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ABSTRACT 

From the equations of motion for baryons in the 
scalar strong interaction hadron theory (SSI), 
two coupled third order radial wave equations 
for baryon doublets have been derived and 
published in 1994. These equations are solved 
numerically here, using quark masses obtained 
from meson spectra and the masses of the 
neutron, 0 and 0 as input. Confined wave 
functions dependent upon the quark-diquark 
distance as well as the values of the four inte-
gration constants entering the quark-diquark 
interaction potential are found approximately. 
These approximative, zeroth order results are 
employed in a first order perturbational treat-
ment of the equations of motion for baryons in 
SSI for free neutron decay. The predicted mag-
nitude of neutron’s half life agrees with data. If 
the only free parameter is adjusted to produce 
the known A asymmetry coefficient, the pre-
dicted B asymmetry agrees well with data and 
vice versa. It is pointed out that angular mo-
mentum is not conserved in free neutron decay 
and that the weak coupling constant is detached 
from the much stronger fine structure constant 
of electromagnetic coupling. 

Keywords: Scalar Strong Interaction; Baryon  
Radial Wave Functions; Free Neutron Decay 

1. INTRODUCTION 

This paper consists of two parts. 
In Part 2, the equations of motion of ground state dou-

blet baryons in the scalar strong interaction hadron the-
ory (SSI) derived earlier are solved numerically to yield 
approximate baryon wave functions and quark-diquark 
interaction potential. 

In Part 3, these results are employed in free neutron 
decay to obtain decay time and the A and B asymmetry 

coefficients. Nonconservation of angular moemntum and 
detachment of weak and electromagnetic couplings are 
pointed out. 

2. BARYON WAVE FUNCTIONS 

2.1. Conversion to Six First Order     
Equations 

Although the equations of motion for mesons [1] and for 
baryons [2] in the scalar strong interaction hadron theory 
(SSI) were both published in the early 1990’s, subse-
quent work took place wholly in the meson sector. This 
due to that the meson equations can be decomposed into 
second order differential equations Eqs.6.7-8 of [1] or 
Eqs.3.2.3-4 of [3] which have analytical solutions in the 
rest frame providing the zeroth order background upon 
which higher order perturbational problems can be built 
and treated. Much success and new insights about mes-
ons have been achieved, as are seen in Chapters 4-8 in 
[3]. Of current interest is that no Higgs boson is nee- ded 
to generate the mass of the gauge boson [4]. The linear 
Dalitz plot slope parameters in kaon decaying into three 
pions [5] and electromagnetic and strong decays of some 
vector mesons [6] have been treated. The epistemologi-
cal foundation of SSI is given in the recent [7]. 

On the other hand, the two coupled third order radial 
equations for baryon doublets Eq.A20 cannot be decou- 
pled and reduced to lower order equations. They are eve- 
ntually reduced to the six first order equations Eq.1 be-
low which have to be solved numerically. Further, the 
interquark potential Eq.A15 contains four unknown in-
tegration constants that enter Eq.1. Very lengthy work 
has been spent in finding these constants and solving Eq.1 
below by computer. This is the reason that the baryon re- 
sults to be presented below come so many years later. 
Such numerical computations have been carried out and 
the four integration constants in Eq.A15 and Eq.1 are 
obtained together with the radial wave functions. 

The coupled third order equations Eq.A20 cannot be 
solved analytically and have to be treated numerically. 
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The standard procedure is to convert them into a first sy- 
stem according to Eq.10.7.5 of [3] after putting the or-
bital angular momentum L = 0 there (see Eq.1),  

In arriving at Eq.1, Eq.A15 has been used. E0 is the 
neutron mass, Mb

3 is the quark mass term defined in 
Eq.A4 and the four db constants are integration constants 
in the solution to the homogenized Eq.A14 b(r) = 
0 and are independent of flavor, i.e., baryon species, as 
was pointed out below Eq.10.1.6 of [3]. 

These four db constants can therefore not be fixed by 
using four baryon masses as input. The procedure ado- 
pted is as follows. The quarks masses in Eq.A4 are mu  
0.6592, md  mu  0.00215 and ms  0.7431 in units of 
Gev taken from Table 1 of [8] or Table 5.2 of [3] obtain- 
ned from meson spectra. Three known baryon masses 
are E0  0.9397, 1.1926 and 1.3148 Gev for neutron,  

0 

and  
0, respectively [9]. These are inserted into Eq.1 

and the four db’s are varied over suitable ranges such that 
the solutions satisfy the boundary condition at r   or 
converge there. 

Near the origin r  0, the baryon radial wave func-
tions can be expanded in power series in r according to 
Eq.10.7.6 of [3], 
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where  satisfy the indicial equation Eq.10.7.4 of [3] and 
is related to + in Eq.4 below. a and b are constants 
satisfying the recursion formula Eq.10.7.7 of [3]. At 
large r, Eq.10.2.7a of [3] gives 
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The presence of r1/3 is incompatible with the power 
series Eq.2 and Eq.1 has to be solved numerically. 

Equivalent to Eq.2 is the expansion around the regular 
singular point r = 0 in Eq.1, 
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where + are given by Eq.10.2.8a of [3]. The three cases 
with possible +  0 are excluded because they lead to 
diverging w (r = 0). The remaining cases yield 

    0,1,0 100400  ww            (5) 
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where the amplitude in Eq.5 has been normalized to 
unity. w(1) and w(2) are amplitudes for the remaining two 
solutions. The general solution near r  0 reads 

             rwrwrwrw  210       (8) 

Substituting this into Eq.1, which is now solved as an 
initial value problem with initial conditions Eqs.5-7. 

2.2. Numerical Solution and Results 

The six unknown parameters db, db0, db1, db2, w(1), and 
w(2) are adjusted so that the six boundary conditions w 

(r  )  0 for a given Mb
3 and the associated baryon 

mass E0. The calculations are done via a Fortran progr- 
am employing Runge-Kutta integration subroutine on 
computers of the Department of Information Technology 
at Uppsala University. In the paramater range of interest, 
it was found that integration of Eq.1 and summation of 
the power series Eq.2 give the nearly the same results 
for r  7-8 Gev1. Beyond this value, Eq.2 become unre-
liable due to accumulated computational errors. Simi-
larly, Eq.1 leads often to diverging solutions at r  7-12. 
This is because that Eq.3 without the minus sign in the 
exponent is also a solution which tends to overshadow 
Eq.3 due to accumulated errors and takes over at large r. 

Near the origin r  0 and at large r, the potential in 
Eq.1 is dominated by the db/r and db2r

2, respectively, and 
the flavor dependent quark mass term Mb

3 there can be 
dropped. The solutions f0(r) and g0(r) in these r regions 
are independent of the baryon flavor. Thus, db and db2 
are flavor independent constants on par with the corresp- 
onding meson sector’s dm and dm0 which are independent 
of flavor according to Subsection 4.4 of [3]. The small r 
region is very small and the large r region determines the 
asymtotic behavior of f0(r) and g0(r). 
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Therefore, db2, which determines the “confinement st- 

rength” via Eq.3, is used to lable a set of the six unkn- 
own parameters and chosen first. Extensive computer ca- 
lculations showed that the remaining five constants are 
uniquely fixed if the solutions g0 and f0 are to converge 
at r  . Among a huge numbers of combinations of 
the six parameters, only a very narrow range of values 
for these parameters leads to converging w(r). Some 
examples of the results are given in Table 1. 

