has been laid to the developing the 
accelerated series for computation of  s

 

 for integer 
arguments [1-4]. For even s, the Riemann zeta function 
obeys the general rule   πss N s  , where  N s  
is an integer. For odd s, no closed form solution for 
 s  has been solved and the computational algorithms 

are usually based on the acceleration of the series (1) by 
asymptotic expansion with Bernoulli numbers or via 
Euler's transformation [2]. Recursive algorithms have 
also presented for evaluation of  s  at odd integers 
[5]. 

In this work we describe a new accelerated series for 
the Riemann zeta function at integer arguments. The 
main result is involved in Theorem 1. 

Theorem 1: Let us suppose that  s  is the Riemann 
zeta function defined by (1). The following series con-
verges as 
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In Section 2 we give the proof of Theorem 1. In Sec-
tion 3 we present derivatives of Theorem 1 and describe 
the method for accelerating the zeta function series given 
by Theorem 1. In Section 4 we describe the recursive 
algorithm for evaluation of the Riemann zeta function at 
integer arguments. 

2. Proof of Theorem 1 

We may deduce 
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The series (2) converges very slowly. However, we 
may write 
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which has an accelerated convergence. The proof is now 
completed. 

3. Derivatives of Theorem 1 

Lemma 1: For  2m 
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Proof: Similar as Theorem 1. 
Lemma 2: For  2m 
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Proof: Follows directly from Lemma 1 by elimination 
of the first term in series (4). 

Lemma 3: 
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Proof: Similar as Theorem 1. 
Lemma 4: 
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Proof: Follows directly Lemma 3. 
Lemmas 3 and 4 can be generalised as 
Lemma 5: For  2m 
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Lemma 6: For  2m 
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The last series (Lemma 6) can be further generalized 
as 

Lemma 7: For  and  1k  2m 
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The series can be further accelerated by noting that 
. We may write Lemma 7 as  lim 1
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which gives 
Lemma 8: For and  1k  2m 
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4. Recursive Algorithm 

From Lemma 8 we may deduce 
Lemma 9: For  and  1k  2m 
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The last series can be computed if  k s m  , 
2,3,s    are known. This leads to the fast recursive 

computation of the zeta function. Especially for 1k   
we obtain the sequential  1m   values as 
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Both series in (13) have accelerated convergence and 
to obtain the required accuracy only a few previously 
computed  m s  , 2,3,s   values are needed. 

5. Discussion 

In this work we present a new accelerated series for 
Riemann zeta function. The key observation is presented 
in Theorem 1. The infinite summation of the zeta func-
tions weighted by 1 !s  can be represented by fast con-
verging series. One application is the recursive computa-
tion of the zeta function from the sequence of previously 
known zeta function values. The recursive algorithm can 
be initialised using (13), which has itself accelerated 
convergence. Especially in high values of the first 
series in (13) has high convergence due to the term  
in the denominator. 

m
mn

The zeta function values for odd integers are generally 
believed to be irrational, thought consistent proof is 
given only for  3  [6,7]. The irrational number se-
quences, which can be easily reproduced from a few pa-
rameters are important e.g. in encryption coding. The 
recursive algorithm (Lemma 9) serves as a good candi-
date for the irrational number generator, since it requires 
only two parameters  and k m . By altering the pa-
rameters a countless number of irrational number se-
quences are obtained. 

Recently a close connection with the log-time sampled 
signals and the zeta function has been observed [8]. The 
zeta transform allows the analysis and synthesis of the 
log-time sampled signals for example in compressive 
sensing applications. 
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