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ABSTRACT 

The aim of this paper, is to introduce and study a general iterative algorithm concerning the new mappings which the 
sequences generated by our proposed scheme converge strongly to a common element of the set of solutions of a mixed 
equilibrium problem, the set of common fixed points of a finite family of nonexpansive mappings and the set of solu-
tions of the variational inequality for a relaxed cocoercive mapping in a real Hilbert space. In addition, we obtain some 
applications by using this result. The results obtained in this paper generalize and refine some known results in the cur-
rent literature. 
 
Keywords: Nonexpansive Mapping; Mixed Equilibrium Problem; Variational Inequality; Common Fixed Points; 

Strong Convergence 

1. Introduction 

Let H be a real Hilbert space, whose inner product and 
norm are denoted by ,   and ,
C

:T C 

 respectively. Let 
be a nonempty closed convex subset of H. A mapping 

is called nonexpansive if C Tx Ty x y  
.

 
for all ,x y

T x 
C

  x :H Tx x
 We denote by  

 the set of fixed points of T. A 
linear bounded operator A is strongly positive if there is a 
constant 

Fi

0   with the property 
2

,Ax x x  for all 
.x H  A mapping :f H H

 0 1  
 is said to be a contrac-

tion if there exists a coefficient  such that 
   f x f y x y   , . for all x y H  Let PC be 

the nearest point projection of H onto the convex subset 
 (i.e., for C x H , PC is the only point in C such that 

 f : .inCx P x  x y y C   It is known that projec-
tion operator PC is nonexpansive. It is also known that PC 
satisfies 

2
, C C C Cx y P x P y P x P y    , . for x y H  

The following characterizes the projection PC Given 
 and u  Then z H .C u P C z  if and only if there 

holds the relations: 

, 0z u u v 

CP x
C

               (1.1) 

for all  (see [1]). Moreover,  is characterized 
by the properties:  and 

v C
CP x , 0C Cx P x P x y  

.y C

 

for all   Let  be a nonlinear map. The 
classical variational inequality problem, denoted by 

:B C H

 ,VI C B u C is to find  such that 

, 0Bu v u                (1.2)  

.v Cfor all   One can see that the variational inequality 
problem (1.2) is equivalent to the following fixed point 
problem: the element u C  is a solution of the varia-
tional inequality (1.2) if and only if  satisfies the 
relation 

u C
  ,u P I B u  0C  where    is a constant. 

This alternative equivalent formulation has played a sig-
nificant role in the studies of the variational inequalities 
and related optimization problems. 

Iterative methods for nonexpansive mappings have 
recently been applied to solve convex minimization prob-
lems; see, for example, [2-6] and the references therein. 
A typical problem is that of minimizing a quadratic func-
tion over the set of the fixed points of a nonexpansive 
mapping on a real Hilbert space H : 

 Fix
1min ,
2

, ,x S Ax x x b          (1.3) 

where A is a linear bounded operator and b is a given 
point in H. In [5] (see also [6]), it is proved that the se-
quence  nx  defined by the iterative method below, 
with the initial guess 0x H  chosen arbitrarily,  

 1 , 0,n n n nx b I A Sx n       
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x Cconverges strongly to the unique solution of the minimi-
zation problem (1.3) provided the sequence n   satis-
fies certain conditions. In 2006, Marino and Xu (see [3]) 
considered the following viscosity iterative method which 
was first introduced by Moudafi (see [7]):  

  1n n nx f x I      , 0n nA Sx n 

 
    (1.4) 

They proved that the sequence nx  generated by it-
erative scheme (1.4) converges strongly to the unique so- 
lution of the variational inequality  
  ,x x 0A f x     , x C  which is the optimality 

condition for the minimization problem 

   , ,Fix

1
min

2x S Ax x h x

f

  

where h is a potential function for   (i.e.,  
 for   h x x f x H ). 

For finding a common element of the set of fixed 
points of a nonexpansive mapping and the set of solu-
tions of the variational inequality for  -cocoercive map-
ping, Takahashi and Toyoda (see [11]) introduced the 
following iterative process: 0 ,x C  

   1 , 0,n nBx n 1n n n n C nx x SP x       (1.5) 

where B is  -cocoercive, n and  

n

   0,1 , 
  0, 2    . They showed that, if   
is nonempty, then the sequence 

Fix
 n

,S VI C B
x generated by (1.5) 

converges weakly to some  In 
2005, Iiduka and Takahashi (see [12]) introduced the 
following iterative process: 

 Fixz S   , .VI C B

 , 0,n nBx n 

   0,2 .

  1 1n n n C nx u SP x        (1.6) 

where , n  and  nu C  0,1 x   They 
proved that under certain appropriate conditions imposed 
on  n  and  n,  the sequence  nx  generated by 
(1.6) converges strongly to  In 
2009, Qin, Kang and Shang, [13] introduced the follow-
ing iterative algorithm given by 

 z S

,

 , .VI C B Fix

1x C  

    1

1,

n n n n n n1 ,n C nx f x x I

n

       



A P Sx

:T C H
:S C H



 (1.7) 

where , a k-strict pseudo-con- 
traction for some ,  defined by 

 A is a strongly positive linear 
bounded self-adjoint operator and f is a contraction. They 
proved that the sequence 

C C C 

 1x k Tx  
0 1k 

,

 n

Sx k

x  generated by the itera-
tive algorithm (1.7) converges strongly to a fixed point of 
T, which solves a variational inequality related to the 
linear operator A. 

Let  be a proper extended real- 
valued function and F be a bifunction from 

   
C C

: C
  to 

 where   is the set of real numbers. Ceng and Yao 
[14] considered the following mixed equilibrium prob-

lem: Find 

,

  such that  

     ,F x y y x             (1.8) 

for all .y C  The set of solutions of (1.8) is denoted by 
 , ,MEP F   i.e., 

        , : , , .MEP F x C F x y y x y C       

 

 

It is easy to see that x is a solution of problem (1.8) im-
plies that  dom : .x x C x     

0,

 Moreover, 
Ceng and Yao [14] introduced an iterative scheme for 
finding a common element of the set of solutions of 
problem (1.8) and the set of common fixed points of a 
family of finitely nonexpansive mappings in a Hilbert 
space and obtained a strong convergence theorem. If 
   then the mixed equilibrium problem (1.8) be-
comes the following equilibrium problem: 

 , 0F x y                 (1.9) 

for all .y C  The set of solutions of (1.9) is denoted by 
  ,EP F  i.e., 

    : , 0, .EP F x C F x y y C    

: ,T C H 0

 

Given a mapping  let    and  
 F , ,x y Tx y x  , .x y C  Then,   for all 

 ,z MEP F   if and only if , 0Tz y z 
,

 for all 
y C  i.e., z is a solution of the variational inequality. 

