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ABSTRACT

The aim of this paper, is to introduce and study a general iterative algorithm concerning the new mappings which the
sequences generated by our proposed scheme converge strongly to a common element of the set of solutions of a mixed
equilibrium problem, the set of common fixed points of a finite family of nonexpansive mappings and the set of solu-
tions of the variational inequality for a relaxed cocoercive mapping in a real Hilbert space. In addition, we obtain some
applications by using this result. The results obtained in this paper generalize and refine some known results in the cur-

rent literature.
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1. Introduction

LetH be a real Hilbert space, whose inner product and
norm are denoted by <~, ) and ||||, respectively. Let
C be a nonempty closed convex subset of H. A mapping
T:C > Cis called nonexpansive if ||Tx—Ty|| < ||x— y||
forall x,yeC. We denote by

Fix(T)={xeH :Tx=x} the set of fixed points of T. A
linear bounded operator A is strongly positive if there is a
constant » >0 with the property (AX, x) > ;7||X||2 for all
xeH. A mapping f:H — H issaid to be a contrac-
tion if there exists a coefficient (0 <ea <1) such that
||f (x)-f (y)||£a||x—y|| for all x,yeH. Let Pc be
the nearest point projection of H onto the convex subset
C (i.e., for xe H, P¢ is the only point in C such that
||x— P x|| = inf{"x— y|| 'ye C}. It is known that projec-
tion operator P¢ is nonexpansive. It is also known that P¢
satisfies (X—y,P.x—P.y)>|P.x—P.y|" for x,yeH.
The following characterizes the projection Pc Given
zeH and ueC. Then u=P.z if and only if there
holds the relations:

(z-u,u-v)=0 (1.1)

forall veC (see [1]). Moreover, P.X is characterized
by the properties: P.xeC and (x— PX, PaX— y) >0
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forall yeC. Let B:C — H be anonlinear map. The
classical variational inequality problem, denoted by
VI(C,B) istofind ueC such that

(Bu,v—u)=0 (1.2)

for all veC. One can see that the variational inequality
problem (1.2) is equivalent to the following fixed point
problem: the element u€C is a solution of the varia-
tional inequality (1.2) if and only if ueC satisfies the
relation U=P, (1 -AB)u, where 2>0 is a constant.
This alternative equivalent formulation has played a sig-
nificant role in the studies of the variational inequalities
and related optimization problems.

Iterative methods for nonexpansive mappings have
recently been applied to solve convex minimization prob-
lems; see, for example, [2-6] and the references therein.
A typical problem is that of minimizing a quadratic func-
tion over the set of the fixed points of a nonexpansive
mapping on a real Hilbert space H :

. 1
min, i) E<Ax, X)—(x.b). (1.3)
where A is a linear bounded operator and b is a given
point in H. In [5] (see also [6]), it is proved that the se-
quence {x,} defined by the iterative method below,
with the initial guess X, € H chosen arbitrarily,

Xp = b +(1—a,A)SX,,n >0,
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converges strongly to the unique solution of the minimi-
zation problem (1.3) provided the sequence {a,} satis-
fies certain conditions. In 2006, Marino and Xu (see [3])
considered the following viscosity iterative method which
was first introduced by Moudafi (see [7]):

XM:anyf(xn)+(l—anA)an,n20 (1.4)

They proved that the sequence {X,} generated by it-
erative scheme (1.4) converges strongly to the unique so-
lution of the variational inequality
((A=y)x',x=x")>0, xeC which s the optimality
condition for the minimization problem

. 1
min, g 2 (A~ (x).

where h is a potential function for yf (i.e,
h'(x)=yf(x) for xeH).

For finding a common element of the set of fixed
points of a nonexpansive mapping and the set of solu-
tions of the variational inequality for « -cocoercive map-
ping, Takahashi and Toyoda (see [11]) introduced the
following iterative process: X, € C,

Xou =X, +(1=a, ) SPe (X, = 4,BX,),n >0, (1.5)

where Bis « -cocoercive, {a,}<(0,1),and

{/ln} C (0,20(). They showed that, if Fix(S)r\VI (C, B)
is nonempty, then the sequence {x, } generated by (1.5)
converges weakly to some zeFix(S)nVI(C,B). In
2005, Tiduka and Takahashi (see [12]) introduced the
following iterative process:

Xop = U+(1—a, )SP. (X, —4,Bx,),n>0,  (1.6)

where ueC, {a,}=(0,1) and {x,}<=(0,2a). They
proved that under certain appropriate conditions imposed
on {a,} and {4,}, the sequence {x | generated by
(1.6) converges strongly to z eFix(S)nVI(C,B). In
2009, Qin, Kang and Shang, [13] introduced the follow-
ing iterative algorithm given by X, €C,

Yoot =y £ (%,)+ 8%, +((1-8,) 1 -, A) P Sx
nxlI,

" (17)

where C+CcC, T:C—>H a k-strict pseudo-con-
traction for some 0<k<1l, S:C—>H defined by
Sx=kx+(1-k)Tx, A is a strongly positive linear
bounded self-adjoint operator and f is a contraction. They
proved that the sequence {X,} generated by the itera-
tive algorithm (1.7) converges strongly to a fixed point of
T, which solves a variational inequality related to the
linear operator A.

Let ¢:C —)Ru{+oo} be a proper extended real-
valued function and F be a bifunction from CxC to
R, where R is the set of real numbers. Ceng and Yao
[14] considered the following mixed equilibrium prob-
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lem: Find X e C such that
F(xy)+o(y)=e(x) (1.8)

for all yeC. The set of solutions of (1.8) is denoted by
MEP(F,p), ie.,

MEP(F.,p)={xeC:F(x,y)+o(y)=¢(x),vyeC}.

It is easy to see that X is a solution of problem (1.8) im-
plies that X edomg={xeC:p(x)<+wn|. Moreover,
Ceng and Yao [14] introduced an iterative scheme for
finding a common element of the set of solutions of
problem (1.8) and the set of common fixed points of a
family of finitely nonexpansive mappings in a Hilbert
space and obtained a strong convergence theorem. If
@ =0, then the mixed equilibrium problem (1.8) be-
comes the following equilibrium problem:

F(xy)=0 (1.9)

for all yeC. The set of solutions of (1.9) is denoted by
EP(F), ie,

EP(F)={xeC:F(x,y)20,vyeC}.