The wave functions for the db2  0.4462 case are 
plotted in Figure 1 below. 

Convergent solutions have been found for continuous 
ranges of db2 values largely in the region –0.1 to –1.4, 
although some values outside this region seem also to le- 
ad to convergence and some values inside this region, 
for instance from –0.23 to –0.27, do not. It may note that 
it is to some degree arbitrary to regard a set of solutions 
to be convergent or not. Due to accumulation of com-
puter errors at large r, all solutions eventually diverge 
for sufficiently large r. Convergence is regarded as good 
if f00(r) and g00(r) are nearly zero over a “sufficiently” 
large range of r when r is large. 

The mean spread s in Table 1 is defined as follows. 
Let 
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Repeat this step for db0 and db1 and define 

10 dbdbdbs                   (10) 

which is a measure of how much the db, db0 and db1 val-
ues deviate from the averages db, db0 anddb1. 

Near the origin r = 0, the potential Eq.A15 is domi-
nated by the db /r terms and the solutions f0(r) and g0(r) 
are independent of the baryon flavor. Thus, db is a flavor 
independent constant on par with the corresponding me- 
son sector’s dm and dm0 which are independent of flavor 
according to Subsection 4.4 of [3]. Conversely, one ex-
pects calculations produce a common db value which is 
confirmed in Table 1. 

If a set of db2, db1, db0, and db values that lead to con-
vergent solutions for all three baryons in Table 1, a solu-
tion to the present baryon spectra problem has been fou- 
nd. Table 1 shows that this is not the case but some sets 
possess values that are rather close to each other for the 
three baryons and may therefore be regarded as appro- 
ximate solutions to the baryon spectra problem here. Po- 
ssible nature of these approximations are consisdered in 
the next section. 

The set that yields db2, db1, db0, and db values which 
are closest to each other for the three baryons in Table 1 
is the db2 = 0.4462 case with a minimum spread db  
1.4% for db. The mean spread s  6.2% is also a minim- 
um. This set and may therefore presently be regarded as 
representing an approximate solution to the baryon spec-
tra problem here. 

 
Table 1. Values of the four db constants in Eq.1 with Gev as basic unit, the spread db1, db0 and db from the mean values of the four 
db constants and the sum spread s according to Eq.10 below and w(1) and w(2) in Eqs.5-7 for some converging solutions in Eq.1. 

 db2 db1 db0 db s w(1) w(2) 
Neutron 0.140 1.0439 3.0 0.695  0.016 0.0288 

 
0 0.1411 1.336 4.06 1.085  0.0415 0.0691 

 
0 0.141 1.111 3.568 0.924  0.0019 0.0851 

d  10.7% 12.2% 17.7% 40.6%   
Neutron 0.1641 1.334 3.719 1.013  0.0668 0.045 

 
0 0.1641 1.279 3.706 0.990  0.0353 0.0756 

 
0 0.1641 1.220 3.691 0.9177  0.0523 0.0721 

d  3.6% 0.3% 4.2% 8.1%   
Neutron 0.3202 2.272 4.922 1.024  0.1827 0.0674 

 
0 0.3202 2.167 4.783 1.032  0.0586 0.0662 

 
0 0.3202 2.142 4.899 1.083  0.1191 0.1061 

d  2.6% 1.2% 2.5% 6.3%   
Neutron 0.4462 2.968 5.749 1.035  0.247 0.0859 

 
0 0.4462 2.831 5.541 1.066  0.1624 0.090 

 
0 0.4462 2.768 5.516 1.033  0.121 0.0974 

d  2.9% 1.9% 1.4% 6.2%   
Neutron 0.575 3.658 6.55 1.064  0.2943 0.102 

 
0 0.575 3.471 6.224 1.073  0.203 0.997 

 
0 0.575 3.383 6.147 1.029  0.195 0.1164 

d  2.2% 2.8% 1.8% 6.8%   
Neutron 0.975 5.572 8.328 0.8173  0.4278 0.1576 

 
0 0.975 5.319 7.895 0.9048  0.316 0.1298 

 
0 0.975 5.090 7.441 0.6859  0.2902 0.1391 

d  3.7% 4.6% 11.2% 19.5%   
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Figure 1. Baryon radial wave functions f0(r) and g0(r) in Eq.1 normalized according to Eq.A23 for the db2  0.4462 
case in Table 1. r is the quark-diquark distance. 
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However, Table 1 also shows that this minimum is 

very shallow one and sets of db2, db1, db0, and db values 
with db2 values in the range around 0.32 to 0.45 may 
also be qualified to yield approximate solutions. This ra- 
nge is supported by the approximative agreement of the 
calculated and experimental values of the half life and A 
and B asymmetry coefficients of free neutron decay for 
the db2  0.3202 case in Part 3 below. 

The value of the constant db corresponding to meson 
sector’s dm in Eq.5.2.3 of [3] and dm0 in Table 5.2 of [3] 
is close todb for db2 values in the range around db2  
0.32 to 0.45 in Table 1 and is 

2Gev04.1bd               (11) 

The above results have been obtained using Eq.10. 
2.3a of [3] or for j  l  1/2. If Eq.10.2.3b of [3] or j  l  
1/2 were chosen, the db0 values for the three baryons in 
Table 1 would deviate so much from each other that db0 
can no longer be considered as an approximately flavor 
independent constant. 

The “reduced order” baryon spectra Eq.10.4.7 of [3] 
was obtained assuming non-relativistic qaurks, i.e., 
E0d

2/4 >> 0, 1 mentioned above Eq.10.4.1 of [3]. 
However, it can be estimated from Figure 1 that the op-
posite holds. Therefore, Eq.10.4.7 of [3], hence also 
Eq.10.5.20 of [3] for the quartet, cannot be used. The 
quark and diquark in the baryons are highly relativistic 
just like the quarks in the mesons are at the end of Sub-
secction 5.3 of [3]. 

2.3. On Functions Nonseparable in Relative 
Space x and Internal Space z 

Consider a two electron system. When the both electrons 
are far apart, it is described by two independent Dirac 
wave functions  (xI) and  (xII) totaling eight wave 
function components. When they are closer to each other 
the product wave fucntions  (xI) (xII) must be gener-
alized to the nonseparable  (xI,xII) having 16 compo-
nents governed by the Bethe-Salpeter equation which 
includes the interaction between the both electrons. The 
eight extra wave function components are associated 
with this interaction and are small perturbations when 
the both electrons are not too close to each other. This 
example illustrates the conjecture below. 