Equilibrium problems have been studied extensively; see, 
for instance, [15,16]. The mixed equilibrium problem 
(1.8) is very general in the sense that it includes, as spe-
cial cases, optimization problems, variational inequalities, 
minimax problems, Nash equilibrium problem in nonco-
operative games and others; see for instance, [14,16-19].  

Combettes and Hirstoaga (see [15]) introduced an it-
erative scheme for finding the best approximation to the 
initial data when  EP F

1 ,

 is nonempty and proved a 
strong convergence theorem. In 2007, S. Takahashi and 
W. Takahashi (see [20]) introduced an iterative scheme 
using the viscosity approximation method for finding a 
common element of the set of solutions of equilibrium 
problem (1.9) and the set of fixed points of a nonexpan-
sive nonself-mapping in a Hilbert space. The scheme is 
defined as follows: x H  

 

   1

1
, , 0, ,

1 , 1.

n n n n
n

n n n n n

F y u u y y x u C
r

x f x Sy n 

     

   







  (1.10) 

They proved that under certain appropriate conditions 
imposed on  n  and  n , the sequences r  nx  and 
 ny  generated by (1.10) converge strongly to  

   , where     Fixz S EP F  z P f z

1 ,

Fix .S EP F  In the 
same year, Shang et al. (see [21]) introduced the follow-
ing iterative scheme: x H  
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   1

1
, ,n n n

n

n n n n

F y u u

A

y y x
r

x f x 

  

  







0, ,

1 , 1.

n

n

u C

Sy n

  


 (1.11) 

for finding a common element of the set of solutions of 
equilibrium problem (1.9) and the set of fixed points of a 
nonexpansive nonself-mapping in a Hilbert space. They 
proved that under some sufficient suitable conditions, the 
sequences  nx  and  ny  generated by (1.11) con-
verge strongly to  

    ,EP F 

   ,f I A q  

Fixq S   

where  

   Fix S EP Fq P    

which is the unique solution of the variational inequality  

  , 0q p q  

   .EP F 
1, 2, , N 

f A  

for all  Fixp S
:T C Let i  where ,i  be a finite fam- 

ily of nonexpansive mappings. Finding an optimal point 

in the intersection 

,C

FixN T

 
 

 
 

,0

,1 ,1 1 ,0 ,1

,2 ,2 2 ,1 ,2

, 1 , 1 1 , 2 , 1

, , , 1 ,

,

1 ,

1 ,

1 ,

1 ,

n

n n n n

n n n n

n N n N N n N n N

n n N n N N n N n N

U I

U TU I

U T U I

U T U I

W U T U I

 

 

 

 
    



 

  

 

  







1i i  of the fixed points set of 
a finite family of nonexpansive mappings is a problem of 
interest in various branches of sciences; see [22-27] and 
also see [28] for solving the variational problems defined 
on the set of common fixed points of finitely many non-
expansive mappings. Atsushiba and Takahashi (see [29]), 
defined the mappings 



  (1.12) 


      where ,1 ,2 , .n n n N  Such a mapping 

n  is called the W-mapping generated by 1 2

, , , 0,1   
W , , , NT T T  
and      , , , .  

1 ,

,1 ,2 ,n n n N  The concept of W-map- 
pings was introduced in [30-33]. In 2008, Qin et al. (see 
[34]) introduced and studied the following iterative proc-
ess: x H  

 

 

     1

1
, , 0, ,

, 1,

n n n n
n

n n n n n n C n n

F y y y x C
r

x f W x I A W P I s B y n

  

  

     

    







W

                    (1.13) 

 
where n  is defined by (1.12), A is a strongly linear 
bounded operator and B is  -Lipschitzian, relaxed 

-cocoercive mapping of C into H. They proved that 
the sequences 
 ,u v

 nx  and  ny  generated by the itera-
tive scheme (1.13) converge strongly to  

     , ,P F VI C B

        
1 Fix ,

,N
i iT EP F VI C B

q P f I A q
  

  

1 FixN
i iq T E 

 

which is the unique solution of the variational inequality  

  , 0f A q p q

 

where  

    

for all 
     1 Fix ,N

i ip T EP F VI C B  

1 ,

. 

In the same year, Colao et al. (see [35]) introduced a 
new iterative scheme: x H  

 

 

 1

n

n n   

1
, , 0, ,

1 , 1

n n n n

n n n n n

F y u u y y x u H

x x I A W y n  

     

     







1 ,

r

x f 

                      (1.14) 

 
for approximating a common element of the set of solu-
tions of equilibrium problem (1.9) and the set of common 
fixed points of a finite family of nonexpansive mappings 

and obtained a strong convergence theorem in a Hilbert 
space. In 2009, Yao et al. (see [36]) studied similar 
scheme as follows: x H  

 

 

    1

1
, , 0,n n n n

n

n n n n n n n

,

1 , 1n n

F y u u y y x
r

x f x x I A    

   

    







u H

W y n

 



0

                    (1.15) 

 
where   ,  n ,    0,1     0,r  
W

n , n  and 

n  is the W-mapping defined by (1.12). They proved 
that under certain appropriate conditions imposed on 

 n ,  n ,  n  and r  ,n i  , the se-
quences 

 1,2, ,i N  
   and  nnx y  generated by (1.15) converge  

strongly to  
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    ,i i1FixNx T EP F

 


   

where  

      ,
1 FixN

i iT EP F
x P f

 
  I A x   

which is the unique solution of the variational inequality  

  , 0x f A x x    for all  1 FixN
i ix T EP F  . 