Givenamapping T:C—>H, let ¢=0 and
F(xy)=(Tx,y—x) forall x,yeC. Then,
ze MEP(F,p) if and only if (Tz,y-z)>0 for all
yeC, i.e., zis a solution of the variational inequality.
Equilibrium problems have been studied extensively; see,
for instance, [15,16]. The mixed equilibrium problem
(1.8) is very general in the sense that it includes, as spe-
cial cases, optimization problems, variational inequalities,
minimax problems, Nash equilibrium problem in nonco-
operative games and others; see for instance, [14,16-19].

Combettes and Hirstoaga (see [15]) introduced an it-
erative scheme for finding the best approximation to the
initial data when EP(F) is nonempty and proved a
strong convergence theorem. In 2007, S. Takahashi and
W. Takahashi (see [20]) introduced an iterative scheme
using the viscosity approximation method for finding a
common element of the set of solutions of equilibrium
problem (1.9) and the set of fixed points of a nonexpan-
sive nonself-mapping in a Hilbert space. The scheme is
defined as follows: X, e H,

1
F(y,,u)+—Uu-y,,y¥,—%,)=0, YueC,
(Vo) + = (U =Yoo Yo = %) ¢ 110

Xn+1=a”f(xﬂ)+(1_an)syna n>1.

They proved that under certain appropriate conditions
imposed on {,} and {r}, the sequences {x,} and
{y,} generated by (1.10) converge strongly to
z e Fix(S)NEP(F), where 2=PF ) ep(r) f (2). In the
same year, Shang et al. (see [21]) introduced the follow-
ing iterative scheme: X, € H,
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1

F(y,,u)+—u-vy,,y,—%X,)20, YueC,

(v u) +4¢ ) (Wi

X =y F (%) +(1-2,A)Sy,, n=L.

for finding a common element of the set of solutions of
equilibrium problem (1.9) and the set of fixed points of a
nonexpansive nonself-mapping in a Hilbert space. They
proved that under some sufficient suitable conditions, the
sequences {X,} and {y,} generated by (1.11) con-
verge strongly to

qeFix(S)NEP(F),
where
0= Prys)ner(r) (rf+(1-A))q,
which is the unique solution of the variational inequality
(f-A)a,p-0q)<0

forall peFix(S)nEP(F).
Let T,:C > C, where i=1,2,---,N, be a finite fam-
ily of nonexpansive mappings. Finding an optimal point

1
F(ynon)_‘—r_(’?_yn)yn _Xn>203

in the intersection !, Fix(T,) of the fixed points set of
a finite family of nonexpansive mappings is a problem of
interest in various branches of sciences; see [22-27] and
also see [28] for solving the variational problems defined
on the set of common fixed points of finitely many non-
expansive mappings. Atsushiba and Takahashi (see [29]),
defined the mappings

U,=1,
Un,l = ln,lTIUn,O +(1_/1n,1 ) I,

Uns = 4,TU, +(1- 4,1, (112

Un,N—l = ﬂ’n,N—lTN—lun,N—z +(1_ﬂn,N—1) I,
Wn = Un,N = ﬁ’n,NTNUn,N—l +(1_ﬂ'n,N ) I >

where {4,,}.{4,,}.-=.{4,n} =(0.1]. Such a mapping
W, is called the W-mapping generated by T,,T,,---, Ty
and {ﬂn’l},{ﬂn,z},---,{ﬂn,,\, } The concept of W-map-
pings was introduced in [30-33]. In 2008, Qin et al. (sece
[34]) introduced and studied the following iterative proc-

ess: X €H,

VneC,
(1.13)

Xpr = o7 T (Wan)+(| _anA)WnPC(I _SnB)yn: nz1,

where W, is defined by (1.12), Ais a strongly linear
bounded operator and B is g -Lipschitzian, relaxed
(u,v) -cocoercive mapping of C into H. They proved that
the sequences {x,} and {y,} generated by the itera-
tive scheme (1.13) converge strongly to

q e, Fix(T,)NEP(F)nVI(C,B),

where

F(ynsu)'}_ri(u_ynsyn _Xn>209

n

q= Pmi'ilFix(Ti)mEP(F)m\/I(C,B) (7E+(1-A))a,
which is the unique solution of the variational inequality
(f-A)a.p-q)<0
for all
pe miN:lFix(Ti )m EP(F)mVI (C, B) .
In the same year, Colao et al. (see [35]) introduced a
new iterative scheme: X € H,

YueH,
(1.14)

X = @,y T (X)) + 8%, +((1- B)1 —, AW, y,, nx1

for approximating a common element of the set of solu-
tions of equilibrium problem (1.9) and the set of common
fixed points of a finite family of nonexpansive mappings

F(ynau)+ri<u_yn7yn _Xn>205

n

and obtained a strong convergence theorem in a Hilbert
space. In 2009, Yao et al. (see [36]) studied similar
scheme as follows: X € H,

YueH,
(1.15)

o =@y £ (%) + B +((1-B) 1 =2, AW, y,, n=1

where >0, {a,}, {8,}<(0,1), {r}<=(0,0) and
W, is the W-mapping defined by (1.12). They proved

n
that under certain appropriate conditions imposed on

Copyright © 2013 SciRes.

{an}, {B,}, {r,} and An‘i} (Vi=12,---,N), the se-
quences {X,} and {y,} generated by (1.15) converge
strongly to
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X" e Fix(T,)nEP(F),

where

*

X = Pmi“ilFix(Ti)mEP(F) (7f +(I h A)) X,

which is the unique solution of the variational inequality
((rf=A)X',x=x")<0 forall xen!,Fix(T,)nEP(F).
If B,=p for some Be(0,1), then (1.15) reduces
to the iterative scheme (1.14). Very recently, Kangtun-
yakarn and Suantai (see [37]) defined the new mappings
U,=1,
Un,l = /1n,1T1U no T (1 - ﬂ’n‘l) I,
u n2 = }“n,szu T <1 - ﬂ*n,z )U

nls

(1.16)

Un,N—l = ﬂ’n,N—lTN—IUn,N—Z +(1_ﬂ’n,N—1 )Un,N—Z’
Kn :Un,N = j’n,NTNUn,N—l +(1_ﬂ“n,N )Un,N—l’

where {ln,i }IN < (0,1]. Such a mapping K, is called the
K-mapping generated by T,,T,,---,Ty and
{ﬂn’l},{ﬂn’z},---,{ln,,\‘}. Nonexpansivity of each T; en-
sures the nonexpansivity of K, Also following they de-
fined the new mappings
U, =1,
U, =ATU, +(1-4)1,
U,=4T,U,+(1-4,)U,,
:2 /1221( 22)1 (1.17)
Uy =AU, +(1_2’N—1 )UN—2’
K=Uy =4 Uy, +(1-24 )Up_s,
where 4,4,,---,4y €(0,1] such that 0< 4 <1 for all
i=12,---,N-1 and 0< A, <1. Such a mapping K is
called the K-mapping generated by T,T,,---,T, and

A5 Ay, Ay In [37], Lemma 2.9 and Lemma 2.10, its
shown that

Fix(K) =, Fix(T;)
and lim|K x—Kx|=0 forall xeC, where K, and K
n—oo

are the K-mappings defined by (1.16) and (1.17), respec-
tively. Its important tool for the proof of the main results
in this paper. Moreover, Kangtunyakarn and Suantai (see
[37]) introduced a new iterative scheme: X, € H and
n>1,

1
F Yoo, 1)t —1 =Y Yo = X, 20’ VUECa
() rn< ) (1.18)

Xou =y (%) + 8%, +((1- B) 1 =, A)K, Y,

where y >0, f€(0,1), {a,}<(0,1), {r,} =(0,:) and

Copyright © 2013 SciRes.

