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ABSTRACT

If P(Z) is a polynomial of degree at most n having all its zeros in |Z| >1, then it was recently claimed by Shah and
Liman ([1], estimates for the family of $B$-operators, Operators and Matrices, (2011), 79-87) that for every R>1,

(Ao )| +
It+2],

Al

L [B[Pepl(z)], <

the sense of Rahman [2], p(z) =Rz and ¢(/10

Andy) = %”1—”2

)p, where B is a B3, -operator with parameters A;,4,,4, in

(1)

. Unfortunately the proof of this re-

sult is not correct. In this paper, we present certain more general sharp Lp-lnequahtles for B, -operators which not only

provide a correct proof of the above inequality as a special case but also extend them for 0< p<1 as well.

Keywords: L" -Inequalities;

1. Introduction and Statement of Results

Let B, denote the space of all complex polynomials
P(z):zr;:oajzj of degree at most n. For PeP,,

P, =ex{ 5 [ og[p (e a0},
”P(Z)"p = {i,{;n P(eiy)‘p}l/p,0< p < oo

[P(2)], = Max|P(2)],

define

and denote for any complex function p:C— C the
composite function of P and p, defined by

(Pop)(z):= P(p(z)) (zeC),as Pop.

A famous result known as Bernstein’s inequality (for
reference, see [3, p. 5311, [4, p. 508] or [5] states that if
P e P ,then

|P’ |<n||P || (1.1

whereas concerning the maximum modulus of P(z) on

the circle |z| =R>1, we have
[P(Rz)|, <R"[P(2)[,.R=1,  (1.2)

(for reference, see [6, p. 442] or [3, Vol. 1, p. 137]).
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Inequalities (1.1) and (1.2) can be obtained by letting
p — o in the inequalities

||P’(z)||pgn"P(z)”p,pzl (1.3)

and
n
|P(R2)|, <R"[P(2)] .R>Lp>0, (14
respectively. Inequality (1.3) was found by Zygmund [7]
whereas inequality (1.4) is a simple consequence of a
result of Hardy [8] (see also [9, Th. 5.5]). Since in-
equality (1.3) was deduced from M. Riesz’s interpolation
formula [10] by means of Minkowski’s inequality, it was
not clear, whether the restriction on p was indeed essen-
tial. This question was open for a long time. Finally
Arestov [11] proved that (1.3) remains true for 0< p <1
as well.
If we restrict ourselves to the class of polynomials
P €P, having no zero in |Z| <1, then Inequalities (1.1)
and (1.2) can be respectively replaced by

[P(2).

sg"P(z)”w, (1.5)
and

[P(Ra), <

z)|, R>1. (1.6)

Inequality (1.5) was conjectured by Erdds and later
verified by Lax [12], whereas Inequality (1.6) is due to

AM
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Ankey and Ravilin [13].
Both the Inequalities (1.5) and (1.6) can be obtain by
letting p — o in the inequalities

[P@,
IP'(2)]], < e >0 (1.7)
and for R>1,p>0,
R”z+||p
|P(Rz)]| S—||1+Z|| P@),-  a®
p

Inequality (1.7) is due to De-Bruijn [14] for p>1.
Rahman and Schmeisser [15] extended it for 0< p<1
whereas the Inequality (1.8) was proved by Boas and
Rahman [16] for p>1 and later it was extended for
0< p<1 byRahman and Schmeisser [15].

Q. I. Rahman [2] (see also Rahman and Schmeisser [4,
p. 538]) introduced a class B, of operators B that
carries a polynomial P P, into

B[P](z)::gop(z)w(%jﬂ

1!

(1.9)
+%[Ej2m
2) 217
where 4,,4, and A, are such that all the zeros of
U(z)=4,+4C(n1)z+4C(n,2)z° (1.10)

where C(n,r)= 0<r<n, lie in half plane

r '(n -r)!
|z] <|z-n/2].

As a generalization of Inequality (1.1) and (1.5), Q. L.
Rahman [2, inequality 5.2 and 5.3] proved that if
PeP, and Bel, then for |z|>1

B[P](z) <|# ). a1y
andif PeR, P(z);tO in |z|<1 then |z|>1,
@)= 5 {6 (24 P, - 012
where
¢n(ﬂo»ﬂq»%)=%+%%+ﬂqw. (1.13)

As a corresponding generalization of Inequalities (1.2)
and (1.4), Rahman and Schmeisser [4, p. 538] proved
thatif P e R, then |Z|:1,

B[P o] (2) <R[y (40 42| [P(2)],

and if PeB, P(z)#0 in |Z|<1, then as a special
case of Corollary 14.5.6 in [4, p. 539], we have

(1.14)

Copyright © 2013 SciRes.