If n   for some  0,1 , 

 
 

, 1 , 2

, , 1

1 ,

1 ,

n

n N n N

n N n N

U

U

K U 
 

 



   , 0,1 .
N

n i i


, , ,

 then (1.15) reduces 
to the iterative scheme (1.14). Very recently, Kangtun-
yakarn and Suantai (see [37]) defined the new mappings  

 
 

,0

,1 ,1 1 ,0 ,1

,2 ,2 2 ,1 ,2 ,1

, 1 , 1 1 , 2

, , , 1

,

1 ,

1 ,

n

n n n n

n n n n

n N n N N n N

n n N n N N n N

U I

U TU I

U T U

U T U

U T U

 

 

    

 

  

 

 



 




 (1.16) 

where  Such a mapping Kn is called the  

K-mapping generated by 1 2 NT T T
.

 
 

1

1 2

1 1

1 ,

1 ,
N N

N N

U

U

U

 
 

 

 




 and  

,1 ,2 ,n n n N  Nonexpansivity of each Ti en-
sures the nonexpansivity of Kn Also following they de-
fined the new mappings  

      , , , 

 
 

0

1 1 1 0 1

2 2 2 1 2

1 1 1 2

,

1 ,

1 ,

N N N N

N N N N

U I

U TU I

U T U

U T U

U TK U

 
 

   

 
  

 
 







  (1.17) 

where 1 2, ,  ,  10,1N  such that 0 i 
.

 for all 
 and 01, 2, ,i   1N 1N   Such a mapping K is 

called the K-mapping generated by 1 2, , , NT T  and 

1 2

T
, , , .N    In [37], Lemma 2.9 and Lemma 2.10, its 

shown that 

 Fix  1 FixN
i iK T   

and lim n
n

K x K


 ,0x   for all x C

1

 where Kn and K  

are the K-mappings defined by (1.16) and (1.17), respec-
tively. Its important tool for the proof of the main results 
in this paper. Moreover, Kangtunyakarn and Suantai (see 
[37]) introduced a new iterative scheme: x H  and 

,  1n 

 

   1

1
, ,n n n n

n

n n n n n

F y y y x
r

 

0, ,

1 ,n n n

C

x f x x I

 

   

    

     A K y





 


(1.18) 

  0,nr    and 

Kn is the K-mapping defined by (1.16). They proved that 
under certain appropriate conditions imposed on  n , 

 ,n i rn  and 1,2, ,i N   , the sequences  n  x  
and  ny  generated by (1.18) converge strongly to  

   *
1 Fix ,N

i ix T EP F 

      
1

.N
i iFix T EP F

where 0  , ,  0,1     0,1n  , 

 

where  
x P f I A x

 
 

1

 

Motivated by the recent works, we introduce a more 
general iterative algorithm for finding a common element 
of the set of common fixed points of a finite family of 
nonexpansive mappings, the set of solutions of a mixed 
equilibrium problem, and the set of solutions of the 
variational inequality problem for a relaxed cocoercive 
mapping in a real Hilbert space. The scheme is defined as 
follows: x H 1,n  and 

     

  

 
    

1

1
, , 0,

,

1 ,

n n n n n
n

n n n n n n

n n n C n n

F y y y y x
r

C

x f K x x

I A K P I s B y

    


  

 


      

  
  

    

0

   

(1.19) 

 n    0,1   n ,  0,r  n ,  ,  , where 
 ,  is a   0,ns   :B C H  -Lipschitzian, relaxed 

 ,u v -cocoercive mapping, f is a contraction of H into 
itself with a coefficient  0 1 ,   P C  is a projec-
tion of H onto C, A is a strongly positive linear bounded 
operator on H, F is a mixed equilibrium bifunction, 

 : C   

, , ,

 is a proper lower semicontinuous 
and convex function and Kn is the K-mapping generated 
by 1 2 NT T T  and      ,1 , , , .n n  ,2 ,n N  We prove 
that the sequences  nx  and  ny  generated by the 
iterative scheme (1.19) converge strongly to 

     1 Fix , , ,N
i iq T MEP F VI C B  

        
1 Fix , ,

,N
i iT MEP F VI C B

q P f I A q



  

  

 

where  

 

which is the unique solution of the variational inequality 
for all   , 0f A q p q



    

     1 Fix , , ,N
i ip T MEP F VI C B  

     

 

and is also the optimality condition for the minimization 
problem  

 
1 Fix , ,

1
min , ,

2
N
i ix T MEP F VI C B

Ax x h x
  

  

where h is a potential function for f  (i.e.,  
   h x f x   for x H ). 
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2. Preliminaries and Lemmas 

In this section, we collect and give some useful lemmas 
that will be used for our main result in the next section. 

A mapping B is called -strongly monotone, if each v
, ,x y C  we have 

2
, ,v x y Bx By x y   

for a constant v > 0, which implies that  
,Bx By v x y  

, ,

 so that B is v-expansive and when 
v = 1, it is expansive. B is said to be v-cocoercive (see [8] 
and [9]), if for each x y C  we have  

2
, ,v Bx By Bx By x y   

for a constant v > 0. Clearly, every v-cocoercive mapping 

B is 
1

v
-Lipschitz continuous. B is called relaxed u-co- 

coercive, if there exists a constant u > 0 such that  

  2
,Bx By 

, .

,Bx By x y     

for all x y C  B is said to be relaxed  ,u v -cocoer- 
cive, if there exist two constants u, v > 0 such that 

  2 2
,Bx By x y u Bx By v x y      

, ,

 

for all x y C 0,u 

 ,u v


,

 for  B is v-strongly monotone.  
It is worth mentioning that the class of mappings 

which are relaxed -cocoercive more general than 
the class of strongly monotone mappings. It is easy to see 
that if B is a v-strongly monotone mapping, then it is a 
relaxed -cocoercive mapping (see [10]).  ,u v

It is well known that for all x y H  and  0,1   
there holds  

 
   

2

2 2 2

1

1 1 .

x y

x y x y

 

   

 

     
 

Recall that a space X is said to satisfy Opial’s condi-
tion (see [38]) if nx x  weakly as n  and x y  
for all ,y X  then  

lim limsup sup .
n n

n nx x x  y
 

 

: 2

 

A set-valued mapping HT H  is called mono-
tone if for all 


x , y H ,  and  imply u Tx v Ty

, 0.v x y u 
2

 
A monotone mapping : HT H   is maximal if 

graph  G T  of T is not properly contained in the graph 
of any other monotone mapping. It is known that a 
monotone mapping T is maximal if and only if for 
 ,x u H H , ,x y u  0v   for every    ,y v G T

,C

 
implies  Let B be a monotone mapping of C into 
H and let  be normal cone to C at  i.e.,  