K, is the K-mapping defined by (1.16). They proved that
under certain appropriate conditions imposed on {a,},
{r,} and {4} (Vi=12,-,N), the sequences {X,}

and {y,} generated by (1.18) converge strongly to
X e, Fix(T,)nEP(F),

where

X' = Pmi'\il Fix(T; )NEP(F) (7/f +(| - A)) X'

Motivated by the recent works, we introduce a more
general iterative algorithm for finding a common element
of the set of common fixed points of a finite family of
nonexpansive mappings, the set of solutions of a mixed
equilibrium problem, and the set of solutions of the
variational inequality problem for a relaxed cocoercive
mapping in a real Hilbert space. The scheme is defined as
follows: x, e H and Vn2>1,

1
F(ynﬂn)+¢)(77)_¢(yn)+r_<77_ynayn _Xn>20’

n

vneC,
Xn+1 :Oln}/f (Knxn)+ﬂnxn
+((1-8,)1 —a,A)K P, (1 -5,B)Y,,

(1.19)
where y>0, {ea,}, {B,}<(0,1), {r}c(0,0),
{s,} =[0,%), B:C—>H isa u-Lipschitzian, relaxed
(u,Vv) -cocoercive mapping, f is a contraction of H into
itself with a coefficient a(O <a< 1), P, is a projec-
tion of H onto C, A is a strongly positive linear bounded
operator on H, F is a mixed equilibrium bifunction,
¢:C—>Ru{+oo} is a proper lower semicontinuous
and convex function and K, is the K-mapping generated
by T.T,.-.Ty and {4, }.{4,}.{4.n}- We prove
that the sequences {X,} and {y,} generated by the

n
iterative scheme (1.19) converge strongly to

ge r\iNleix(Ti)m MEP(F,q))mVI (C, B),
where

0= P N bix( ) MEP(F o)W1 (C.8) (7f+(1-A))a,

which is the unique solution of the variational inequality
for all <(}/f -A)q, p—q> <0

p e N, Fix(T;)"MEP(F,p)nVI(C,B),
and is also the optimality condition for the minimization
problem
1

min —
xenfL Fix(T; )AMEP(F ,0)VI(C,B) 9

(Ax,x)—h(x),

where h is a potential function for yf (i.e.,
h'(x)=yf(x) for xeH).
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2. Preliminaries and Lemmas

In this section, we collect and give some useful lemmas
that will be used for our main result in the next section.

A mapping B is called v -strongly monotone, if each
X,y € C, we have

(Bx— By, x — y) 2v||x— y||2,

for a constant v > 0, which implies that
|| Bx— By" > V||X— y |, so that B is v-expansive and when
v =1, it is expansive. B is said to be v-cocoercive (see [8]
and [9]), if foreach X,y € C, we have

(Bx— By, x — y) 2v||Bx— By||2,

for a constant v > 0. Clearly, every v-cocoercive mapping
1 . . .
B is —-Lipschitz continuous. B is called relaxed u-co-
v

coercive, if there exists a constant U > 0 such that

(Bx—By,x—y) > (~u)[Bx-By[,

for all x,yeC. B is said to be relaxed (u,v)-cocoer-
cive, if there exist two constants U, vV > 0 such that

(Bx—By,x—y)>(-u)|Bx- By||2 +V|x— y||2

forall x,yeC, for u=0, B isVv-strongly monotone.

It is worth mentioning that the class of mappings
which are relaxed (u,v) -cocoercive more general than
the class of strongly monotone mappings. It is easy to see
that if B is a v-strongly monotone mapping, then it is a
relaxed (u,v) -cocoercive mapping (see [10]).

It is well known that for all X,ye H and Ae [0,1]
there holds

[ax+(1-2) y||2
= AX[ + (=AY = A(1=2)|x=y[ -

Recall that a space X is said to satisfy Opial’s condi-
tion (see [38]) if X, > X weakly as n—>o and X#Yy
forall ye X, then

limsup ||Xn - X|| < limsup”Xn - y||
n—oo n—oo

A set-valued mapping T:H — 2" is called mono-
tone if for all x, yeH, ueTx and veTy imply
(x=y,u-v)=0.

A monotone mapping T:H —2" is maximal if
graph G(T) of T is not properly contained in the graph
of any other monotone mapping. It is known that a
monotone mapping T is maximal if and only if for
(x,u)e HxH, (x=y,u-v)>0 for every (y,v)eG(T)
implies UeTx. Let B be a monotone mapping of C into
Handlet N.v benormalconetoCat veC, ie,

Nev={weH:(v-uw)20,vueC|

Copyright © 2013 SciRes.

and define
Bv+Nqv, veC,
Tv=
J, veC

Then T is a maximal monotone and 0eTv if and
only if veVI(C,B); see [39].

In the sequel, the following lemmas are needed to
prove our main results.

Lemma 2.1. (see [4,5]). Assume that {a,} is a se-
quence of nonnegative real numbers such that

Ay S(1_7/n)an+5n’

where 7, is a sequence in (0,1) and {5,} is a se-
quence such that

2) limsup% <0or Y'|6,| <. Then lima, =0.
n—w n n=1 -

Lemma 2.2. (see [3]). Assume A is a strong positive
linear bounded operator on a Hilbert space H with coef-
ficient 7 >0 and 0< p <||/A|". Then ||l - pAl|<1- p7.