The approximate solutions in Subsection 1.2 are based 
upon the construction that the total baryon wave func-
tions are separable in the relative space wave function 
0

a(x) and internal space functions r
p(zI,zII) in Eq.9.3. 

7b of [3]. According to the epistemological considera-
tions in Subsection 5.4 of [7] or Appendix G of [3], these 
both spaces are “hidden”, on par with each other, and at 
the so-called “level logic2” and can be combined to form 
a larger manifold (x,zI,zII). In this case the product form 

0
a(x)r

p(zI,zII) in Eq.9.3.7b of [3] needs be generalized 
to the nonseparable form 0

a
r
p(x,zI,zII). A conjecture is 

now made that the mass operator m3op(zI,zII) of Eq.9.3.14 
of [3] is also generalized to a nonseparable, as yet un-
known form m3op(zI,zII,x), analogous to the generalization 
of the masses operator m2op(zI,zII) to m2op(zI,zII,x) in Sub-
section 5.4 of [7] or Appendix G of [3]. This generaliza-
tion may for instance be such that when r  |x| falls out-
side some region of values, m3op(zI,zII,x) degenerates 
back to m3op(zI,zII). 

The product wave fucntion 0
a(x)r

p(zI,zII) in Eq.9.3. 
7b of [3] has 10 components, two from a  1, 2 and eight 
from p  r  1, 2, 3(less the singlet). The generalized, 
nonseparable 0

a
r
p(x,zI,zII) has 2  8  16 wave fucntion 

components, six more than 10 components. These six 
extra components are associated with this presently un-
known dependence of m3op(zI,zII,x) upon x. They may be 
the cause of the approximative nature of the results in 
Table 1. Actually, the generalization from separable to 
nonseparable forms can already be formally introduced 
at the quark level, as was pointed out at the end of Sub-
section 11.1.2 of [3]. 

3. FREE NEUTRON DECAY AND    
POSSIBLE NONCONSERVATION     
OF ANGULAR MOEMNTUM 

3.1. Background 

The present theory of nuclear -decay is based upon the 
electroweak part of the standard model [9]. The origin of 
this part is the four fermion point interaction Lagrangian 
density 

    enpVF CL           (12) 

for neutron decay 

 epn              (13) 

first proposed by Fermi in 1934. Here Cv is a constant. 
Subsequently, Eq.12 has been generalized to the -in- 
teraction Hamiltonian currently in use Eq.13.9 of [10], 
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Here, i refers to the scalar, vector, tensor, axial vector, 
and pseudoscalar interactions between the nucleon and 
lepton currents. The Oi’s contain  and 5 and the C´s 
are generally complex. 

Based upon Eq.14, lepton kinematics and convention- 
nal conservation laws, including angular momentum co- 
nservation, Jackson et al. [11] derived in 1957 a number 
of decay rate formulae. The most frequently used one is  
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in which the final spins have been summed over for a 
given initial neutron polarization Jn. Here, the K’s de-
note momenta, E energy and e the electron polarization. 
The constants a, A, B, D, R, and  depend upon the C´s 
and the nucleon current consisting of a vector and an 
axial vector part in the so-called V-A theory. Experi-
ments on neutron decay have since then largely been 
devoted to determine these constants in this nearly 50 
year old Eq.15 and related formulae [12]. These have, 
however, yielded little physical insight into the decay 
mechanism. 

The standard Hamiltonian Eq.14 is a phenomenology- 
ical model, not derivable from any first principles theory. 
It treats nucleon as a point particle and hence ignores its 
quark structure. There are in principle 20 real C con-
stants in Eq.14, leaving the theory with little predictive 
power. This hints at a superfluousness of Eq.14, which is 
not invariant under SU(2) gauge transformations. Such 
an invariance would give rise to an intermediate vector 
boson W which couples to a left-handed e pair. 

Therefore, despite its noble origin and general accep-
tance, this model Eq.14 does not differ in principle from 
the large number of recent phenomenological models, 
constructed for different and narrow application angles, 
present in a vast body of literature. 

Angular momentum conservation has not been establ- 
ished experimentally in free neutron decay. Most of the 
experiments make use of nuclei and the conclusion is that 
angular momentum is conserved. But a nucleus poses a 
highly complex, unsolved many body problem and exp- 
eriments with it cannot lead to any firm conclusion on 
angular momentum conservation in free neutron decay. 

In this part, free neutron decay will be treated using 
the equations of motion for doublet baryons Eqs.A7-A8 
and its development in Chapters 9-11 of [3], incorporating 
vector gauge fields of Eqs.12-13 of [4] or Subsection 7.1.2 
of [3] and new tensor gauge fields. The results obtained, 
not reachable from Eq.15, include a prediction of the 

half life of the neutron in approximate agreement with 
data and a relatively good prediction of the B asymmetry 
coefficient. 

3.2. Introduction of Vector and Tensor 
Gauge Fields 

3.2.1. Action-Like Integrals for Doublet Baryons 
The starting point is the equation of motion for doublet 
baryons Eqs.A7-A8. Multiply Eq.A7 from the left by 
0a

* and Eq.A8 by  b*
0 , subtract the resulting expres-

sions from their complex conjugates and integrate over 
xI and xII to obtain 
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where * is an extra sign denoting complex conjugate, I  
/xI and II  /xII and their positions have been chan- 
ged so that the summations over the e and h indices con- 
form to matrix multiplication convention and that the bo- 
th I’s appear next to each other to reflect that they oper-
ate on the diquark part indicated by the braces. 

These integrals will not be varied with respect to 0a
* 

and  b*
0  in an attempt to reproduce Eqs.A7-A8; han-

dling of the last c.c. terms and the necessary boundary 
conditions will require efforts beyond the scope of this 
chapter. Nor is such a variation necessary for the present 
purposes. If the solutions to Eqs.A7-A8 is inserted into 
Eqs.16-17, we obtain 
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3.2.2. Non-Minimal Substitution and Tensor 
Gauge Field 

The minimal substitution of Eq.12 of [4] or Eq.7.1.4 of 
[3] led to the introduction of the vector gauge boson 
field W which is naturally associated with the vector part 
V of the V-A theory mentioned beneath Eq.15. The axial 
vector part A is an asymmetrical part of a tensor which 
can be introduced by the following non-minimal substi-
tution (see Eqs.19-20), 
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where Eq.A10 has been noted. The right side of Eq.19 
can readily be shown to be invariant under the U(1) gau- 
ge transformations, 
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where s(X) is a local phase and Eq.12 of [4] or Eq.7.1.4 

of [3] has been consulted. The right side of Eq.20 trans-
form analogously. 

