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ABSTRACT

In [1], the authors established the Brunn-Minkowski inequality for centroid body. In this paper, we give an isolate form
and volume difference of it, respectively. Both of these results are strength versions of the original.
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1. Introduction

The setting for this paper is n-dimensional Euclidean
space R". Let K" denote the set of convex bodies
(compact, convex subsets with non-empty interiors). Let
B, and S"* denote the unit ball and unit sphere in
R", respectively. If K e K", then the support function
of K, h, =h(K,:):S"* > R, is defined by

h(K,u)=max{u-x:xe K}, ues"" (1.1)
where u-x denotes the standard inner product of u and
X.

For each compact star-shaped about the origin K < R",
denoted by V (K) its n-dimensional volume. The cen-
troid body TK of K is the origin-symmetric convex
body whose support function is given by (see [2])

1
V(K)

h(TK,u)= f|u~x|dx, (1.2)
K

where the integration is with respect to Lebesgue measure
on R".

Centroid body was attributed by Blaschke and Dupin
(see [3,4]), it was defined and investigated by Petty [2].
More results regarding centroid body see [2-7].

For star body K and L, let K+L denote the har-
monic Blaschke addition of K and L. In [1], the authors
established the following Brunn-Minkowski inequality
for centroid body.

Theorem A. Let K,L be star bodiesin R". Then

SN 1 1

V(C(KFL)) 2V (TK)n+V (TL),  (13)

the equality holds if and only if TK and T'L are ho-
mothetic.
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In this paper, we give two strength versions of (1.3).
Our main results are the following two theorems.
Theorem 1.1. Let K,L be star bodies in R" and
0<a<l.
1
T(KEL))
1

v
>V (T (aK +(1-a))) ey (M((1-a)K Fal))

1 1
>V (IK)n +V (I'L)n,
the equality holds if and only if TK and TL are
homothetic.
Theorem 1.2. Let K and L be star bodies in R".
Ellipsoid E, c K ,and E, c L isahomothetic copy of
E,. Then

[v (F(K#L))-v(r(g 4 EZ))]

>[V(TK)-V (FEl)]% +[V(IL)-V (TE,)]

S

e
n
)

the equality holds if and only if TK and T'L are ho-
mothetic and

(V(TK),V (TE,)) = u(V (IL),V (TE,)),

where u isa constant.

Remark. Let @« =1 or =0 in Theorem 1.1, or let
E,=E,=9 in Theorem 1.2, we can both get the
Theorem A.

2. Notation and Preliminary Works

For a compact subset L of R", with the origin in its
interior, star-shaped with respect to the origin, the radial
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function p(L,"):S"* —> R, is defined by
p(L,u)=max{A:Auel}. (2.1)

If p(L,-) iscontinuous and positive, L will be called
astar body. Let ¢ denote the set of star bodies in R".

The mixed volume V (K,,---,K,) of the compact con-
vex subsets K,,---,K, of R" isdefined by

V(Kl’Kz""yKn)
— l 4 n+j
_m j:l(_l) i1<z<ijv (Kil + Ki2 EE Kij )
If Klz“‘:Kn—i:K: Kn’”l:'”:Kn:L,then

V (K, K,,-- K,) will be denote as
V;(K,L)=V (K,n—i;L,i). If L=B,, then V,(K,B,)
is called the quermassintegrals of K ; it will often be
writtenas W, (K)(i=0,1,---,n).

The mixed quermassintegrals
W, (K,L)(i=01---,n-1) of K,LeK",are defined by
8]

(n—i)Wi(K,L):IimW‘(KJrgl;) W) 2o

e—0"

Since W, (1K)=A""W, (K), it follows that
W, (K, K) =W, (K), for all i. Since the quermassintegrals
W.__, is Minkowski linear, it follows that
W, (K,L)=W,, (L) forall K.

Aleksandrov [9] and Fenchel and Jessen [10] have
shown that for K e K" and i=0,1,---,n—1, there exists
a regular Borel measure S, (K,:) on S"*, such that the
mixed quermassintegrals W, (K,L) has the following

integral representation:

Wi(K,L):lj

snfl

h(L,u)dS; (K,u), (2.3)

forall LeK". The measure S ,(K,-) is independent
of the body K and is just ordinary Lebesgue measure,
Son S"'. The surface area measure S,(K,-) will fre-
quently be written simply as S (K,-).

Suppose K,Leg,, A and u are nonnegative real
numbers and not both zero. To define the harmonic
Blaschke addition, AK + uL , first define & >0 by [6]

éfl/(ml) 21 I [ﬂV(K)ilp(K,U)nﬂ
st . (2.4)
1 nat TV (n+42)
+aV (L) p(Lu)™ [ du

The body AK + uL € @) is defined as the body whose
radial function is given by

Elp(AK T L)

(2.5)
=V (K) " p(K, )™+ v (L)

1 +1

p(L,-)n }
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3. Inequalities for Centroid Body

In this section, we will establish the inequality more ge-
neral than Theorem 1.1 as follows.

Theorem 3.1. Let K,Leg,, 0<i<n-1 and
0<a<1.Then

W, (T (K L))

>W, (T (aK +(1-a)L))™
+W, (T ((1-a)K fraL))ﬁ
> W, (K )i +W (TL )T

with equality holds if and only if TK and I'L are
homothetic.

To prove Theorem 3.1, the following preliminary re-
sults will be needed:

Lemma 3.2. ([8]). Let K,LeK" and 0<i<n-1.
Then

W, (K, L) =W, (K)"™"w, (L), 3.2)

with equality if and only if K and L are homothetic.