Lemma 2.3. (see [40]). Let {x,} and {y,}, be
bounded sequences in a Banach space X and let {,}
be a sequence in [0,1] with

0 <liminf B, <limsup 5, <1.
n—oo

n—o0

Suppose X,,, =(1-/,)Y, + B,X, forall integers n >0

n+l1

and lim sup("yn+1 =Y, ||—||Xn+1 - Xq ||) <0.
Then

iy, x| =0

Lemma 2.4. (see [37]). Let C be a nonempty closed
convex set of a strictly convex Banach space. Let {T, }|N: 1
be a finite family of nonexpansive mappings of C into
itself with ", Fix(T;)#@. and let A,4,,-,4, be
real numbers such that 0< 4, <1 for every
i=L2,---,N-1 and0< A, <1. Let K be the K-map-
ping generated by T,,T,,---,Tyand A,4,,---,4,. Then
Fix (K)=n{ Fix(T;).

Lemma 2.5. (see [37]). Let C be a nonempty convex

subset of a Banach space. Let {Ti}iN: be a finite family

of nonexpansive mappings of C into itself and {/ln‘i }.N=1

be sequences in [0,1] such that A,; > 4 (i=1---,N).
Moreover for every neN, let K and K, be the K-
mappings generated by T,T,,---, Ty and A,4,,---, 4,

and T,,T,,---,Ty and {ﬂn,l},{ﬂﬁyz},---,{ﬂw }, respec-
tively. Then for every x € C, it follows that

lim [K, x - Kx]|=0.
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For solving the mixed equilibrium problem, let us give
the following assumptions for a bifunction F,@ and the
set C:

(A1) F(x,x)=0 forall xeC;

(A2) Fis monotone, i.e., F(xy)+F(y,x)<0 for
all x,yeC;

(A3) Foreach x,y,zeC,

{i_r)l’OlF(tZ-‘r(l—t)X,y)S F(xY);

(A4) For each xeC, y#> F(x,y) is convex and
lower semicontinuous;

(B1) For each xeH and r>0, there exists a
bounded subset D, cC and y, €C such that for any
zeCD,,

F(z,y)+¢)(yx)+%(yX -2,2-X)<p(2);

(B2) C is a bounded set.

By a similar argument as in the proof of Lemma 2.3 in
[18], we have the following result.

Lemma 2.6. Let C be a nonempty closed convex sub-
set of a Hilbert space H and let F be a mixed equilibrium
bifunction of C x C into R satisfying conditions (A1)-
(A4)andlet ¢:C — RU{+o0} be a proper lower semi-
continuous and convex function. Assume that either (B1)
or (B2) holds. For r>0 and xe€H, define a mapping
T,:H —>C asfollows:

T, (x)={zeC:F(z,y)+o(y)

+%<y—z,z—x>2(p(z),VyeC}

forall xeH. Then T,
ing hold:
T

2) T,

r

1s well defined and the follow-

is single-valued;
is firmly nonexpansive, i.e., forany X,y e H,

Tox =Ty <(T,x-T,y,x-y);

3) Fix(T,)=MEP(F,p);

4) MEP(F,p) is closed and convex.

Remark 2.7. We remark that Lemma 1.6 is not a con-
sequence of Lemma 3.1 in [14], because the condition of
the sequential continuity from the weak topology to the
strong topology for the derivative K’ of the function
K:C —> R does not cover the case

K(x)= M
)
The following lemma is well known.

Lemma 2.8. In a real Hilbert space H, there holds the
following inequality

[+ v <+ 2(y,x+ )

Copyright © 2013 SciRes.

forall x,yeH.

3. Main Results

Theorem 3.1. Let H be a real Hilbert space, C a non-
empty closed convex subset of H, B a x -Lipschitzian,
relaxed (u,V) -cocoercive mapping of C into H, F a bi-
function from C x C to R which satisfies (A1)-(A4),
¢:C —> RuU{+0} a proper lower semicontinuous and
convex function and T,,T,,---,Ty a finite family of
nonexpansive mappings of C into H such that the com-
mon fixed points set

N Fix (T, ) "MEP(F,p) VI (C,B) = @.

Let f be a contraction of H into itself with a coefficient
a(0<a<1) and A a strongly positive linear bounded
operator on H with coefficient » >0 such that ||A|| <1.

Assume that 0<y <2 and cither (B1) or (B2) holds.
a

Let 4,,4,,---,4y be real numbers such that 0< 4 <1
forevery i=12,---,N-1 and 0< 4 <1,
Ani > A4 (i=1--,N), {r,} =(0,0), {s,} =[0,:0) and
{a}, {B,} two real sequences in (0, 1) satisfying the
following conditions:

(CDH }iirlan =0 and ) a, =

n=1

@ 3

Snat _Sn| < 05

.. . r
(C3) liminfr, >0 and lim—"
n—oo nN—oo rn+l

—rn|=O;

=1 (this is weaker

than the condition ); lim |rn+l
n—o0

(C4) 0<liminf B, <limsup f, <L;
n—oo

n—oo

(C5) {s,} =[a,b] forsome a, b with

2(v—uy’
Y7
(C6) Y |4 _ﬂ’n—l,i| <o foralli=1,2,---,N.
n=0

Then, the sequences {X,} and {y,} generated it-
eratively by (1.19) converge strongly to

qen,Fix(T,)nMEP(F,p)nVI(C, B),
where
a= Pmi'il Fix(T; )JAMEP(F )~V (C,B) (7/f +(I - A))q’
which solves the following variational inequality:

<(7/f - A)a, p—q)sO
for all

APM
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p e Y, Fix(T,) " MEP(F,) VI (C,B).

Proof Since o, >0 as n— o by the condition
(C1), we may assume, without loss of generality, that

0<a, <(1-4,)|A"

for all n. We also have 0< ¢, < ||A||71
ing Lemma 2.2, we have

||I —anA||£l—an;7.

for all n. By us-

Since A is a strongly positive linear bounded operator
on a Hilbert space H, we have

(A% x) = 7|X
and
||A|| = sup{|(Ax, x)| :xeH ,||x|| = 1}.

(1-5,B8)y[ =[(x-y)-

(1 —5,B)x—

89

Observe that
<((l—ﬂn)| —anA)x,x>
=1-B,—a, (AX)21- B —a, |A|20, VxeH.

This shows that (1-/,)1-a,A is positive. It fol-

lows that
l(1-B)1-a,A|
—sup{[(((1-B.)1 -, A)x.X)|:xe H,[X| =1}
=sup{l- B, —a, (AxX):xe H,|x|=1} <1- B, —a,7.
Next, we will assume that ||I - A" <1-y. First, we
show | —s B is nonexpansive. Indeed, from the relaxed

(u,v) -cocoercive and g -Lipschitzian definition on B
and condition (CS5), we have which implies the mapping
| —s,B is nonexpansive.

s, (Bx— By)"2 =|x- y||2 -2s,(x—y,Bx—By)+s;|Bx— By||2

<|x-vy[f -2, (_u||Bx_ By|[ +vx- y||2)+ sZ[|Bx—By|’

<= yT + 25,0 - 25 v a5 -
- (1+2sn,u2u —28,V+ yzsﬁ)"x— y||2 < ||x— y||2 ,

We shall divide our proof into 5 steps.
Step 1. We shall show that the sequence {X,} is
bounded. Let
X" e, Fix(T;)"MEP(F,¢) VI (C,B).