3.2.3. SU(3) Tensor Gauge Fields and Gauge 
Invariance 

These expressions are now generalized to include SU(3) 
gauge fields analogous to Eq.7.1.4 of [3]. Limiting our-
selves to baryon doublets in Eq.9.3.7b of [3], Eqs.16-17 
with Eqs.19-20 are generalized, with the sign of the 
tensor term changed in Eq.20, to 

 

       

     
 

   




















































































 








.. 2 

   
4

2

1

4

4

2

1

3

0
44

ccMi

WWg
i

TWW

g
i

Wg
i

dxdx
i

S

a
ptbb

fhbrt

ba
lqrl

he
lsql

bahe
llqrlsql

he
Iqr

ba
lsql

ba
I

he
lqrlsq

qrsq
ba

I
he

I

ef
lpslps

ef
II

atpIII











 








 

(22) 

 

 

       

     
 

 






















































































 









..2 

   
4

2

1

4

4

 
2

1

0 
3

*
0

44

ccMi

WWg
i

TWW

g
i

Wg
i

dxdx
i

S

bptbb

eck
rt

cblqrlkhlsql

cbkhllqrlsqlkhIqrcblsqlcbIkhlqrlsq

qrsqcbIkhI

helpslpsheII

b
tpIII


























 

(23) 

Equation Eq.22 is invariant with respect to the SU(3) 
gauge transformations Eq.7.1.7 of [3], with the obvious 
replacement of the two meson indices by the three 

baryon indices associated with  in Eq.22, together with 
a generalization of the second of Eq.21, 
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Analogously, the same invariance also holds for Eq.2.3 with Eq.2.4 replaced by 
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For application to neutron decay, only the SU(2) part 
of Eqs.7.1.4-5 of [3] is needed and l and l´ run from 1 to 
3. Apart from the flavor indices l and l´, the tensor bahe

llT 
  

has 16 components, 10 symmetrical and 6 asymmetrical, 
which in its turn is grouped into a vector E(electric field 
in electromagnetism) and an axial vector H(magnetic 
field), which is assigned to the axial vector A mentioned 
above Eq.19. Identification of the tensor components 

corresponding to H has been given in Subsection 4-5 of 
[13] which are found by means of the invariant aymmet-
rical operator kl of Eq.B15 of [3]. These are 
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The remaining 13 components of bahe
llT 
  do not enter 

here and are put to zero. 

3.3. First Order Relations 

The gauge boson and tensor field in Eqs.22-23 are decay 
products of the neutron whose wave functions now ac-
quire a weak time dependence. Follow Eq.6.4.1 or Eq.7. 
3.1 of [3], noting Eq.A10, and let the nucleon wave fun- 
ctions in Eqs.22-23 take the form 
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where E is the energy, K the momentum, aop  1 and 
aop

(1)(X) is a first order quantity varying slowly with 
time. Both can be elevated to operators in quantized case, 
as are described beneath Eq.6.4.2 of [3]. Ordering of 
these small quantities aop

(1)(X), g, W etc is the same as 
that in Eqs.18-19 of [4] or Eq.7.3.2 of [3]. The subsc- 
ripts 0, 1 denote zeroth order and first order quantities, 
respectively. 

Following the rudimentary quantization procedure of 
Eqs.23-25 of [4] or Eqs.6.4.12-15 of [3], let the initial 
and final states be denoted by 
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respectively. n, p, W, T denote the neutron, proton, gauge 
boson, and tensor gauge field, respectively. Further, 
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Let aop in Eq.27 and its hermetian conjugate aop
+ be 

elevated to annihilation and creation operators. Insert 
Eq.27 into Eq.22 and sandwich the resulting expression 
between <f| and |i>. There are two types of first order 
terms: 1) those containing aop

(1)(X0) and 2) those 
linear in gW and gT. 

Carrrying out integration over the time X0, the type 1) 
terms read 
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in which the c.c. term in Eq.22 contributes equally. Sfi is 
the decay amplitude and Eq.A6 has been used. For the 

evaluation of the type 2) terms, the final state  f| in 
Eq.28 will contain the gauge fields, 
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where Eq.12-13 of [4] or Eq.7.1.4-5 of [3] limited to its 
SU(2) part has been consulted. The initial and final nu-
cleon states in Eq.28 will have a laboratory space time 
dependence of the form given in Eq.27 with subscripts p 
for proton and n for neutron attached to the variables 
there. Here, use has been made of Eq.9.3.7b and Eq.9. 
3.18a of [3] which gives tp = 31 for proton and rt = 23 
for neutron in Eq.22. After summing over the flavor in- 
dices t, p, s, q, and r and carrying out the integration 
over X, the type 2) terms become 
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where Eq.A6 has been used and EW and KW terms have 
been neglected because they are small relative to |I,II 

|/||. With Eq.26, Eq.32 and Eq.B5 of [3], the 16 t’s in 
Eq.33 reduce similarly to three for an axial vetor: 
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3.4. Decay Amplitude 

The decay amplitude Sfi for the  function is found by 
putting Eq.30 to the negative of Eq.33. Letting   d3X, 
the result is 
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In an analogous fashion, The decay amplitude Sfi for the  function is obtained from Eq.23 and reads 
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The starred wave functions in nominators of Eqs.35- 
36 represent final states or proton, irrespective the nucl- 
eon lables; the c.c. terms will turn out to contribute eq- 
ually and can be dropped together with an overall factor 
2 multiplying the right of Eqs.35-36. The wave functi- 
ons in denoiminators of Eqs.35-36 are those of the initial 

neutron, as  f| has been included in Sfi of Eq.30. 
The proton may have a different m or spin value in 

Eqs.A16-A19 relative to that pertaining to the initial 
neutron in Eqs.35-36. There are four combinations 
which are denoted by 

FGTGTF
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As there are two equally correct solutions Eqs.A16- 
A17 and Eqs.A18-A19, Eq.30 and Eq.33 are to be av-
eraged over these two equally probable solutions. The 
averaging will turn out to not affect Eq.30 so that it can 
be carried out for Sfi and Sfi of Eqs.35-36 directly to 
obtain Sfiav and Sfiav. It removes terms of containing 
f0(r)g0(r) or their derivatives that will appear in Eqs.35- 
36 after application of Eqs.A16-A17 or Eqs.A18-A19 
and Eq.37. Such terms will for instance differentiate 
between neutron spin up and spin down decay rates con-

tray to the measured A asymmetry coefficient [9]. In-
serting Eqs.A16-A17 and Eqs.A18-A19 into Eq.35 and 
Eq.36 for the four combinations of Eq.37, making use of 
Eq.A10, summing over the spinor indices, employing 
Eq.34, and integrating over the angles  and  in the 
relative space, one finds that the both averaged decay am- 
plitudes Sfiav and Sfiav are the same, as may be expected 
from the symmetry between the  part Eq.22 and the  
part Eq.23; 
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where Ndr is given by Eq.A22 and Ig00 and If00. are defi- 
ned Eq.A23. 

3.5. Expressions for Vector and Tensor 
Gauge Fields 

3.5.1. Mass Generation of W Boson Via Virtual 0 
In the analogous meson case, the pion beta decay  

  
 0ee of [4] or Subsection 7.4.5 of [3], the gauge boson 
W decay into a pair of leptons. The mass of the W boson 
comes from the (gW)2 terms in the meson action integral 
Sm in Eq.11 of [4] via Eq.32 and Eq.35 of [4] or Sm3 in 
Eq.7.1.8 of [3] via Eq.7.4.4 and Eq.7.4.6b of [3] and is 
generated by the integral of the |pion wave functions|2 
over the relative space x. It can be seen from Eq.7.4.3a 
and Eq.7.4.4 of [3] that the energy of pion does not enter 
and can be zero. In this case, the pion is virtual. 