.u Tx
CN v v

 u C  

, ,

,
CBv N v v C

Tv
v C

 
  

Tv

: , 0,CN v w H v u w    

and define 

 

Then T is a maximal monotone and 0  if and 
only if  ,v VI C B

 a

; see [39]. 
In the sequel, the following lemmas are needed to 

prove our main results.  
Lemma 2.1. (see [4,5]). Assume that n  is a se-

quence of nonnegative real numbers such that 

 1 1 ,n n n na a      

where n  is a sequence in   and 0,1  n  is a se-
quence such that 

1

;n
n






1)    

2) 
1

sup 0 oli rm .n
n

n nn








 

  lim 0.n
n

a


   Then 

Lemma 2.2. (see [3]). Assume A is a strong positive 
linear bounded operator on a Hilbert space H with coef-
ficient 0 and 

1
0 A  

. Then   1I A   


. 
  ,nLemma 2.3. (see [40]). Let  nx  and y  be 

bounded sequences in a Banach space  nX and let   
be a sequence in  0,1

0 liminf limsup 1.n n
n n

 with 

 
 

    

 1 1n n n n nx y x      for all integers n ≥ 0  Suppose 

and  1 1sup 0.lim n n n n
n

y y x x 


     

Then  

lim 0.n n
n

y x


 

 

 

Lemma 2.4. (see [37]). Let C be a nonempty closed 
convex set of a strictly convex Banach space. Let 

1

N

i i
T


 

be a finite family of nonexpansive mappings of C into 
itself with  Fix .N T1i i   , , , and let 1 2 N 

0 1i

 be 
real numbers such that  

1, 2, , 1i N
 for every  

 0 1.N and   
1 2, , ,

 Let K be the K-map- 
ping generated by NT T and T 1 2, , , .N   Then 

  Fix FixNK 1i iT 

  1



Lemma 2.5. (see [37]). Let C be a nonempty convex  
.  

N
subset of a Banach space. Let i i

T


C

 be a finite family 

of nonexpansive mappings of into itself and  , 1

N


  n i i



 be sequences in 0,1  1, , .i i N   
,n

 such that ,n i  
Moreover for every  n let K and  K  be the K- 
mappings generated by 1 2, , , NT T T 1 2, , , and  N 

1 2, , ,

  

and NT T T  and      ,1 ,2 ,, , , ,n n n N  
,

 respec-  

x Ctively. Then for every   it follows that  

lim 0.n
n

K x Kx
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For solving the mixed equilibrium problem, let us give 
the following assumptions for a bifunction ,F   and the 
set C:  

(A1)  for all  , 0x F x ;x C  
(A2) F is monotone, i.e.,  for 

all 
 F x y  , , 0F y x 

, ;x y C
, , ,

 
(A3) For each x y z C

   , ;

   

 
0

lim 1 ,
t

F tz t x


  y F x y  

(A4) For each ,x C   ,y F x y  is convex and 
lower semicontinuous; 

(B1) For each x H
xD C

 and  there exists a 
bounded subset  and  such that for any 

0,r 
xy C

,xz C D  

     ;1
, ,x xF z y y y z

r
   z x z  


   

,

 

(B2) C is a bounded set. 
By a similar argument as in the proof of Lemma 2.3 in 

[18], we have the following result. 
Lemma 2.6. Let C be a nonempty closed convex sub-

set of a Hilbert space H and let F be a mixed equilibrium 
bifunction of C × C into  satisfying conditions (A1)- 
(A4) and let  be a proper lower semi- 
continuous and convex function. Assume that either (B1) 
or (B2) holds. For  and 

: C

0r  x H

 

 define a mapping 
 as follows: :rT H  C

   
 , ,

y: ,

1

rT x z C F z y

y z z x
r





  

    z y C
  


.

 

for all x H r

rT

rT , ,

  Then T  is well defined and the follow-
ing hold: 

1)  is single-valued; 
2)  is firmly nonexpansive, i.e., for any x y H  

2

r rT x T y T x  , ;r rT y x y 

 ,T MEP F

 

3)  Fix r 
 ,MEP F

; 
4)   is closed and convex. 
Remark 2.7. We remark that Lemma 1.6 is not a con-

sequence of Lemma 3.1 in [14], because the condition of 
the sequential continuity from the weak topology to the 
strong topology for the derivative K 

:K C  

 

 of the function 
 does not cover the case 

2

.
2

x
K x   

The following lemma is well known. 
Lemma 2.8. In a real Hilbert space H, there holds the 

following inequality 
2 2

2 ,x y x  y x y 

, .

 

x y H  for all 

3. Main Results  

Theorem 3.1. Let H be a real Hilbert space, C a non-
empty closed convex subset of H, B a  -Lipschitzian, 
relaxed  ,u v


-cocoercive mapping of C into H, F a bi-

function from C × C to  which satisfies (A1)-(A4), 
 : C   

, , ,
 a proper lower semicontinuous and 

convex function and 1 2 NT T  a finite family of 
nonexpansive mappings of C into H such that the com-
mon fixed points set  

T

     1Fix , ,N
i iT MEP F VI C B .      

Let f be a contraction of H into itself with a coefficient 
 0 1    and A a strongly positive linear bounded 

operator on H with coefficient 0   such that 1.A   


0 Assume that 

, , ,

 and either (B1) or (B2) holds.  


Let 1 2 N  0 1i be real numbers such that   
1, 2, , 1i N

 
for every  0 1,N and     

 , 1, , ,n i i i N       0,r    ,n   0,s  n  and 
 n  n ,   two real sequences in (0, 1) satisfying the 
following conditions: 

(C1) lim 0n
n

  and  
1

;n
n






 


(C2) 1
1

;n n
n

s s





  

0iminfl n
n

r




  

(C3)  and 
1

lim 1n

n
n

r

r


  (this is weaker 

than the condition ); 1lim 0;n n
n

r r
 

lim lim0 inf sup 1;n n
n n

 

(C4)  
 

   

  (C5) ,n a b  for some a, b with  s

 2

2
2

2
0 ,

v u
a b v u







    ; 

, 1,
0

for all 1,2, , .n i n i
n

i N 





    (C6)   

Then, the sequences  nx  and n y  generated it-
eratively by (1.19) converge strongly to  

     1 Fix , , ,N
i iq T MEP F VI C B  

        
1 Fix , ,

,N
i iT MEP F VI C B

q P f I A q



  

