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ABSTRACT 

The purpose of this paper is to establish, paralleling a well-known result for definite integrals, the conditional conver-
gence of a family of trigonometric sine series. The fundamental idea is to group appropriately the terms of the series in 
order to show absolute divergence of the series, given the well established result that the series as it stands is conver-
gent. 
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1. Introduction 

It is well-known that the family of improper trigonomet-
ric sine integrals whose coefficients converge steadily to 
zero form a set of conditionally convergent integrals 
whenever the integral of the coefficients themselves di-
vergences (see [1]). However, it is also interesting to 
observe that there is a parallel result for infinite series. 
The discrete problem requires an entirely different and 
novel approach, which is presented in this paper. The 
novelty resides in a detailed understanding of the proper-
ties of the greatest integer function as it relates to con-
vergence and in the use of Euler’s function to ascertain a 
proper uniform lower bound. There is also a well-known 
number theory result which turns out to be useful. 

The following theorem gives the appropriate generali-
zation: 

Theorem. Suppose that one has a steadily decreasing 
sequence of numbers f(n), 0 ≤ n < ∞ ( where n is a non-
negative integer ), such that f(n) tends to 0 as n tends to 
infinity. Suppose also that the sum of the f(n)’s is infinite. 
Then 
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is likewise infinite, where abs stands for “absolute value”. 
In other words the series 
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f n
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is conditionally convergent. 
Proof. First of all it is well known that the series (2) is 

convergent (see [2]). Next let us observe that sin1, sin2, 

and sin3 (angles being expressed in radians) are all posi-
tive; then sin4, sin5, and sin6 are all negative, etc., the 
signs alternating essentially in groups of 3 (or perhaps 4 
at times). In fact we shall show that we have sequences 
 sin n ,     π 1 1 πk n k      , 0 ≤ k < ∞, with sinn 
being of constant sign in each sequence and with the 
brackets denoting the greatest integer function. Indeed 
we see that 

   π 3 π 3 π π 1 πk k k k       , 

so that 

   π 3 1 πk k     .               (3) 

It follows that both [kπ] + 1 and [kπ] + 2 are values of 
n whose sines are within the kth sequence. Also, [kπ] + 4 
may or may not be a value of n whose sine is within that 
sequence, but such an event will obtain for an infinite 
number of values of k (see [3]). On the other hand, we 
can show that [kπ] + 5 is not a value of n whose sine is in 
the kth sequence. In fact 
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So the kth sequence definitely has either three or four 
members. In any event it is clear that 
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  (5) 

where, as before, abs means “absolute value”. 
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Observe now that, just in case sin ([kπ] + 4) would 
appear in a grouping, Equation (5) would certainly pro-
vide a lower bound on the sum of the absolute values 
within that grouping. 

Our next step is to use Euler’s formula to obtain a 
closed form expression for Equation (5). Indeed we have 
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(6) 

where exp stands for the exponential function. So, in order 
to determine Equation (5), we need the imaginary part of 
the right member of Equation (6), which is found to be 

         sin 3 2 sin π 2 sin 1 2k  .          (7) 

We see that our closed form expression for Equation 
(5) is the absolute value of Expression (7), which is just 

         sin 3 2 sin π 2 sin 1 2 .        (8) abs k 

Next let us determine a uniform positive lower bound 
for Expression (8), i.e., for all k. Observe that 

 π 1 π 1 2 π 2 π 2.k k k k                   (9) 

From Expression (9) it follows that abs(sin([kπ] + 2)) 
lies between sin1 and sin2, sin1 being the smaller of the 
two. Thus our positive lower bound for Quantity (8) (for 
all k) is 

      sin 3 2 sin1 sin 1 2 .C            (10) 

Therefore, since {f(n)} is a steadily decreasing se-
quence, we assert that 
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Our last task is to show that the sum on the right side 
of Inequality (11) is infinite. On the contrary assume that 
the sum is finite. Let us examine the sums 
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For example suppose that i = 2 or 3. Now 
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However, then 

     1 π 4 π , 2,3f k f k i i     ,        (14) 

so that, by dominance, (12) converges for i = 2 and 3. 
Suppose next that i = 0 or 1. In a fashion similar to the 

development of Expression (13), one has 
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Thus 

     2 π 4 π , 0,1f k f k i i       .       (16) 

It follows that Quantities (12) converge, and therefore 
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f n




  ,                (17) 

in contradiction to the hypothesis of the theorem. There-
fore, the series on the right side of Inequality (11) di-
verges, and the theorem is proved. 

Example. Consider 
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
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when x = 1. It is clear that   1 logf n  n  is a strictly 
decreasing function of n and tends to 0 as n tends to ∞. 
Also, since 1 log 1n  n  and the harmonic series is 
divergent, so is the sum of the f(n)’s. According to our 
theorem, this infinite series for x = 1 is conditionally 
convergent. This also is a classic example of a trigono-
metric series which is not a Fourier series (see [4]). The 
underlying reason for that conclusion is that 
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is divergent, a fact which follows from the well-known 
integral test since 
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2. Conclusion 

Using a novel approach in the discrete case, which em-
ploys a well-known result in number theory together with 
Euler’s formula, we have proved a convergence theorem 
for infinite series which is a logical parallel to the corre-
sponding integral case involving an oscillating integrand. 
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