In the corresponding action-like integrals S and S 
of Eqs.22-23, there is no such (gW)2 mass term, only 
terms of the form (gW)(gI,IIW). Therefore, the gauge 
boson W from neutron decay cannot decay into a pair of 
leptons via the integrals Eqs.22-23 for neutrons. 

The interpretation of this situation is that gauge bos-
onW in the neutron case here decays into a pair of lep-
tons via a virtual 0 action as has been considered in 
Subsection 7.6.2 3 of [3] and employed earlier for muon 
decay in Subsection 7.6.3 4 of [3]. In the pion beta decay, 
the W is positively charged and decays into a lepton pair 
via Eqs.44-45 of [4] or Eq.7.4.10 of [3]. In neutron de-
cay, the W is negatively charged and WI

 in Eq.7.4.5 of 
[3] is replaced by WI

+ so that Eq.7.4.5 and Eq.7.4.6a [3], 
neglecting the first three terms there and noting 
Eq.7.4.10 of [3], are modified to 
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  (40) 

where the gauge boson mass MW is given by Eq.35 and 
Eq.41 of [4] or Eq.7.4.6b and Eq.7.4.9 of [3], x0 is the 
relative time between the quarks in  

0 and  a large nor- 
malization volume of the  

0. 

3.5.2. Variation of the Total Action for Neutron 
Decay 

Having found an expression for w0 in Eq.38 from Eq.40 

via Eq.31, expressions for the other unknowns tab there 
will be obtained in this and the next paragraph. The vec-
tor gauge boson fields Eq.40 was found by varying the 
total action Eq.7.1.1 of [3], after removing its last term, 
or Eq.5 of [4] with respect to W in Subsection 7.4.2 of 
[3] or Eqs.30-32 of [4]. For neutron decay, the meson 
action Sm3 in Eq.7.1.1 of [3] is to be replaced by the cor-
responding baryons actions Eqs.22-23, S  S, and the 
vector gauge boson action SGB be replaced by a gauge 
boson-tensor field action SGBT. Equation Eq.5 of [4] or 
Eq.7.1.1 of [3] is here replaced by 

  LmLavavbGBTTn SSSSSS      (41) 

Here, the lepton actions SL + SLm are the same as those 
in Eqs.8-10 of [4] or Eqs.7.1.16-17 of [3]. b is a dim- 
ensionless proportional constant that, for instance, signi-
fies that the action-like baryon integrals S and S differ 
basically from the meson action Sm in Eq.11 of [4] or Sm3 
in Eq.7.1.8 of [3] in that the normalization of the wave 
function amplitudes are different. Sav(Sav) denotes that 
S(S) has been averaged over the both equally pro- 
bable solutions Eqs.A16-A17 and Eqs.A18-A19 for the 
baryon wave functions that enter it, just like that Sfi and 
Sfi of Eqs.35-36 have been averaged to Sfiav and Sfiav 
in Eq.38. 

The  sign in Eq.41 is chosen because Eq.41 will lead 
to an expression for tab in Eq.38; if this sign is replaced 
by , the needed Eq.42 below will vanish. Further, this  
sign will remove terms linear in gW, as is implied by 
Sfiav  Sfiav  0 from Eq.38. This will cause Sav  Sav 

in Eq.41 to possess (gW)2 terms, apart from the tab terms, 
to that order and render it to have an extremum when 
solutions near the correct ones are inserted into Sav  
Sav. 

Unlike SGB in Eqs.6-7 of [4] or Eq.7.1.2 of [3], SGBT in 
Eq.41 is unknown. If the tensor gauge field is to have an 
equation of motion like that for the gauge boson Eqs.34- 
35 of [4] or Eq.7.4.6 of [3], SGBT is expected to contain 
terms of the form (XW)(XT). Physical existence and 
interpretation of the tensor gauge field are not known 
and will be left to eventual future work. For the present 
purpose, it is sufficient to obtain an expression for tab 

from Eq.41 for use in Eq.38. 
Follow the steps of Eqs.30-33 of [4] or Subsection 

7.4.2 of [3] and vary Eq.41 with respect to baW  . The 
unknown SGBT is expected to give rise to en-
ergy-momentum terms of the form (X

2T) corresponding 
to the first terms on the left of Eq.34 of [4] or Eq.7.4.6a 
of [3], which have been neglected because they are much 
smaller than the gauge boson mass term that follows 
them. Similarly, the obtained (X

2T) terms can also be 
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dropped on the same ground so the exact but unknown 
form of SGBT is of no concern here. Variation of the SL + 
SLm terms in Eq.41 with respect to baW   is analogous 
to that given by Eq. 33 of [4] or Eq.7.4.5 of [3] and leads 
to Eq.40. 

3.5.3. Expressions for Tensor and Vector Gauge 
Fields 

Variation of SavSav in Eq.41 with respect to baW   is 
limited to terms of order g2. When evaluating the aver-
age Sav(Sav) using Eqs.A16-A17 and Eqs.A18- A19, it 
is practically sufficient to use one of them, for instance 
Eqs.A16-A17 for S(S) of Eqs.22-23, and drop the 
f0(r)g0(r) terms, as was mentioned beneath Eq.37. 

In the evaluation of Eqs.22-23, use is made of Eq.27, 
Eq.A6 and Eq.A10. When summing over the flavor in-
dices t, p, s, q, and r, tp = 32 and rt = 23 for neutron and 
Eqs.31-32 are employed. Carrying out the angular inte-
grations, one finds 
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where the upper and lower rows in the U´s refer to neu-
tron spin up m  1/2 and spin down m  1/2, respec-
tively, in Eqs.A16-A19. Further, Eq.42 has been equated 
to the negative of Eq.40 as is prescribed in Eq.41. Note 
that U0 in Eq.43 does not contain W0, which however 
enters Eq.40 and stems from the virtual  

0 action in 

Eq.7.4.4 of [3]. 
Comparing the X dependence of W’s and T’s and the 

’s in Eqs.43-46 via Eq.31, Eq.34 and Eq.7.4.19 of [3], 
replacing L and L there e and , we find 

   
 KKKEEE eWeW   ,       (47) 

Removing the X dependence in Eqs.43-46 and obser- 
ving Eq.31 and Eq.34, we obtain 
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The w´s in Eq.31 are similarly found from Eq.40 and 
read 
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3.5.4. Decay Amplitude as Function of Lepton 
Wave Functions 

Eqs.48-51 can now be inserted into Eq.38. Here, it is 
noted that the neutron spin is up or m  1/2 for the upper 
two amplitudes corresponding to the upper case in 
Eqs.48-50 and down or m  1/2 for the lower two am-
plitudes corresponding to the lower case in Eqs. 48-50. 
Thus, the w0 in the third component of a triplet Eq.44 
and Eq.49 become a singlet to be combined to the w0 in 
Eq.51. Analogously, the singlet Eq.48, when inserted 
into Eq.38 becomes the third component of a triplet to be 
combined with Eq.49. Effectively, the 7 W3 in Eq.43 and 
3 W0 in Eq.44 change place after insertion into Eq.38. 
The two terms are not the dominating ones but will lead 
to the two c’s (< 0.4 or so) in Eq.56 below. The resulting 
decay amplitude, noting Eq.47 and Eq.39, reads 
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Because b in Eq.41 can be incorporated into the wa- 
ve functions  and , it can be absorbed into the normal- 
ization condition Eq.10.3.13 of [3] by chosing a different 
normalization constant or equivalently a different nor-
malized amplitude ag

 given by Eq.A23. 