  

 

where  

 

which solves the following variational inequality:  

  , 0f A q p q     

for all  
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  , .F VI C B1Fix ,N
i ip T MEP    

Proof Since 0n   as  by the condition 
(C1), we may assume, without loss of generality, that  

n 

  1
0 1n n A     

for all n. We also have 
1

n0 A    for all n. By us-
ing Lemma 2.2, we have  

1 .n nI A      

Since A is a strongly positive linear bounded operator 
on a Hilbert space H, we have 

2
,Ax x x  

and 

 , 1 .x H x  

 
Observe that   

 1 ,

1 , 1 0, .

n n

n n n n

I A x x

sup , :A Ax x  

Ax x A x H

 

   

 

        
 

 1 n nI AThis shows that     is positive. It fol-
lows that 

 

   
 

1

sup 1 , : , 1

sup 1 , : , 1 1 .

n n

n n

n n n n

I A

I A x x x H x

Ax x x H x

 

 

    

 

    

       

 

Next, we will assume that 1 .I A     First, we 
show nI s B  is nonexpansive. Indeed, from the relaxed 
 ,u v -cocoercive and  -Lipschitzian definition on B 
and condition (C5), we have which implies the mapping 
I ns B  is nonexpansive. 

 

       

 

 

2 2 2 22

2 2 2 22

2 2 2 22 2 2

2 22 2 2

2 ,

2

2 2

1 2 2 ,

n n n

n n

n n n

n n n

I n ns B x I s B y x y s Bx By x y s x y Bx By s Bx By

x y s u Bx By v x y s Bx By

x y s u x y s v x y s x y

s u s v s x y x y

 

 

            

        

       

      



 

 
 n C n nz P I s B y  0,n  for all  we have We shall divide our proof into 5 steps. Putting 

Step 1. We shall show that the sequence  nx  is 
bounded. Let   

   
.

n C n n

n n n

n

z x P I s B y x

     1 , , .Fixi i
Nx T MEP F

dom ,nx

VI C B 

nn ry T

  

Since    we have 

.r ny x x   
n nn r nx T x T x      (3.1) 

I s B y I s B x

y x

 





  

   

 



 

Using (1.19), (3.1) and (3.2), we have 

 

    
        

   

       
       

1x x f K x x I A K z x

x Ax

f x

     



 



      



1

1

1

1

1

n n n n n n n n n n

n n n n n n n n n

n n n n n n n n n

n n n n n n n n

n n n n n n n n n

f K x Ax x x I A K z x

K z x x x f K x Ax

z x x x f K x f x f

x x x x f K x f x

    

     

       

       

 

  

  

  



      

       

        

        

=

 

A

  

   

1

1 ,

n n n n n

n n n

x

x x x x f x Ax

x x f x Ax

     

   



   

  



      

      

 
  .f K x Bywhich gives that  

 
0max , , 0.n

f x Ax
x x x x n



 

 

 
     

  


 

Hence  nx  is bounded, so are , ny     ,nz  n nK z ,  

n  and n n

Step 2. We will show that  
 

1lim 0.n n
n

x x
 

domn ry T x

 

Observing that 
n n    and  

1
dom ,

n ny T x  we have 1 1n r 
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      1
,n n n

n

, 0,n nF y y y
r

        y x C                        (3.3) 

and 

     1 1 1
1

1
,n n n

n
1 1, 0, .n nF y y y y

r
      



     x C    

y

                (3.4) 

  
Putting 1n  ny in (3.3) and    in (3.4), we have 

     1 1

1
, 0

n n n n

n n n n
n

1

,F y y y y

y y y x
r

  



 

   

   

 

and 

 1 1

1 1 1, 0.

n n

n n

y

y x

  



 

 
1

,

1
n n

n n
n

F y y y

y y
r  


 
 

Summing up the last two inequalities and using 
Lemma 2.6 (A2), we obtain 

1 1

1

0.n n

n n

x

r r
 



 
1 , n n

n n

y x y
y y    

That is,  

It then follows that 
2

1

1 1 1 1
1

1 .

n n

n
n n n n n n

n

y y

r
y y x x y x

r



   




 
       

 

 

This implies that 

1 1 1 1
1

1 1
1

1

1 ,

n
n n n n n n

n

n
n n

n

r
y y x x y x

r

r
x x M

r

   





     

   

 

where M1 is an appropriate constant such that  

 1 1 1
1

, n
n n n n n n

n

r
y y y y y x

r  


     1 1 0.n ny x    

1 1 1
1

sup .n n
n

M y x 




n

 

I s BSince   is nonexpansive and  
  ,n C n nz P I s B y   using (3.5), we also have  

 

       
     

1 1n n C n

n n

n n

I s B y

x x

 

 

 

1 1 1

1 1 1 1 1 1

1 1 1 1 1 2 1
1 1

1 1 ,

n C n n n n n n

n n n n n n n n n n

n n
n n n n n n n

n n

z z P I s B y P I s B y I s B y I s B y

I s B y s s By y y s s By

r r
M s s By x x M M s s

r r

  

     

   
 

       

       

         

=

 

where M2 is an appropriate constant such that   
M 2

1
sup .n
n

By


  

Define  

1

1
n n n

n
n

x x
u




 



0n 

 

for all  so that  

 1 1 .n n n n nx u x      

It follows that 

         

   

2 1 1 1

1

1 1 1 1 1 1 1

1

1 1
1 1 1 1

1 1

1 1

1 1

1 1

1 1 1 1

n n n n n n
n n

n n

n n n n n n n n n n n n n n

n n

n n n n
n n n n n n n n n n

n n n n

x x x x
u u

f K x I A K z f K x I A K z

f K x f K x K z K z AK z


1


 

       
 

   
 

   

   



      



 
   

 

 
  

 

     
 

 

     
                  



     

1 1

1
1 1 1 1 1 1 1 1

1

.
1 1

n n

n n
n n n n n n n n n n n n n n n n

n n

AK z

f K x AK z AK z f K x K z K z K z K z
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Observe that 1

1
n n n

n

x
n

x


 



u  from (3.6), we obtain 

     

     

  