Since y, =T, X, edomg, we have

Y, —X'|[= . T,nx”s"xn—x".

3.1

(KyXy )+ B %,
=lla, (;/f(K X, ) -
(1 Bty )

+((1-5,)1
Ax*)+,8n(xn

Xne1 —

IA

IA

IA

1-

=X [+ B, %, -

l-a,y ||x —x||+a

IA

(1-
(
(
(

1-(7 —ya)a,) Xn_x||+an

which gives that

P max{"xo | M} 20

{z)s Koz,

VI

re
Hence {X,} is bounded, so are {y,},

Copyright © 2013 SciRes.

- *||+18n n

Putting z, =P, (1 -s,B)y, forall n>0, we have

zn—x*":"PC(I—snB)yn—x*”
S"(I_SnB)Yn_(I_SnB)X*”
<l
Using (1.19), (3.1) and (3.2), we have
-a,A)K,z —x""
(=) ek <)
X| e (Kan)—
y (Knxn)—yf(x*)+yf(x*)—Ax"”
f (K, Xn)—f(X*)H-i-an (x)—Ax“
||+a ( Ax*“
(x)-Ax ”
{By,} and {f(K,x,)}.

Step 2. We will show that

il | =0

n+l1

Observing that y, =T, x, € dom¢g and
You =T, X € dome, we have

APM
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1
F (o) +0(1) = @(¥a) + (7= Yo ¥s = %,) 20,V €C (3.3)
and
1
F(Ynes2) 4 @(1) =@ (Yoo ) +—— (= Yo Yous =%.1) 2 0. V77 €C. (3.4)
n+l1
Putting n=y,,, in(3.3)and 7=y, in(3.4), we have It then follows that
F(yn!yn+1)+(o(yn+l)_¢(yn) |yn+1_yn"2
1
- _ _ r
ol =t 1) 20 e o
and n+1

This implies that
F (yn+17 yn)+¢(yn)_¢(yn+1)

1 Yoo = Yol <X Y,
+ <yn - yn+1> yn+1 - Xn+1> 2 0. " el " " " o " n+1 " e n+1 "
n+1
Summing up the last two inequalities and using < ||X —x " YR fy
Lemma 2.6 (A2), we obtain M ! I
<yn+l -Y., Yo =X _ Yo = Xout > >0. where M, is an appropriate constant such that
rn r-n+1 M ” X
. =su, - .
That is, 1 nzfl) Yot ~ Xnu
I Since |-s,B is nonexpansive and
<yn+1_yn7yn_yn+1+yn+1_xn __n(yn+1_ n+1)>20 n . P
- z, =P, (1-s,B)y,, using(3.5), we also have

"Zm-l_Z =||P n+l )yn+1 ( _SB yn <|| n+1 )yn+1_(|_snB)yn

- " n+1 yn+1 Snal )yn ( n = Snal Byn = ||yn+1 —Ya ||+|Sn _Sn+1|" Byn "
<X = X |+ M 1= r” +[33 = St [BYal < [ X = X |+ M, -t - +M, s, =5, ]»
n+l1 n+l1
where M, is an appropriate constant such that
M, = sup||Byn||.
nx1
Define
— n+1 ﬂnxn
' 1-4,
forall n>0 so that
Xop1 = (l_ﬂn)un +ﬂnxn'
It follows that
U, —U, = Xni2 _/Bn+lxn+1 _ X1 ﬂn n
l_ﬂm—l 1- /Bn
_ n+17/f ( n+l n+l) ((1_ﬂn+1) — A) Kn+l n+l _an}/f (Knxn)+((1_ﬂn)l _anA) ann
1_ﬂnﬂ 1_ﬂn

a,. a 2 Ay
:Kﬁjyf( n+1 ﬂ+1) (1_nﬂn]7f( )+Kn+1 n+1 ann+(1_nﬂnjAKnZn_{ﬁjAKn+l n+l

= _— (}/f( n+l n+l) AKn+1 n+l)+L(AK z _}/f(K X ))+K"+] N+l _Kn+lzn+K

-K,z,.
nen n’*n n+1n n“n
1ﬁn+] lﬁn
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Xou1 — B X
Observe that U, _ X = hi%y from (3.6), we obtain

n

Uy — ” H Tnii Kot n+1) AKn+1Zn+1) l—,nB (AKnZn_J/f (KnX ))+ KiiZoo — Kooz, + Kz, — K 2,
n
<* n; .(||7f e %) ||AKn+IZn+1||)+—1 f‘ﬁ (JAK, z, [+ f (Ko%)])
n+1 N
+||Kn+1 n+l n+1 n" ||Kn+1 n = Z "
o G (3.7)
< 1111”81 1 ( 7f ( n+l n+1 ||AKn+1 n+1")+ 1ixnﬂ <||AKnZn||+||}/f (K Xn) )+"Zn+1 " ”Kn+1 ) nzn”
n+ A

<l A )+ (A ) =]
n

+M,

1__n—’_M2|S n+1| ||Kn+1 n KnZn"'

n+l1

Next we estimate ||K,,z, — K, z,].

For ie{2,-,N-2}, we have
U 2z -U_ .z

n+1,N-i“n n,N-i“n

ﬂ“nHN |TN |Un+lN Sicly t 1- ﬂ’nHN i)Un+1N i lzn_lnN iTN iUnN i lzn_(l_ﬂ’n,N—i)Un,N—i—lzn