3.6. Decay Rate and Asymmetry         
Coefficients A and B 

3.6.1. Decay Rate 
As in Eq.7.5.1 of [3], the decay rate is 


states final

2

dfi TS            (57) 

where Td is a long decay time. The subscript “final sta- 
tes” refers to four final lepton spin states and all possible 
momenta of the proton, electron and antineutrino, like 
that in Eq.7.5.2 of [3]. The decay rates are 
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The square of Sfi contains squares of the  functions in 
Eq.52, which are “linearized” by Eq.7.5.6 of [3] type of 
formula. Following the common approach, integration 
over the recoil momenta Kp in Eq.58 is carried out first. 
By Eq.47, this gives Kp  K  Ke, where the superscript 
() has been dropped. Introduce 
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These and Eq.52 are inserted into the decay rate ex-
pression Eq.58 to produce 
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where the both arrows denote the spin directions, separated by the commas in Eq.7.4.19 of [3], of the electron and the 
antineutrino and 
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Let  Mev2933.1 pnpnm mmEE  (66) 

Eq.61 can now be evaluated using Eqs.64-65 and 
Eq.59. Carrying out the angular integrations, it is found 
that the cross terms in Eq.64 drop out and one finds 
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which is independent of the antineutrino energy E = 
|K|. Carrying out the K integration in Eq.60 using 
Eq.66, one gets 
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where 0  K    Ee. Inserting Eqs.67-68 into Eq.60, 
changing the variable dKeKe

 to dEeEe and noting Eqs. 
53-55 leads to 
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where me  Ee    me and PF (Ee) is the conventional 
Fermi electron energy spectrum. 

The half life of the neutron to be compared to the kn- 
own exp = 885.7 sec. is 
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where h is the Planck constant. 

3.6.2. Asymmetry Coefficients A and B 
The asymmetry coefficients A and B are obtained from 
Eq.61, just like Eq.67, but without carrying out integra-
tion over  and e, respectively. One finds, 
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The antineutrino moves in the opposite direction rela-
tive to that of the neutrino so that K is to be replaced by 
K in Eq.47, hence also Eq.52. With this replacement, 

both Ke and K are now on equal footing in these both 
expressions and Eq.61 can be written in the form 
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3.6.3. Comparison with Data 
The expressions in Eqs.71-73 have been evaluated using 
Eqs.53-56, Eq.39 and the normalized radial wave func-
tions g00(r) and f00(r) for the neutron associated with so- 
me of the confinement cases in Table 1. The results are 
summarized in Table 2 below. 

These results have been derived starting from Eqs.A7- 
A8, as was mentioned in Subsection 2.2.1, and using 
Eq.A6 which stems from putting the quartet wave func-
tions Eq.9.2.8 of [3] entering Eqs.A7-A8 to zero. 

If the symmetric quark postulate [H15] mentioned 
beneath Eq.9.3.7 of [3] is used, Eq.A9 can be inserted 
into Eqs.A7-A8 and Eq.A6 is no longer needed. The 
expressions Eqs.71-73 remain valid if cF0 and cF3 in 
Eq.56 are replaced by c´F0 and c´F3, 

14/9,2/ 3300 FFFF cccc         (74) 

The corresponding results are similarly summarized 
inside parentheses in Table 2. 

 
Table 2. Values of the calculated decay rate th(log2), A and B asymmetry coefficients given by Eqs.71-73 and GT/F by Eq.69 are 
presented for a number of confinement strengths db2 given in Table 1. The normalization constant b in Eqs.53-56 are chosen such 
that in one case the A coefficient agrees with data [9] and in the other case the B coefficient agrees with data. The integrals appearing 
in Eqs.53-56, given by Eq.39, depend upon the approximate, normalized radial wave functions for the neutron g00(r) and f00(r) ob-
tained in Subsection 2.2 and shown in Figure 2 for the db2  0.3202 case. The corresponding results stemming from symmetric 

quark postulate using Eq.A69 and Eq.74 are given inside parentheses.  2 2 2
3 02 2A V F GT p Fb b b        4.85.5 for all these cases. 

PDF data [9]                                  A  0.1173          B  0.9807                              exp  885.7 sec 

d12 b A B GT/F th(log2)(sec) 

0.1621 3.436 0.0595 0.9807 0.854 73.5 

 2.245 0.1174 0.9984 1.26 38.0 

 (2.928 0.0130 0.9808 0.938 56.1) 

 (2.203 0.1172 1.0000 1.27 36.6) 

0.1641 3.472 0.0000 0.9806 0.962 91.1 

 2.639 0.1172 0.9996 1.26 59.9 

 (3.049 0.0381 0.9807 1.04 73.0) 

 (2.571 0.1171 0.9965 1.26 56.7) 

0.1670 3.413 0.0580 0.9807 1.08 109.2 

 2.982 0.1172 0.9937 1.25 89.16 

 (3.081 0.0883 0.9807 1.15 91.60) 

 (2.897 0.1172 0.9879 1.24 83.73) 

0.3202 9.585 0.1173 0.9781 1.21 1036 

 9.374 0.1265 0.9807 1.24 1001 

 (8.815 0.1173 0.9732 1.20 872) 

 (8.347 0.1422 0.9807 1.28 805) 

0.3622 12.41 0.1173 0.9679 1.19 1956 

 11.25 0.1578 0.9807 1.32 1684 

 (11.30 0.1173 0.9631 1.18 1614) 

 (10.05 0.1708 0.9807 1.36 1359) 

0.4042 17.40 0.1173 0.9571 1.16 4345 

 14.66 0.1861 0.9807 1.40 3349 

 (15.55 0.1174 0.9526 1.15 3455) 

 (13.03 0.1969 0.9807 1.43 2671) 
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Figure 2. Normalized neutron radial wave functions f00(r) and g00(r) in (A19) for the db2  0.3202 case in Table 1. 
r is the quark-diquark distance. 