1
1 1 1 1 1 1 1

1

1
1 1 1 1

1

1 1 1 1

1
1 1 1 1

1

1 1

1 1

1 1

n n
n n n n n n n n n n n n n n

n n

n n
n n n n n n n n

n n

n n n n n n n n

n n
n n n n

n

u u f K x AK z AK z f K x K z K z

f K x AK z AK z f K x

K z K z K z K z

f K x AK z

 
 

 
 

 
 

 


 


      




   



   


   



       
 

   
 

   

  
 

1 1n n n nK z K z  

  

     

1 1n n n n

1
1 1 1 1 1

1

1 2 1 1
1

1 1

1 .

n n n n n n
n

n n
n n n n n n n n n n

n n

n
n n n n n n

n

AK z f K x z z K

f K x AK z AK z f K x x x

r
M M s s K z K z

r



 
 

 

 


    



 


  

    
 

     

z K z 



(3.7) 

KNext we estimate 1n n n n .z K z 

 2, , 2 ,i N 
  

For  we have 

   
1, ,

1, 1, 1 1, 1, 1 , , 1 ,

1, 1, 1 1, , 1 1, , 1 1,

1 1

n N i n n N i n

n N i N i n N i n n N i n N i n n N i N i n N i n n N

n N i N i n N i n n N i N i n N i n n N i N i n N i n n N i n

n

U z U z

T U z U z T U z

T U z T U z T U z U

  

  



  

              

                 



   

  

   

, 1

, 1

i n N i n

N i n

U z

z





  

 

 




 

1, , 1 1, 1, 1 , , 1 ,

1, 1, 1 , 1 1, 1, 1 , 1

1, , , 1 1, ,

1 1

1

N i n N i n n N i n N i n n N i N i n N i n n N i

n N i N i n N i n N i n N i n n N i n N i n n N i n

n N i n N i N i n N i n n N i n N i

U z U z T U z

T U z T U z U z U z

T U z U

 

 

   

             

               

        

    

    

   

, 1n N i nU z  

, 1

1, 1 , 1 3 1, ,

n N i n

n N i n n N i n n N i n N i

z

U z U z M  

 

          

      (3.8) 

and 

   1,1 ,1 1,1 1 1,1 ,1 1

1,1 ,1 1 1,1 ,1

1 1n n n n n n n n n n

n n n n n n

U z U z T z z T z

T z z

  

   

  

 

     

   

,1

1,1 ,1 3 ,

n n

n n

z

M



 



 
                  (3.9) 

where  

 3 , 1 , 1
2

sup
N

i n i n n i n
i

M TU z U z 


  1 .n nT z z
     
 

 

Using (3.8) and (3.9), we have 

1 1, ,

1, 1 , 1 3 1, ,

1, 2 , 2 3 1, 1 , 1 3

1,1 ,1 3 1, ,
2

3 1, ,
1

.

n n n n n N n n N n

n N n n N n n N n N

n N n n N n n N n N

N

n n n n n i n i
i

N

n i n i
i

K z K z U z U z

U z U z M

U z U z M

U z U z M

M

 

 

 

 

 

   

     

 





  

   

   

   

 






1, ,n N n NM   

         (3.10) 

Substitute (3.10) into (3.7) yields that  
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     1
1 1 1 1 1 1

1

1 2 1 3 1, ,
11

1 1

1 ,

n n
n n n n n n n n n n

n n

N
n

n n n i n i
in

u u x x f K x AK z AK z

r
M M s s M

r

 
 

 


     



 


     
 

     

n nf K x 

 

 

 which implies that (noting that (C1), (C2), (C3), (C4) and 
(C6)) 

Copyright © 2013 SciRes.    

 1 1 0.n n nx x   suplim n
n

u u


   

Hence by Lemma 2.3, we have 

lim
n

0.n nu x 

 1 ,n n n n n

           (3.11) 

Using (3.11) and we have 1x u x     

1lim lim 1 0n n n n n
n n

x x u x 
        (3.12) 

Step 3. We shall show that  

lim lim lim

lim 0,

n n n n n n n n
n n n

n n n
n

x K z x y y K z

z K z
  



    

  

.
n n

 

ywhere n rT x   
Note that 

 

    
        
 

1 1 1 1

1 1

1

.

n n n n n n n n n n n n n

n n n n n n n n n n n n n

n n n n n n n n n n n n n n n

n n n n n n n n n

x K z x x x K z x x x K z

x x f K x x I A K z K z

1

1

n n

n n

x x f K x AK z I A K z K z x K z

f K x AK z x K z

    

    



   



        

       

      

  

 

 

x x  





  

  

 

 
This implies  

 1 .n n n n n n n

1 n n n nx K z

x x f K x AK z    

 
 

From condition (C1), (C4) and (3.12), we have 

lim 0.n n n
n

x K z


            (3.13) 

Next we prove that  

0n nx y   

as .  n 

 

Indeed, picking   

   , .1 Fix ,N
i ix T MEP F

   VI C B 

domy T xSince 
nn r n    and Tr is firmly nonexpan-

sive, we obtain and hence 

 

22

2 2 2

,

,

1

2

n n n nn r r n r n r n

n n

n n n n



 

x y T x T x T x T x x x

y x x x

y x x x x y

  

 

 

     

  

     

(3.14) 

  nn n n nf K x AK z   0 and let Set    be an 
appropriate constant such that 

 
,

sup , .n k
n k

x x     

Therefore, from the convexity of 
2

,  using (3.2), 
(3.14) and Lemma 2.8 we have 

 

    

        

    
 

   

 

22

1

2

2

1

2 2 2

2 2 2 22 2

1

1

1 2 ,

1 2

1 2 1 2

1

n n n n n n n n n n

n n n n n n n n n n

n n n n n n n n

n n n n n n

n n n n n n n n

n n

x x f K x x I A K z x

K z x x x f K x AK z

K z x x x x x

K z x x x

x x x y x x x

x x

    

   

   

   

n nz       



 

 

  





 

   

      

      

      

     

         

  

 



 


 

2 22 2

2 2 2

2

1 2 .

n n n n n

n n n n n

x y x x

x x x y
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It follows that 

  2 22 2
1

2 2

1 1 1 1

1 2

2 , 2 2

n n n n n n

n n n n n n n n n

x y x x x x

x x x x x x x x x x

  
2 2

1 2 .n n  












 

      

           
 

 
 iny of By using condition (C1), (C4) and (3.12), we have 

lim
n

0.n nx y               (3.15) 

From (3.13) and (3.15), we obtain 

 as .

n n n n ny K z y x

n

   



0n n nx K z 
   (3.16) 

From (3.11) and (3.13), we also obtain 

lim
n

0.n n nz K z             (3.17) 

Step 4. We shall show that 

 suplim
n

f A


 , 0,nq x q   

where q is the unique solution of the variational inequal-
ity   , 0,f A q p q   

     1 Fix , , .N
i ip T MEP F VI C B   

   , ,
.