= ﬂnHN |TN |Un+1N —i-1 n A’nHN |TN |UnN i-1 n AnHN |TN |UnN i-1 n_ﬂ’nHN iUnN i—lZn
+/1n+1N |UnN i— l n ( /In+lN |) n+1,N—i— lzn_/InN |TN |UnN i— 1 n (1 /InN |) nN—i—lzn (38)
</ﬂtn-HN |||TN |Un+1N —i-1 n TN |UnN —i-1 n +(1_An+1,N—i) Un-¢-1,N—i—lzn _Un,N—i—Izn
+ ﬂ“n+1,N—i - n,N—i|||TN iUnN ic1Zn||t ﬂ’ﬂ#—l,N—i _ﬂn,N—i| Un,N—i—lZn
< Un+1,N—i—IZn _UnN —i— 1 n +M /,Ln+1‘N—i _/,Ln,N—i
and
Un+11 n lJnlzn /,LnHITZ +(1 /,Lnﬂl) /,L TZ (1_/1 ) (39)
< ﬂn+1,l - n1 1 n" n+1,1 ” N+l n M}’
where
N
M, =sup 3T, o ) <
i=
Using (3.8) and (3.9), we have
"Kn+1 n " n+1N Z,— nNZn
< Un+l,N—lzn_Un,N 1%n +M ﬂ’n +1,N _ﬁ“n,N
< Un+1,N—22n UnN —24n +M An+1,N—1_ﬂ’n,N—l|+M3 ﬂ’ml,N _ﬂ’n,N
: (3.10)
< Un+llzn nl Z, +M Z n+1|_ n,i

Z

nll_

Substitute (3.10) into (3.7) yields that
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_ _ n+1 n
||un+l un" ||Xn+l X " S——— 1 ,Bnﬂ (”}/f n+l1 n+1 ||AKn+l n+l||) 1 ﬁn (”AKnZn ||+||}/f (Kan) )
N
+M, l_r_n +M, |Sn _Sn+1|+ M3; Aneri = i)
n+l1 1=
which implies that (noting that (C1), (C2), (C3), (C4) and 1im||xn+1 X || =lim(1-4,) ||u X, || =0 (3.12)
(C6)) n—o HA)SO
limsup( 0 —Un”— X - Xn”) <o. Step 3. We shall show that
" lim |, = Kz, | = lim [x, =y, | = lim [}y, - K,z
Hence by Lemma 2.3, we have
—hm"Z . n||—O,
lim |u, —x,||= 0. (3.11) "
A where y, =T, X,.
Using (3.11) and we have X, =(1—,)u, + B,X,, Note that

"Xn - KnZn" = "Xn X T X — ann” <

Xnet — X, " +||Xn+1 - ann "

<X =%, (KX )+ B.%, +((1= B,) 1 =, A)K, 2, —
=X — X (;/f (KX, )= AK z, ) +((1-8,)1 - )(K Z, ann)+ﬁn(xn—ann)
S||Xn+1 - n||+an ( n n)_AKnZn nZn"'
This implies Since y, =T, X, edomg and T, is firmly nonexpan-
sive, we obtain and hence
(-8, K2 ' 2
S"Xnﬂ_Xn”—}_an 7f(Kan)_ ||X*_y" - n S<TrﬂX" _Trﬂx*’X”_X*>
From condition (C1), (C4) and (3.12), we have =(¥, —x"%, =) (3.14)
lim |, ~K,z,] =0. (3.13) 2 %=X [ =[x, vl
Next we prove that Set p, =yf(K,x,)-AK,z, and let >0 be an
||Xn _y " 50 appropriate constant such that
as Nn— oo ZZSBF{"/)”"’ Xk_X”}'
Indeed, picking )
Therefore, from the convexity of |||| , using (3.2),
X" e N, Fix(T,)nMEP(F,9)nVI(C,B). (3.14) and Lemma 2.8 we have

(K, )+ﬁnxn+((1—ﬁn)l—anA)ann—x*"2

:“ 1-5,)( ann—x*)+,b’n(xn—x*))+an(7f(Knxn)—Aann)2
<|e-s) Kﬂ«*ﬂ+ﬂ«x—ff
<(1-8,)[Kyz, = X[ + 8, %,
<(1-4,) x|| + B, %,
sa—mxn—xn4m—mw+m

)||xn -y, ||2 +24%,

n+1

+ 2an </0n > X1~ X*>

x“‘”2 +21%a,

*2 2
x" +210%a,

-X || +22%a, <(1-B))

Vo X + ],

2
X, — X || +2147°a,
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It follows that

(l_ﬁn)"Xn_yn ’ = X ’

Xy | +2<xn — X, X

n+l> el T

n+l

“Ir-

By using condition (C1), (C4) and (3.12), we have

lim([x, -y, [=0. (3.15)
From (3.13) and (3.15), we obtain
A K e RTINS
(asn— ).
From (3.11) and (3.13), we also obtain
lim|z, - K,z,[|=0. (3.17)

Step 4. We shall show that

1imsup<(7/f -A)a,x, —q> <0,

n—w

where ( is the unique solution of the variational inequal-
ity ((»f-A)a,p—q)<0,

vp e N, Fix(T,) "MEP (F,p) "VI (C,B).

Let Q=P

AN, Fix(T; )AMEP(F ,¢)VI(C,B) Observe that
Q (;/ f+(1

—A)) is a contraction. Indeed, for all X,

yeH and O<y<1, we have
a

"Q ;/f+ A) (;/f+ y”
||;/f+ —A))x—(rf+(1- y"

<7t (9 f(V)II 1= Allx=y

< yalx=yl+(1-7)x-v]

=(7a+1—7)||><— VII <[x=yl-

Banach’s Contraction Mapping Principle guarantees
that Q(}/f +(I —A)) has a unique fixed point, say
geH. Thatis,

q=Q(rf+(1-A))qg
=P miryemer(eamiea (7 T+ (1= A))a.
by (1.1) we obtain that (7 f —A)g, p—q)<0 forall
p e N, Fix(T,) " MEP(F, ) nVI (C,B).

Next, we show that

limsup((7 f - A)g,y, —q) <0.

n—oo

Copyright © 2013 SciRes.

x*>+ 22%a, <|x, -

2 2
X' +247¢a,

X ||2 + 2/1||xn —X.. || +24%,

To see this, we choose a subsequence {yni} of
{Y,} such that
limsup((7f - Aq).y, -q)
=lim((7f - A)a,y, -a).
Since {yni} is bounded, there exists {yn~.} a sub-
i

sequence of {yni } which converges weakly to p. With-

out loss of generality, we can assume that y, — p.
Claim that

p e N, Fix(T,)nMEP(F,p)nVI(C,B).

First, we prove p e MEP(F,9).
Since y, =T, X, € domg, we have

F (yn»77)+(0(77)_¢’(yn)
forall neC. It follows from Lemma 2.6 (A2) that

o(n)-o(y,)+

1
+r_<77_yn7yn _Xn>205

n

1
r_<77_yn’ yn _Xn>2 F(nv yn)s

n

vneC

and hence
Yo,
rﬂ(n)+¢(yn)—<f7—yni,— >F

vneC.