B[P=pl(2)
. (1.15)
< (Rl (oot 2 )|+ | [P (2],
where p(z)=Rz,R>1 and ¢ (4),4,4,) is defined
by (1.13).

Inequality (1.15) also follows by combining the
Inequalities (5.2) and (5.3) due to Rahman [2].

As an extension of Inequality (1.14) to L, -norm, re-
cently Shah and Liman [1, Theorem 1] proved:

Theorem A. If PeP,, then for every R>1 and
p=1,

Bl p)2)], <R° (22 [P ()], (116)

where BeB,, p(z)=Rz and ¢, (4.4.4,) is de-
fined by (1.13).

While seeking the analogous result of (1.15) in L,
norm, they [1, Theorem 2] have made an incomplete
attempt by claiming to have proved the following result:

Theorem B. If Pe7,, and P(z) does not vanish
for |z]<1, thenforeach p>1, R>1,

S PRl G RCC) b TP

|B[P , (1.17)

where BeB,, p(z)=Rz and ¢, (4,4,,4) is de-
fined by (1.13).

Further, it has been claimed in [1] to have proved the
Inequality (1.17) for self-inversive polynomials as well.

Unfortunately the proof of Inequality (1.17) and other
related results including the key lemma [1, Lemma 4]
given by Shah and Liman is not correct. The reason
being that the authors in [1] deduce:

1) line 10 from line 7 on page 84,

2) line 19 on page 85 from Lemma 3 [1] and,

3) line 16 from line 14 on page 86,
by using the argument that if P*(z):=
for p(z)=Rz, R>1 and |Z|:1,

B[P e )(2)]=[8(P"p) Ji2)

which is not true, in general, for every R>1 and
|Z|:1.To see this, let

2"P(1/Z), then

P(z)=a,2"++az ++az+3,
be an arbitrary polynomial of degree n, then

P*(z)= z“%

=3,2"+az"" +---+3,
An/2 and o, =

" +ta.

Now with @, = 2,n* /8, we have

B|:P* op](Z)

Zn:(/lo +@,(n—k)+, (n-k)(n-k-1))g 2" R"™,

k=t

o
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and in particular for |Z| =1, we get

B[P*op](z)=R"z"

3 (A +o (1K) + @, (- k)(n—k—l))ak(%)k,

8| () J()
(4 +ok+ ok (k-1))a, [%jk

k=0

:Rn

E)

so the asserted identity does not hold in general for every
R>1 and |z/=1 ase.g. the immediate counterexample
of P(z):=2" demonstrates in view of P*(z)=1,

B[P p](2)|=|A| and

‘Bl:(P* 0p) }(Z)
for |z|=1.

Authors [1] have also claimed that Inequality (1.17)
and its analogue for self-inversive polynomials are sharp
has remained to be verified. In fact, this claim is also
wrong.

The main aim of this paper is to establish L,-mean
extensions of the inequalities (1.14) and (1.15) for
0<p<o and present correct proofs of the results
mentioned in [1]. In this direction, we first present the
following result which is a compact generalization of the
Inequalities (1.1), (1.2), (1.14) and (1.16) and also extend
Inequality (1.17) for 0< p<1 as well.

Theorem 1. If Pe R, thenfor aeC with |o|<1,
0<p<w and R>r=x1,

||B[PopR](Z)—aB[Popr](Z)"p

"¢ (0. 4 )|[P(2)] -

where BeB,, p(z)=tz and ¢ (4),4,4,) is given
by (1.13). The result is best possible and equality holds
in (1.18) for P(z)=

If we choose =0 in (1.18), we get the following
result which extends Theorem Ato 0< p<1,

= ‘,10 + (n2/2)+/12.n3 (n—l)/8‘

(1.18)

Corollary 1. If PeP then for 0<p<o and
R>1,
[B[P< 1), <R[ (A0 2. 2)P(2)],»  (1.19)

where BeB,, p(z)=Rz and ¢ (4,.4,4) is given

Copyright © 2013 SciRes.

by (1.13).