EP F VI C B 

  Q f I A  

  

 

Let  Observe that  
 1 FixN

i iT M
Q P

 


 is a contraction. Indeed, for all x , 

y H  and 0 ,



 

  

 we have 

  
     

   
 

 
1

Q f I A x Q

1 .

f I A y

f I A x f

f x f y I A

x y x y

x y

 

 



 

 

  

   

  

    

    

I A y

x y

x y

 

 

 



  Q f I A  

   ,f I A q 

 

Banach’s Contraction Mapping Principle guarantees 
that  has a unique fixed point, say 

 That is,  .q H

  
     1 Fix , ,N

i iT MEP F VI C B

q Q f I A q

P





  

  


 

by (1.1) we obtain that   , 0q p qf A     for all  

     , .F VI C B1Fix ,N
i ip T MEP    

Next, we show that 

 suplim
n

f A




To see this, we choose a subsequence 
 ny such that  

 

, 0.nq y q   

 

sup ,

lim ,

lim

.
i

n
n

n
i

f Aq y q

f A q y q








 

  
 

iny  is bounded, there exists  Since 
in
j

y  a sub-

sequence of  iny

.
in

 which converges weakly to p. With-  

yout loss of generality, we can assume that p  
Claim that  

     1Fix , , .N
i ip T MEP F VI C B  

 ,p MEP F

 

First, we prove 
dom ,

nn r ny T x
. 

Since  

     

we have 

1
, , 0,n n n n n

n

F y y y y x
r

         

.C

 

for all    It follows from Lemma 2.6 (A2) that  

     1
, , ,n n n n n

n

y y y x F y
r

C

    



    

 

   

 

and hence 

 , , ,

.

i i

i i

i

n n
n n n

n

y x
y y F y

r

C

    




   

 

 

Since 0i i

i

n n

n

y x

r




iny p  together with the   and 

lower semicontinuity of   and Lemma 2.6 (A4), we 
have      , 0F p p     .C for all  

0 1t
 For t 

with  ,C and    let  Since   1 .t t t p   
C ,p C C   and  we have t  and hence   

    , 0F p p    .t t    So, from Lemma 2.6 (A1), 
(A4) and the convexity of   we have 

     
     
       
      

0 ,

, 1 ,

1

, .

t t t t

t t

t

t t

F

tF t F p

t t p

t F

     

  

    

     

  

  

   

  

 

     , 0.tF p        Dividing by t, we get 

Copyright © 2013 SciRes.                                                                                 APM 



T. THIANWAN 94 

 Letting  it follows from Lemma 2.6 (A3) and 
the lower semicontinuity of 

0,t 
1 , 0n n n nw z z I s B y     

and hence  
  that  

 for all     ,    0p C F p  
.

 and hence 
p MEP F ,  Next, we prove  To see 

this, we observe that we may assume (by passing to a 
further subsequence if necessary) 

 Fix .p K

1 , 0.n n
n n

n

z y
w z By

s


    

It follows that  

 0,1  
N

,in k k   
. Let K be the K-mapping generated by 

1 2

 1, 2, ,k 
, , ,


NT T T  and 1 2, , , .N  

,
  Then by Lemma 2.5, 

we have, for every x C   

.
inK x Kx                (3.18) 

every x C

 1 Fix .N
i i

, 
Moreover, from Lemma 2.4 it follows that   

 Fix K T 

p p Kp

 

Suppose for contradiction . Then  Fix K  . 
Since Hilbert space are Opial’s spaces and 

   , Fix ,
nr

T p MEP F   

from (3.17) and (3.18), we have 

 
inf inf

inf

in

lim lim

lim

lim f infl mi

i i

i i i i i i

i i i i

n n
i i

n n n n n n
i

n n n n
i i

z p z Kp

z K z K z K p

K z K p z p

 



 

  

   

   ,

inK p Kp 



 Fix .p K

 1 FixN
i i

 

which derives a contradiction. Thus, we have  
 It follows from  

 Fix K T 

 1 Fix .N
i ip T

 , .p VI C B

1 1 1

1

, ,

, .

w w C

w C

 
 

 ,u v

 

that  

 

Next, we prove  Put 

1
CBw N

Tw


 


 

Since B is relaxed -cocoercive and condition 
(C5), we have  

 
 

2 2

2
0,

v x y

y

 

 

 ,w w  2 1 1Cw Bw N w 

2

,Bx By x y u Bx By

v u x

    

 
 

which yields that B is monotone. Thus T is maximal 
monotone. Let 1 2 . Since  
and  we have 

 G T
,nz C

1 2 1, 0.w Bw  

 n C n nI s B y 
we have 

nw z  

On the other hand, from  and (1.1), z P

1 2,n nw z w 1 1

1 1 1

1 1

1 1 1

1

1 1

,

, ,

,

, ,

,

, , ,

i i

i i

i i i

i

i i

i i

i

i i i i i

i i

i

i

i i

i i i i

i

n n
n n n

n

n n
n n

n

n n n n n

n n
n

n

n n
n n n n

n

w z Bw

z y
w z Bw w z By

s

z y
w z Bw By

s

w z Bw Bz w z Bz By

z y
w z

s

z y
w z Bz By w z

s

 


    


   

     


 


    

 

which together with (3.16), (3.17) and B is Lipschitz 
continuous implies that 1 2, 0.w p w   We have  

10p T   and hence  p at is,  , .VI C B  Th

    1Fix ,N
i i VI C B  , .p T MEP F   

It follows from the variational inequality  
  , 0f A q p q     for all  

  MEP F   1 Fix , ,N
i ip T VI C B   

that 

 

 

 

sup ,

lim ,

l

, 0.

im

i

n
n

n
i

f A q y q

f A q y q

f A q p q











 

  

   

         (3.19) 

Using (3.16) and (3.19), we have 

 suplim , n nf A q K z 0.
n

q


        (3.20) 

Moreover, from (3.15) and (3.19), we have 

 sup , 0.lim nf A q x q
n

         (3.21) 

Step 5. Finally, we will show that the sequences  nx  
and  ny  converge strongly to q.  