N

- X
A% 50 and Y, — P together with the

I’ni

Since

lower semicontinuity of ¢ and Lemma 2.6 (A4), we
have F(7,p)+¢(p)-¢(n)<0 for all neC. For t
with 0<t<1 and neC, let 77t:t77+(1—t) p. Since
neC and peC,wehave 77, €C and hence
F(m.p)+o(p)-9(n,)<0. So, from Lemma 2.6 (A1),
(A4) and the convexity of ¢ we have

0=F(n.m)+e(m)-e(n)

<tF (n.n)+(1-t)F (7. p)
tto(n)+(1-)o(p)-¢(n)

<t(F(n.n)+e(n)-o(m))

Dividing by t, we get F (13,7)+¢(7)-¢(p)>0.
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Letting t — 0, it follows from Lemma 2.6 (A3) and
the lower semicontinuity of ¢ that
F(p.n)+e(n)-¢(p)=0 for all 7eC and hence
peMEP(F,p). Next, we prove peFix(K). To see
this, we observe that we may assume (by passing to a
further subsequence if necessary) 4, , — 4, €(0,1)
(k=12,---,N). Let K be the K-mapping generated by
T,T,,---,Ty and A,4,---,4,. Then by Lemma 2.5,
we have, for every xeC,

K, X = Kx (3.18)

every XeC,
Moreover, from Lemma 2.4 it follows that

Fix(K) =N, Fix(T;).

Suppose for contradiction p ¢ F ix(K ) Then p = Kp.
Since Hilbert space are Opial’s spaces and

p e MEP(F,p)=Fix(T, ),

from (3.17) and (3.18), we have

liminf |z, — p| < liminf |z, - Kp|
< li?iiwnf( Zni N Kni Zni +| Kni Zni - Kni p||+| K”i P Kp")
<liminf |K, 7, K, p| < liminf |z, - p],

which derives a contradiction. Thus, we have
p € Fix(K). It follows from

Fix (K) =, Fix(T;)
that
peni, Fix(T,).
Next, we prove peVI(C,B). Put

Tw = Bw, +N.w,, w, eC,
'@, w, ¢C.

Since B is relaxed (u,v)-cocoercive and condition
(C5), we have

(Bx— By, X — y) 2(—u)||Bx— By||2 +v||x— y||2
> (v—u;ﬂ)"x— y||2 >0,

which yields that B is monotone. Thus T is maximal
monotone. Let (W,,w,)e G(T). Since w, —Bw, € Now,
and z, €C, we have

(W, —z,,w, —Bw;) > 0.

On the other hand, from z, =P, (I - SnB) y, and (1.1),
we have

Copyright © 2013 SciRes.

<W1—Zn,Zn—(| —snB)yn>20

and hence

<Wl—zn,Zn —Jn +Byn>20.
S

n

It follows that

<W1 -z, ,W2>2<W1 -Z,, Bw,>
2<w1 —Zni,BW1>—<W1 —zni,z"is;niy”w Byni>

Zni - y"i
={w —z,,Bw, -By, -

nj

= <wl -Z,, Bw, - ani >+ <W1 -Z,, ani - Byrli >

Z, —Yn
— Wl_Zni’ i N
Sni

Zni - yni
> <W1 -z,,Bz, —By, >—<W1 -z, ’s—>

N

which together with (3.16), (3.17) and B is Lipschitz
continuous implies that (w, — p,w,)>0. We have
peT'0 andhence peVi (C, B). That is,

p e NN, Fix(T,) A MEP(F,9) VI (C,B).

It follows from the variational inequality
{(rf-A)g,p-q)<0 forall

pe miN:lFix('I'i )m MEP(F,go)mVI (C, B)
that

lirnnsilp<(7f ~A)d, ¥, )
=lim({(y1 - A)a.y, ~a)
:<(;/f -A)a, p—q>£0.

Using (3.16) and (3.19), we have

(3.19)

limsup((y f - A)q,K,z, ) <0. (3.20)

Moreover, from (3.15) and (3.19), we have

limsup((7 f - A)q,x, —q)<0.

n—o0

(3.21)

Step 5. Finally, we will show that the sequences {x,}
and {y,} converge strongly to g.

Since z, =P, (1 -5,B)y,. using (1.19), (3.1), (3.2)
and Lemma 2.8, we have
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s =0l = f (Kox)+ By +((1-5,)1 -, A) K 2, ~aff
(1= BV -, A) (K2, =)+ B, (%, — ) +a, (7 F (K,x,) - Ad)[|
<[((1= )1 - e A) Koz, )+ B, (%, =) + a2 [ (Kox,) - Ad
+2,a, (%, —0.7f (Knxn)—Aq>+2an<((l—ﬁn)l ~a,A)(K,z,-0). 7 f (Knxn)—Aq>
<((1-8,-a7)|Koz, =0+ B, %, —q||)2 +ap [y f(K,x,)- Aq||2 +28, 70, (%~ 0. f (K%, ) - f(a))
+24., (%~ a7 f (q)—Aq)+2(1- B,) ra, (K2, —a, f (K,x,) - f(q))
+2(1-8,), (K,z, —a.7 f (d) - Ag) - 2a; (A(K,z,—q).7 F (K,x,) - Ad)
<0 Kty al + 1 =l +200- -7 A 1K -l a2 (05) - Aaf
+28, 70, (% =0, F (K%)= £()) +28,, (%, —a.7 f (q)— Aq)+2(1- B, )y, (K,z, -0, f (K%, ) - T (a))
+2(1-8,) e, (K,z, — 0.7 F (9) - Ad)—2a; (A(K,z, - ). 7 f (K,x,) - Aq)
s((l—ﬁn —a, 7Y+ +2(1- B, —an;7),6’n)||xn ~q +a2]y f (Kx,) - Ad| +28,7a,(x, ~a. f (K.x,) - f(a))
+2B, (%~ a7 f (q)-Aq)+2(1-B,) ra, (K,z,—a, f (K,x,) - f ()
+2(1-8,)a, (K,z, - 0.7 f (4) - Ag) - 2a; (A(K, 2, —q).7 f (K,x,) - Ad),
which implies that
%o =al <((1= B =7 + B2 +2(1= B, = 2,7) B, + 2 [, =l +222 [ T (Kox,) - Ad
+28,a, (%~ 0.7 f(a)-Ag)+2(1- B,) e, (K,z, —q.7 f (4) - Ad) - 27 (A(K,z,-q).7 f (K,X,) - Aq)
i (Knxn)—Aq||2+2ﬁnan<xn—q,yf (9)-Ad)
+2(1-8,) e, (K2, — 0.7 F(q) - Ad) - 2a; (A(K,z, 1), 7 f (K,x,) - Ag)
<(1-2(7-ar)a, )|, —q||2 +a, 77 |x, —q||2 +ai|ly f (K, x,)—Aq ? +28.a, <xn —q,rf (q)—Aq>
+2(1=8,) a, (K2, = 0.7 £ (a) - Ad) + 207 | A(K,z, —q)|-|» f (K,x, ) - Aq|
=(1-2(7-ar)a, )|, | +e; (;72 I =l +]7 f (K,x, )= Ad| + 2| A(K, 2, —a)|| f (K. x,)- Aql)
+28,a, (%, — 0.7 T (a)- AQ)+2(1- B, )&, (K,z,— 0.7 T (a) - AQ)
= (1-2(7-ar)aq (o (7 - ) (%,3,) - A

+2| A(K,z, —a)|-7 f (Knxn)—Aq||)+2ﬁn (%, = a7 (a)-Ad)+2(1- B,)(K,z, —q.7 f (q) - Aq).