Lemma 3.3. ([11]). Let K,LeK", 0<i<n-1.
Then

W, (K + L)Y sw (k)Y w (L) 3.2)

with equality if and only if K and L are homothetic.

Proof of Theorem 3.1.

By (2.4), (2.5) and the polar coordinate formula for
volume, we can get &=V (K+L). Hence from (2.5),
we obtain

p(AK -Akpr)M _ /I,O(K,~)n+1 . ,up(L,-)M
V(AK F pl) Vv (K) V(L)

(3.3)

Using polar coordinates, (1.2) can be written as an
integral over S"*

K=y [ e v @0

Sﬂfl

Then from (3.3) and (3.4), we have
h(I(AK # pL),u)=2h(TK,u)+ uh(TLu). (35)
For K,Leg] and 0<a<1.Let
F=T(aK+(1-a)L),
G=I((1-a)K+al),

By (2.3) and (3.5), we have
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=
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—_
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—+>
-
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S—
I

That is
W, (T(K#+L))=W,(T(K+L),F+G).  (36)
By Lemma 3.2, we get
W, (C(KFL)) 2w, (K 3 L), (F ey,
which implies that,
W, (T(K+L))=W, (F+G), (3.7)
with equality holds if and only if I'(K+L) and F+G
are homothetic.

The Brunn-Minkowski inequality (3.2) can now be
used to conclude that

V\/i (F +G)1/(n7i) ZWi (F)l/(n*') +Wi (G)l/(n") , (38)

with equality holds if and only if F and G are homo-
thetic.

By (3.7) and (3.8), we get the first inequality of Theo-
rem 3.1. By the equality conditions of (3.7) and (3.8), the
first equality of Theorem 3.1 holds if and only if TK
and T'L are homothetic.

By (3.5) and Lemma 3.3, we get
W, (F ) =W (1 (aK 3 (2-a))) "

—W, (K +(1-a)TL)""
> oW, (TK ™ 4 (1 )W, (rL )™,

Similarly,
W, (G)" > (1-a )W, (TK Y™+ aw, (rL ).
Hence,
W, ( = )1/(”-i) +W, (G)l/(”-i)

>W, (1K )" sw, (rL),

with equality holds if and only if TK and TL are
homothetic. This completes the proof.
Let i=0 in Theorem 3.1, we obtain an isolate form
of Brunn-Minkowski inequality for centroid body.
Corollary 3.4. Let K,L be star bodies in R" and
0<a<l.

Copyright © 2013 SciRes.

[ h(r(KlL),u)dsi(r(KlL),u)=% [ [h(TK,u)+h(TL,u)]ds; (T(K+L),u)

snfl

[ah(TK,u)+(1-a)h(TL,u)+(1-a)h(TK,u)+ah(TL,u)JdS, (I (K +L),u)
[h(r(aK#(1-a)L),u)+h(r((1-a)K +aL),u)|ds, (F(K FL),u)
I

h(F,u)+h(G,u)]ds, (F(KFL),u)== [ h(F+G,u)ds, (F(K3L),u).

n Snfl

1

V(C(KFL)
>V

(F(ak (1-a) L))% +V(F((1-a)K FaL))

1

1 1

>V (K )n +V (I'L)n,
the equality holds if and only if TK and TL are
homothetic.

Now, we establish the volume difference of Brunn-
Minkowski inequality for centroid body.

Theorem 3.5. Let K and L be star bodies in R".
Ellipsoid E, cK ,and E, c L isahomothetic copy of
E,. Then

1

[v (F(K#L))-V(r(g 2+ EZ))]E

1 1
>[V(TK)=V (IE,) ] +[V (TL)-V (TE,)]",
the equality holds if and only if TK and I'L are ho-
mothetic and

(V(IK),V(TE,))=p(V(IL),V(TE,)),

where 4 isa constant.

To prove Theorem 3.5, we need the following two
lemmas:

Lemma 3.6. (Bellman’s inequality) ([12], p. 38). Sup-
pose that a={aa,,a,} and b={b,b,, b}
are two n-tuples of positive real numbers, and p>1
such that

al —Zn:aip >0and b’ —Zn:bip > 0.
i—2 i

Then

o~

(@) -Sian)]

(sr-$ar ) o)

with equality if and only if a=vb, where v is a
constant.
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Lemma 3.7. (Busemann-Petty centroid inequality) ([4],
p. 359). Let K e K". Then

2kn—l

V(FK)Z(WJnV(K),

with equality if and only if K is a centered ellipsoid.
Proof of Theorem 1.2. Applying inequality (1.3), we
have

V(r(K+ L))% >V (FK)% +V (FL)% : (3.9)

the equality holds if and only if TK and T'L are ho-
mothetic.

V(r(E+ Ez))% =V (FEl)% +V (TE, )% ., (3.10)
From (3.9) and (3.10), we obtain that
V(C(K+L))-V(T(E+E,))

1 17" 1 1"

> [v (FK )t +V (FL)n} —[v (TE,)* +V (TE, )n} .
(3.11)
Since E,cK and E,cL, bylLemma3.7, we get

2k,

v(rK)z[mJHV(K)

(P viE)-vire),
and
V(I'L)>V (TE,),
By (3.11) and Bellman’s inequality, we get

[v (F(K#L))-v(r(g+ Ez))]%

>[V(IK)-V (FEi)]% +[V(rL)-v (FEZ)]%.

By the equality conditions of (3.9) and the Bellman’s
inequality, the equality of (3.12) holds if and only if
'K and T'L are homothetic and

(V(TK).V(TD,)) = u(V(TL).V(TD,)),

(3.12)

Copyright © 2013 SciRes.

where 4 is a constant. This completes the proof.
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