 
Subsection 2.2 shows that the approximate solutions 

to the baryon spectra problem are those having confine-
ment strength constant db2 values in the range around 
0.32 to 0.45. Table 2 shows that neutron wave func-
tions associated with the db2  0.3202 case leads to half 
life th(log2) which are about 15%(12%) off from data 
[9]. The associated A and B asymmetry coefficients for 
this db2  0.3202 case are also rather close to data. 
These are obtained by adjusting the only free parameter 
or chosen normalization constant b such that the calcu-
lated A coefficient coincides with data. The so predicted 
B coefficients deviate only 0.3% (0.8%) from data [9], 
close to experimental error. If b is adjusted such that the 
calculated B coefficient coincides with data, the so pre-
dicted A coefficient deviates from data [9] by 8% (21%). 

For db2  0. 3622, the predicted half life time are too 
long and the both the predicted A and B coefficients are 
futher way from data. For db2  0. 3202, it was pointed 
out beneath Figure 1 that no satisfactory convergent 
solutions were found in the range –0.23  db2  –0.27. 
For db2  0.1670, the predicted half life time are too 
short and the both the predicted A and B coefficients are 
also futher way from data, particularly for the A coeffi-
cient. Thus, agreement of predictions of the half life 
th(log2) and A or B asymmetry coefficients with data [9] 
is best for db2  0.3202 and deteriorates considerably 
for larger or smaller db2 values. This supports the results 
of Subsection 2.2 that confinement strength constant db2 
lies in the range 0.32 to 0.45. 

In conclusion, the present treatment leads to two app- 
roximate predictions, bearing in mind that they are based 
upon the approximate results of Subsection 2.2. Possible 
source of the approximations there has been conjectured 
in Subsection 2.3. Firstly, the predicted half life time for 

the chosen confinement strength db2  0.3202 is con-
sistent with the approximate solution to the baryon spec-
tra problem given in Subsection 2.2. Secondly, this ap-
pro- ximate solution also leads to B coefficient in agree-
ment with data [9]. 

3.6.4. Detachment of Weak and Electromagnetic 
Couplings 

GT/F and A/V in Table 2 have not been measured. 
A/V is the ratio between the decay rates stemming 
from the axial vector or tensor part and the vector part in 
the decay amplitude Eq.38. Both these ratios are > 1 and 
shows that the axial vector or tensor part of the ampli-
tude is greater than that of the vector part. They behave 
qualitatively in a similar way as does the conventional 
(gA/gV)2  1.611 [9], which lies between GT/F and 
A/V but cannot be related to them. 

In the present theory, there is only one weak coupling 
constant g in Eqs.19-21 identified or associated with gV 
in the literature [9]. Gauge transformations in Eqs.19-21 
does not allow that the axial vector or tensor field is as-
sociated with a different coupling constant gA. That A  
V is due to that the normalization type of constant b in 
Eq.41, the only free parameter in this article, is con-
nected to A but not to V and b is rather large in Table 
2. 

Even this g or gV will drop out in the decay rate. Eq- 
uation Eq.69 shows that the magnitude of neutron decay 
rate is proportional to (g/MW)4. Now, MW

2 itself is pro-
portional to g2 according to Eq.40 so that 
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is independent of g. Here, GF is the Fermi constant of 
Eq.7.4.29 of [3]. Since g=e/sinW, where W is the 
Weinberg angle and –e the electron charge, Eq.75 is 
independent of e. 

Because W is not a basic constant in the present the-
ory but can be derived as in Eq.7.2.3 and Eq.7.2.12 of [3] 
or Eq.3.3 and Eq.3.12 of [5], the more genuine weak 
coupling Eq.75 is detached from the much stronger 
electromagnetic coupling characterized by e, just like 
such a detachment found in the meson case in Subsec-
tion 7.5.3 of [3]. Nature is too economical to deal out 
two fundamental constnts g and e that are so close to 
each other.  Instead, the strength of weak interactions is 
characterized by the dimensionless constant FW

2 = 1.737 
 1013 in Eq.7.5. 22a of [3] which is much smaller than 
the corresponding  = 1/137 for electromagnetic inter-
actions. 

On the contrary, based upon an anlysis of some vector 
meson decay rates, the strong coupling s and electro-
magnetic coupling   1/137 are unified into one single 
“electrostrong” coupling via the hypothesis Eq.9.2 of [6] 
or Eq.8.3.11 of [3], s

4   or s  0.2923. 
That the Fermi constant GF in Eq.75 is a ratio betw- 

een a large volume and a long relative time indicates that 
the weak interaction is related to the large scale, long ti- 
me or low energy aspects of physics. 

3.7. Possible Nonconservation of Angular 
Momentum 

3.7.1. Theoretical Background of Possible J 
Nonconservation 

The angular momentum J of an observable, spin ½ point 
particle in conventional form 
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is a constant of motion, hence a conserved quantity. Th- 
erefore, the total angular momentum of an ensemble of 
such particles is also conserved. 

However, a baryon is neither a point particle nor a det- 
achable ensemble of such particles. Therefore, conserva-
tion of J in Eq.76 cannot be applied to a baryon without 
reservation. J conservation also does not apply to the qu- 
arks that constitute the baryon because a quark is not ob- 
servable in the sense implied by Eq.76. For a slowly 
moving doublet baryon, however, Subsection 10.2.4 of 
[3] shows that Eq.10.2.1 of [3] can be reverted to a Dirac 
equation when the diquark coordinate xI merges into the 
quark co- ordinate xII. This merger reduces the present 
nonlocal description Eqs.A1-A2 to a local one so that 
Eq.76 is applicable and J is conserved. 

By reducing a baryon with extension into a point part- 
icle, a great amount of underlying physics leading to va- 

rious observable baryon phenomena is irretrievably lost. 
However, the point particle approximation of a baryon 
can be valid in certain low energy interactions. For inst- 
ance, the strong charge of a baryon may be considered to 
be concentrated at a point source in pion-nucleon scat-
tering. Analogously, in Rutherford scattering, the proton 
can be regarded as having a point charge. In these cases, 
Eq.76 can be applied and J is conserved. 

In weak interactions, however, the gauge boson inter-
acts differently with the differently flavored quarks, bro- 
adly speaking. Therefore, reduction of the baryon to a 
point particle cannot be made. This is evident in the intr- 
oduction of a gauge fields in Eqs.12-13 of [4] or 
Eq.7.1.4 of [3], where ba   operating in the relative 
space of the diquark and quark cannot be neglected in 
the ensuing calculations. Thus, the angular momentum J 
of Eq.76 is not applicable to the baryon wave functions 
in Eqs.A1-A2, which depend upon both the laboratory 
coordinates X and the relative space coordinates x. 
Therefore, J needs not be conserved in neutron decay. 
This is supported by noting the following. 

In the four possile spin combinations for the nucleons 
in Eq.37, the total spin of the lepton pair is fixed, being 
zero for the Fermi decays and unity for the Gamow-Te- 
ller decays. However, Eqs.62-65 show that this total spin 
can also be unity for the Fermi decays and zero for the 
Gamow-Teller decays in violation of angular momentum 
conservation. Thus, a qualitative prediction is that an-
gular momentum is not conserved in neutron decay and 
hence in weak interactions in general. 