Remark 1. Taking 4, =0=24, in (1.19) and noting
that in this case all the zeros of U(z) defined in (1.10) lie
in |Z|S|Z— ,wegetfor R>1 and 0<p<wo

||P'(Rz)||p <nR™! ||P(z)||p,

which includes (1.4) as a special case. Next if we choose
A4 =0=4, in (1.19), we get inequality (1.4). Inequality
(1.11) also follows from Theorem 1 by letting p —
in (1.18).

Theorem 1 can be sharpened if we restrict ourselves to
the class of polynomials P(z) which does not vanish in
|Z| <1 In this direction, we next present the following
interesting compact generalization of Theorem B which
yields L, mean extension of the inequality (1.12) for
0< p<ow which among other things includes a correct
proof of inequality (1.17) for 1< p<o as a special
case.

Theorem 2. If Pe, and P(z) does not vanish

for |z]<1 then for aeC with |o|<1, 0<p<w
and R>rz>1,
|B[P<pe](2)-aB[Pop](2)],

(R =ar") g, (4, 4, ) 2+(1- ) 4, (1.20)
3 Hpnp(z)np

1+,

where BeB,, p,(z)=tz and ¢, (4),4.4) is de-
fined by (1.13). The result is best possible and equality
holds in (1.18) for P(z)=az"+b, |a|=|b|=1.

If we take =0 in (1.20), we get the following
result which is the generalization of Theorem B for
p=>1 butalsoextendsitfor 0< p<owo

Corollary 2. If Pe®, and P(z) does not vanish
for |z]<1 thenfor 0<p<o and R>1,

| (For o o ) 2+ |
”B[P"p " = [i+7] p"
p
(1.21)
BeB,, p(z)=Rz and ¢,(4,4.4,) is defined by

(1.13).

By triangle inequality, the following result is an
immediately follows from Corollary 2.

Corollary 3. If Pe, and P(z) does not vanish
for |z]<1 thenfor 0<p<ow and R>1,

B (Zos s 20 )|+ |

fote- ol < By, 02
BeB,, p(z)=Rz and ¢,(4,4.4,) is defined by
(1.13).

Remark 2. Corollary 3 establishes a correct proof of a
result due to Shah and Liman [1, Theorem 3] for p>1
and also extends it for 0< p<1 as well.
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Remark 3. If we choose 4,=0=4, in (1.21), we
getfor R>1 and 0<p<oo,

, Rn—l
"P (RZ)"p < "1n+ /| ||P(Z)||p
p

which, in particular, yields Inequality (1.7). Next if we
take 4, =0=24, in (1.21), we get Inequality (1.8). Ine-
quality (1.12) can be obtained from corollary 2 by letting
p— oo in(1.20).

By using triangle inequality, the following result im-
mediately follows from Theorem 2.

Corollary 4. If Pe, and P(z) does not vanish
for |z]<1, then for aeC with |a|<1 0<p<ow
and R>r>1,

[B[P<pel(z)-aB[Pep (2,

(R ~ar")a, (. 22+ (1-0) 2
Jt+2|

(1.23)

P(z)"p

p(t)=tz and ¢, (4,4,4,) is defined by

BeB,,
(1.13).

A polynomial Pe?P, is said be self-inversive if
P(z)=vP*(z) where |[v|=1 and P*(z) is the con-
jugate polynomial of P(z), thatis, P*(z)=2"P(1/Z).

Finally in this paper, we establish the following result
for self-inversive polynomials , which includes a correct
proof of an another result of Shah and Liman [1, Theo-
rem 2] as a special case.

Theorem 3. If Pe B, and P(z) is a self-inversive
polynomial, then for aeC with |o|<1 0<p<w
and R>r>1,

[B[P>pel(2)-aB[Pep](2)],

[(R" =)y (2. 21,2 ) 2+ (1-) 4|

|1+,

“P )],
(1.24)

where BeB,, p(t)=tz and ¢, (4),4.4,) is given
by (1.13). The result is sharp and an extremal polynomial
is P(z):c(azn +a), ac#0.

For a =0, we get the following result.

Corollary 5. If PeP, and P(z) is a self-inversive
polynomial, thenfor 0 < p<ow and R>1,

[B[P< o](2)],
R", (Ags sy ) 2+ Ao |
T

where BeB,, p(z)=Rz and ¢, (4, 4,4,) is given
by (1.13).
The following result is an immediate consequence of

(1.25)

[P,

1+z||p

Copyright © 2013 SciRes.