=(1-2a,7 +a;7" +2aya, )|, —d| +a;

Since {X,}, { f(K.x, )} and {K,z,}are bounded, we By using (3.20), (3.21) and condition (C1), we get
can take a constant & > 0 such that

g2 772 "Xn _q"2 +||7f (Knxn)_Aq"2

limsup ¢, <0.

n—oo

Now applying Lemma 2.1 to (3.22) concludes that

+2||A(ann —q)||-||yf (Kan )— Aq|| X, =0 as n—oco. Finally, noticing
forall n>0. Itthen follows that ||yn - q|| =T, x,— T, qf < ||XrI - q||
¥ —q||2 <(1-2(7-27) e, )|, —Q||2 +a,l,, (322)  we also conclude that y, —q as n—oo. This com-
pletes the proof.
where
0 =28, (%~ f(a)-Aq) 4. Applications
+2(1- 4, )<ann -q,7f(q)- Aq>+0‘nég- In this section, by Theorem 3.1, we can obtain some new
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and interesting strong convergence theorems. Now we
give some examples as follows:

Let T, =1 for all i=12,--,N and setting y=1,
A=1 and f =X in Theorem 3.1, we obtain the fol-
lowing result.

Corollary 4.1. Let H be a real Hilbert space, C a non-

empty closed convex subset of H, F a bifunction from
CxC to R which satisfies (Al)-(A4),
p:C —>RU{+00} a proper lower semicontinuous and
convex function and T,,T,,---,Ty a finite family of
nonexpansive mappings of C into H such that the com-
mon fixed points set MEP(F,p)nVI(C,B)=J. As-
sume that either (B1) or (B2) holds and X is an arbi-
trary point in C. Let {x,} and {y,}, be sequences
generated by X, e H and Vnx1,

F(Yna’?)+¢7(77)_¢’(yn)
1
(1= Y0 Y = %) 20,

Xnsl :anX-i-ﬁan +(1_an _ﬂn)PC (I _SnB)ym

where {an}, {ﬂn}c(O,l), {rn}c(O,oo), {Sn}c[O,oo)

VvneC,

satisfying the conditions (C1)-(C5) in Theorem 3.1. Then,

{x,} and {y,} converge strongly to a point
q e MEP(F.p) VI (C.B),
where
q = Puep(r.p)vi(c.p) (x).

Setting =1, A=1, f:=Xx and {Sn}:O for all n
in Theorem 3.1, we obtain the following result.

Corollary 4.2. Let H be a real Hilbert space, C a
nonempty closed convex subset of H, F a bifunction
from CxC to R which satisfies (A1)-(A4),
p:C —>RU{+00} a proper lower semicontinuous and
convex function and T,,T,,---,T a finite family of non-
expansive mappings of C into H such that the common
fixed points set N, Fix(T;)"MEP(F,p) = @. Let K,
and K be the K-mappings defined by (1.16) and (1.17),
respectively. Assume that either (B1) or (B2) holds and x
is an arbitrary point in C. Let {x,} and {y,} be se-

quences generated by X, € H and Vn2x1,

1
F(yn’n)+¢(n)_¢(yn)+r_<77_ynsyn _Xn>20’
VvneC,

Xn+1 :anx+ﬂnxn +(1_an _ﬂn)Knynﬁ
where A4,4,,---,4, arereal numbers such that

0< 4 <1 forevery i=12,---,N—-1 and

0< Ay <LA; —> A(i :l,---,N) and {a,},
{B.}<=(0,1), {r,}=(0,0), {s,}<=[0,0) satisfying
the conditions (C1), (C3), (C4) and (C6) in Theorem 3.1.
Then, {Xn } ,and {yn} converge strongly to a point

Copyright © 2013 SciRes.

ge miN:IFix(Ti)m MEP(F,go),
where

4= PmiN:] Fix(T; )AMEP(F ) (X)

Finally as applications, we will utilize the results pre-
sented in this paper to study the following optimization
problem:

minr]eC (0(’7)’ (41)

where C is a nonempty bounded closed convex subset of
a Hilbert space and ¢:C —> Ru{+oo} is a proper
lower semicontinuous and convex function. We denote
by Argmin(p) the set of solutions in (4.1). Let
F(x,y)=0 forall x,yeC in Corollary 4.1, then

MEP(F,(p) :Argmin(;o).

It follows from Corollary 4.1 that the sequence {Xn}
generated by X, € H and Vn21,

_ 1
g <sngmin o)+l |

Xns1 =O!nX+ﬁan+(l—(ln _ﬂn)PC(I _SnB)yn’

where {a,}, {B,}<=(0,1), {r,} =(0,0) and {s,}<=[0,)
satisfying the conditions (C1)-(C5) in Theorem 3.1. Then
the sequence {X,} converges strongly to a point

q € Argmin (@) VI (C,B),

4.2)

where
q= PArgmin(q;)f\Vl(C,B) (X)
Let T. =1

: for all i=1,2,---,N and F(X,y)=0 for
all x,yeC in Corollary 4.2, then
MEP(F,9) = Argmin(¢p). It follows from Corollary
4.2 that the iterative sequence {X,} generated by
X, €eH and Vnx>1,

. 1
Y, = argmin, {40(77) o= }
rn

Xn-¢-1 :anx+ﬂnxn +(1_an _ﬂn)yn’

where {a,}, {£,}<=(0,1) and {r}c(0,0) satisfy-
ing the conditions (C1), (C3) and (C4) in Theorem 3.1.
Then the sequence {X,} converges strongly to a point
q € Argmin(¢), where q= Pamin(o )(X

Remark 4.3. The algorithms (4.2) and (4.3) are vari-
ants of the proximal method for optimization problems
introduced and studied by Martinet [41], Rockafellar [42],
Ferris [43] and many others.
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