3.7.2. Experimental Tests of J Conservation  
Involving Nucleons 

J in Eq.76 is conserved in muon decay which involves 
four spin ½ point particles. 

As was mentioned in Subsection 3.1, Eq.15 makes use 
of conservation of angular momentum. When combined 
with Coulomb correction functions, its predictions are 
relatively consistent with nuclear -decay and free neu-
tron decay data. Therefore, there is a prevalent view that 
angular momentum is conserved in such decays. Arguments 
aginst this view has been given in Subsection 3.1. The con-
clusion given at the end of Subsection 2.7.1 thus invali-
dates Eq.15 by Jackson et al. [11] and hence also the in-
terpretations of the experimental results that ensue from it. 

Already in their classical paper of 1956, Lee and Yang 
[14] remarked that in weak interaction experiments up to 
that time, the baryon number, electric charge, energy and 
momentum are conserved. Conservation of angular mo- 
mnetum J and parity P as well as invariances under ch- 
arge conjugation C and time reversal T had however not 
been established. Nonconservation of P and C was soon 
discovered and P violation has been extensively meas-
ured [15]. A small violation of T has also been detected 
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and subjected to many experimental investigations [12] 
and [16]. 

In contrast, no experiment dedicated to test conserva-
tion of J in nuclear -decay or free neutron decay has 
been performed to my knowledge. In fact, no experiment 
exists that directly distinguishes Fermi from Gamow- 
Teller transitions in free neutron decay without making 
use of Eq.14. 

Therefore, specific tests on J conservation in such de-
cays seem to be called for. Such a test is however not 
strictly a test of the present theory which holds for free 
neutron decay only. As was indicated below Eq.15, the 
unknown effects of internucleon interactions intervene 
the theory and eventual experimental results. To this end, 
decays of free neutrons are needed and will give results 
of more fundamental importance. That this has not been 
done is due to the great technical difficulty of such an 
experiment. 

In view of the wealth of raw data available on coinci-
dental experiments with free, polarized neutrons, it may 
be possible to obtain some indication as to whether J is 
conserved in free neutron decay. No analysis along this 
line has been carried out to my knowledge. Important 
clues may be obtained by reviewing existing data. 
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Appendix 

This appendix provides the basic equations underlying 
the present work given in [2] and Chapters 9 and 10 of 
[3]. The equations of motion for the baryons of interest 
here are given by Eq.2.9 and Eq.8.5 of [2] or Eq.9.3.16 
and Eq.9.3.19 of [3], 
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where xI and xII are the diquark and quark coordinates, 
respectively.  and  are baryon wave functions. The 
spinor are defined in Eqs.C1-C3 of [3], 

XX
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X
ababab
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the m’s are the quark masses obtained from meson spec-
tra in Table 1 of [8] or Table 5.2 of [3] and are mu = 
0.6592, md = mu + 0.00215 and ms = 0.7431 in unit of 
Gev. b is the scalar quark-diquark interaction potential 
and the strong quark-quark interaction constant gs

6/4 can 
be absorbed into the amplitudes of  and . 

The six component wave functions  and  can each 
be decomposed into a doublet part  

c and b  and a 
quartet part. Since we are only concerned with the dou-
blet or spin ½ baryons Eq.9.3.7b of [3], the quartet 
baryon wave function components are put to zero. From 
Eq.2.6 of [2] or Eq.9.2.8 of [3], one finds that 

    
    

   

   

   
   

   

   

1
2 1 1 2 2

1 1 2 21
2

1 2
2 3 112 2 11 1

1 2
2 3 212 1 22 2

11 2 22 1

12 2 11 1 11 2
2 3

12 1 22 2 21 2
2 3

11 2 22 1

,    

,

,

0

,

,

0

b b b

a aa

  

  

  

  

 

  

  

 

 

  

 

 

 

  

  

 

   

 

   

   

   

 

 

 

    (A6) 

Rules for manipulating the spinor indices are given in 
Appendix B of [3]. Here, an upper index 1(2) can be 
lowered into a index 2(1 and a  sign) and vice versa 
according to Eq.B5b of [3]. For doublets, the e, f and d 
indices in Eqs.A1-A2 are raised and lowered. Multiply 
the so-modified Eq.A1 and Eq.A2 by 2/ge  and 2/hd , 
respectively, and apply Eq.A6. Eqs.A1-A2 are now re-
duced to 
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where a subscript 0 has been added to  and  on the 
right. 

If the symmetric quark postulate Section 4 of [2] be-
low (9.3.7) of [3] is used, Eq.10.0.7 of [3] 
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can be inserted into Eqs.A7-A8 which now take a sim-
pler form. 

The quark coordinates are transformed into a labora-
tory coordinate X and a relative coordinate x according 
to Section 5 of [2] or Eq.3.1.3a, Eq.3.1.10a and Eq.3.5.6 
of [3], 

  IIIIII xxxxxX  ,
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1
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As has been mentioned at the end of Section 3.1 of [3], 
the relative coordinates x  x is a “hidden variable” not 
directly observable. 

Consider solutions of the separable form Eq.5.1 of [2] 
or Eq.10.1.1 of [3], 
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where K = (E0, K) is the four momentum of the baryon. 
The rest frame rest (K = 0) doublet equations in the in 
relative space are obtained from Eqs.A7-A8 using Eqs. 
A10-A11 and read Eq.5.4 of [2] or Eq.10.2.1 of [3], 
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Similarly, Eq.A3 with Eq.A6, Eq.A10 and Eq.A11 
leads to Eq.5.5 of [2], 
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The doublet wave functions 0 and 0 include a noma- 
lization type of factor 1/cb factor according to Eq.A23 
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which vanishes for a free baryon. In this case, the right 
side of Eq.A14 drops out and Eqs.A12-13 are linear, 
which is necessary for wave packet building. Equation 
Eq.A14 has now the solution Eq.10.2.2a [3] dropping 
the nonlinear terms there; 
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where the four db’s are unknown integration constants. 
The doublet wave functions in the relative space are 

entirely analogous to those of the hydrogen atom and are 
expanded into spherical harmonics according to Eq.6.3 
(with gl  g ) of [2] or Eq.10.2.3a of [3]. These rela-
tions give for orbital quantum number l  0 and azi-
muthal quantum number m  ½ Eq.10.3.8 of [3] which 
consists of two equivalent solutions,  
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Substituting Eqs.A16-A17 and Eqs.A18-A19 into 
Eqs.A12-A13 yields, respectively, Eq.10.2.12 of [3] and 
Eq.6.9 of [2] or Eq.10.2.12 (with f0  f0,) of [3], 
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The doublet  and  wave functions in the rest frame 
have been normalized in Subsection 10.3 of [3]. The 
resulting normalization integral given by Eq.10.3.9b of 
[3] reads 
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according to Eq.10.3.14 of [3]. cb is a large normaliza-
tion volume for the doublet baryon. 

 
 
 
 
 