Corollary 5.
Corollary 6 If Pe®, and P(z) is a self-inversive
polynomial, then for 0 < p<o and R>1,

Bipesle,
R, (A, A5 )|+ |40
[ty

=2l
where BeB,, p(z)=Rz and ¢ (4),4.,4,) is given
by (1.13).

Remark 4. Corollary 6 establishes a correct proof of a
result due to Shah and Liman [1, Theorem 3] for p>1
and also extends it for 0< p <1 as well.

Remark 5. A variety of interesting results can be eas-
ily deduced from Theorem 3 in the same way as we have
deduced from Theorem 2. Here we mention a few of
these. Taking A4,=0=4, = in (1.25), we get for
R>1 and 0<p<ow,

, Rn—l
P (Ra)l, < P2,
p

(1.26)

which, in particular, yields a result due to Dewan and
Govil [17] and A. Aziz [18] for polynomials P e P .
Next if we choose 4, =0=4, in (1.25), we get for
R<l; 0<p<ow

R”z+1||
p
[P(Ra), SW”F’(Z)"p :

The above inequality is a special case of a result
proved by Aziz and Rather [19].

Lastly letting p—>o in (1.25), it follows that if
P(z), is a self-inversive polynomial then

"B[POp](Z)"OO
<SR (22 P (2)

where BeB,, p(z)=Rz and ¢,(4),4,4,) is de-
fined by (1.13). The result is sharp.

Inequality (1.27) is a special case of a result due to
Rahman and Schmeisser [4, Cor. 14.5.6].

(1.27)

B
o

2. Lemma

For the proof of above theorems we need the following
Lemmas:

The following lemma follows from Corollary 18.3 of
[20, p. 86].

Lemma 1. If Pe® and P(z) has all zeros in
z|<1, then all the zeros of B[P](z) also lie in
z|<1.

Lemma 2. If Pe®, and P(z) have all its zeros in
|zj<1 thenforevery R>r=>1, and |7|=1,
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(R (241 ().

Proof. Since all the zeros of P(Z) lie in |Z| <1, we
write

P(z)zcll[(z—rje“gl),
j=1
where r; <1.Now for 0<6<2rn, R>r=1, wehave

' 2 2 12
:{R +r2 —2Rr, cos(e—ej)}

r+r’-2rr, cos(t9—¢9j)
R+r,

> ! Z{M},forjzl,z,u-,n.
r+r; r+1

|P(Reig)| I Re? _rjeiej |

. . 'H.
‘ P(re‘g)‘ j:l‘ re’ —re"’ ‘

Hence

J

n (R+lj (R+1)”
> —_— =,
o\ r+1 r+1
for 0<6 <2x. This implies for |z|=1 and R>r=>1,

P(R2) Z(Ejn|P(rz)

r+1

B

which completes the proof of Lemma 2.

Lemma 3. If Pe?, and P(z) has no zero in
|Z| <1, then for every @ eC with |a|<l, R>r=x1
and |7]=1,

[B[P<pa](2)-aB[Pep](2)
<[B[P* e ](2)-aB[P"op, |(2)
where P*(z):=z"P(1/Z) and p,(z)=tz.

Proof. Since the polynomial P(z) has all its zeros in
|Z| >1, therefore, for every real or complex number A
with ||>1, the polynomial f(z)=P(z)-AP"(z),
where P*(z):=2"P(1/Z) hasall zerosin |z]<1. App-

lying Lemma 2 to the polynomial f (z), we obtain for
every R>r>1 and 0<6<2m,

‘f (Rem)‘ > (%) ‘f (rem)‘. 2.2)

Since f(Re?)#0 for every R>r>1, 0<0<2n
and R+1>r+1, it follows from (2.2) that

f(Re?) >(%)n‘f(Re“")

forevery R>r>1 and 0<6<2n. This gives

Q.1

B

Z‘f(reig)

>

|t (rz)] <|f (Rz)| for |7 =1, and R>r >1.

Copyright © 2013 SciRes.