Since   ,n C n nz P I s B y  using (1.19), (3.1), (3 ) 
and L a 2.8, we have 

.2
emm
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2

1x x I A K q      

        
       

      

    

2

1

2

2 22

2 22

1

1

2 , 2 1 ,

1 2

n n n n n n n n n n

n n n n n n n n n

n n n n n n n n n

n n n n n n n n n n n n

n n n n n n n n n

q f K x z

I A K z q x q f K x Aq

I A K z q x q f K x Aq

x q f K x Aq I A K z q f K x Aq

K z q x q f K x Aq

 

    

    

      

     

  

       

       

       

            
      

       

     
     

2

22 2 22 2

,

2 , 2 1 ,

2 1 , 2 ,

1 2 1

2 , 2 ,

n n n n n

n n n n n n n n n

n n n n n n n n n

n n n n n n n n n n n n n n n

n n n n n n n n

x q f K x f q
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for all 0.n   It then follows that 

   

  2 2

1 ,n n n n nq1 2 2x q x         (3.22) 

where  
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By using (3.20), (3.21) and condition (C1), we get 

supim 0.l n
n




  

Now applying Lemma 2.1 to (3.22) concludes that 

nx q  as .n   Finally, noticing 

n nn r n r ny q T x T q x q     

w
pletes th of. 

4. Applications 

m 3.1, n obta



e also conclude that ny q  as .n   This com-
e pro

In this section, by Theore  we ca in some new 
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and interesting strong convergence theorems. Now we 
give some examples as follows:  

1, 2, ,i N  setting 1,

 1 x i MEP  Fi , ,N
iq T F   

where  Let iT I  for all  and   
A I  and :f x  in Theorem 3.1, we obtain the fol-

lowing result.  
Corollary 4.1. Let H be a real Hilbert space, C a non-

empty closed convex subset of H,  from
C C



F a bifunction  
  to   which satisfies (A1)-(A4),  

: C    a proper lower semicontinuous and 
convex function and 1 2, , , NT T T  a finite family of
nonexpansive mappings of C into H such that the com-
mon fixed points set    , , .MEP F VI C B     As-

that e ) or (B2) holds and 

 

 sume ither (B1 x  is an arbi-
trary point in C. Let  nx  and  ,ny  be sequences 
generated by 1x H  and 1,n    

     

  1 1 ,

n
n

n n n n n n C n n

x

x x x P I s B y

,

,1
, 0,

n n

n n

F y y

C
y y

r

   




  

  
     

   

 

  

where  n ,    0,1n  ,    0,nr   ,    0,ns    
rem 3.1. Then  satisfying th

 n

e conditions (C1)-(C5) in Theo ,
x  and  ny  converge strongly to a point  

 , , ,VI C B    q MEP F 

where  

     , , .MEP F VI C Bq P x   

Setting 1,   ,A I  :f x  and   0ns   for all n 
tain llowing result. 

ary 4.2. Let H be a real Hilbert space, C a 
nonempty closed convex subset of H F a bifunction 
fr  to  which satisfies -(A4), 

in Theore
Coroll

m 3.1, we ob  the fo

, 
om C C  (A1)  

 : C    a proper lower semicontinuous and 
convex function and , , ,1 2 NT T T  a finite family of non-
expansive mappings of C into H such that the common 
fixed points set    1 Fix , .N

i iT MEP F      Let Kn 
and K e pings defined by (1.16) and (1.17), 
respectively. Assume that either (B1) or (B2) holds and x 
is an arbitrary point in C. Let  n

 be th K-map

x  and  ny  be se-
quences generated by 1x H  and  

 

1,n  

   

 1

1
, , 0,

,

n n n n n
n

F y y y y x
r

C

x x x K

    


  

     

 

   

 

1 ,n n n n n n n ny 

1 2, , ,where N    are real numbers such that  
0 1i   for every 
0 1,    

1, 2, , 1i N   and  
 ,  and  n,N n i 1,i N i  ,  

   0,ns    satisfying 
 3.1. 

   0,1n  ,  nr
ditions (C1), (C
 ,n

 0, ,   
the con 3), (C4) and (C6) in Theorem
Then, x and  ny  converge strongly to a poin

     
1 Fix ,

.N
iT MEP F

q P x
 

  
i

Finally as applications, we will utilize th results pre-
sented in this paper to study the following optimization 

 min ,C

e 

problem:  

t  

             (4.1) 

w

    

here C is a nonempty bounded closed convex subset of 
a Hilbert space and  : C     is a proper 
lower semicontinuous and convex function. We denote 
by  nArgmi the set of solutions in (4.1). Let 
 , 0F x y   for all ,x y C  in Corollary 4.1, then   

   , Argmin .MEP F    

It follows from Corollary 4.1 that the sequence  nx  
generated by 1x H  and 1n  , 

 

   1 1 ,n n n n n n C n n

21
argmin

2n C n
n

y x
r

,

x x x P I s B y         


where 

   


    
    (4.2) 

 

 n ,    0,1 , n     n    and 0,r   0,ns    
satisfying the conditions (C1)-(C5) in Theorem 3.1. Then 
the sequence  nx  converges strongly to a point   

   Argmin , ,q VI C B   

 

i

where 

     Argmin , .VI C Bq P x   

Let T I  fo all 1, 2, ,i Nr    and  , 0F x y   for 
all ,x y C  in Corollary 4.2, then  

   rgmin ., AMEP F    It follows from Corollary 
the iterative sequence  n4.2 that x  generated by 

1x H  and 1n  ,  

 

 1

argmin
2

1 ,

C
n

n n n n n n

r

x x x

   

   









 21
,n n

n

y x

y

 
 

  
 

where 

 


 


     (4.3) 

    n , 0,1n  and    0,nr    satisfy-
ing the conditions (C1), (C3) and (C4) in Theorem 3.1. 
Then the sequence 



 nx  converges strongly to a point 
 Argmin ,q   where    Argmin .q P x  

Remark 4.3. The algorithms (4.2) and (4.3) are vari-
 the p mal metho ptimization 

 ot e

5.

ants of roxi d for o problems 
introduced and studied by Martinet [41], Rockafellar [42], 
Ferris [43] and many h rs. 
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