Using Rouche’s theorem and noting that all the zeros
of f(Rz) lie in |z|<1/R<1, we conclude that the
polynomial

T(z)=f(Rz)-af(rz)
={P(Rz)—aP(rz)}—,1{P*(Rz)—aP*(rz)}
has all its zeros in |z| <1 for every real or complex «
with |a|21 and R>r>1.
Applying Lemma 1 to polynomial T(z) and noting

that B is a linear operator, it follows that all the zeros
of polynomial

B[T](2)=B[f°p](z)-aB[f-p](2)
={B[Ppr](z)-aB[P-p](2)}
~2{B[P" o, |(2)-aB[P" o, |(2)}

liein |z <1 where p,(z)=tz. This implies
B[P p:](2)-aB[Pep,](2)]
<[B[P* e ](2)-aB[P o p, |(2)

for 7)1 and R>r=>1. IfInequality (2.3) is not true,
then there exits a point z =1z, with |ZO| >1 such that

BlP- pelz) B[P+ (2
S‘B[P* opR:|(ZO)—OtB|:FVk Opr](zo)‘

But all the zeros of P*(Rz) lie in |Z|<1/R<l,
therefore, it follows (as in case of f Z)) that all the
zeros of P*(Rz)-aP*(rz) lie in |zﬁ<1 Hence, by
Lemma 1, we have

B[P o pq |(2))-aB[P* o, |(2,) % 0.

We take

2.3)

(2.4)

_ B[P>p:](2z))-aB[P<p](z) ’
B[P*op:](z))-aB[P*op, |(2,)

then A is well defined real or complex number with
|/1| >1 and with this choice of A, we obtain
B[T](z,)=0 where |z,|>1. This contradicts the fact
that all the zeros of B[T](Z) lie in |Z| <1. Thus (2.3)
holds true for |a|<1 and R>r=>1.

Next we describe a result of Arestov [11].

For 6=(3,,6,,,6,)€C"™" and

P(Z) = Z?:Oajzj € P, , we define

A5P(z):i§jajzj.
j=0

The operator A is said to be admissible if it pre-
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serves one of the following properties:
1) P(z) hasall its zeros in {z eC:|z< 1}.

2) P(z) has all its zeros in{z eC:|7] 21}.

The result of Arestov [11] may now be stated as
follows.

Lemma 4. [11, Theorem 4] Let ¢(x)=w (logx)
where w is a convex non decreasing function on R.
Then for all P e P, and each admissible operator A,

[Jo(2P ("))
<[o(c(sn)|P(e”)

where C(8,n) = max (|5,].|5,]).

In particular, Lemma 4 applies with ¢:x — x? for
every p e(0,00). Therefore, we have

{joz( A(;P(ew)‘p)dﬁ}l/p
sc(a,n){jj“

We use (2.5) to prove the following interesting result.

Lemma 5. If Pe®, and P(z) does not vanish in
|z|<1, then for every p>0, R>rx1 and for o
real, 0<o<2m,

.[ozn {B[POpR](em)_aB[Popr]<ei5)eia
el on o

S‘(R” —ar”)¢(,10,/11’/12)eia +(1_§)Zo‘p

I

where BeB,, p(z)=tz,
B[P op | (2)=(B[P epn](2)) and ¢(A.4.4%)
is defined by (1.13).

Proof. Since Pe® and P*(z):=2"P(1/Z), by
Lemma 3, we have for |Z| >1,

B[P p5](z)-aB[Pep](2)
<[B[P* e ](2)-aB[P*op, ](2)

Also, since

)de,

2.5)
P(em)‘p de}/p.

2.6)

P(eig)‘p do,

@.7)

B

P*(Rz)-aP*(rz)
=R"z"P(I/RZ)-ar"z"P(1/r7),

Copyright © 2013 SciRes.

B[P*op; |(2)-aB[P* e p, |(2)
= 7 {R'2"P(/Rz)-ar"2"P(1/17)}

(2o PR R PR
—a(nr”z”" P(1/r7)- r”’lz”’zm)}

Lo (E)z {(n(n-DR"2"P(I/Re)

21 2
—~2(n-1)R™'2"P'(/RZ)+R"*2"*P"(1/Rz))

—oz(n(n—l)r”z”‘2 P(1/rz)-2(n-1)r""'z">P'(1/r7)

42" P”(l/rf))}

and therefore,

Also, for |Z|:1,
‘B[P*opR](Z)—aB[P*opr](Z)‘
=‘B[P*opR]*(z)—aB[P*op,]*(z)‘.

Using this in (2.7), we get for |Z| =1,
[B[P<pa](2)-aB[Pep,](2)]

B[P*opR]*(z)—&B[P*opr]*(z)‘.

As in the proof of Lemma 3, the polynomial
P*opp(z)—aP* e p,(z), has all its zeros in |z|<1
and by Lemma 1, B[P*opR](Z)—aB[P*opr](z),
also has all its zero in |Z| <1, therefore,
B[P*opRJ*(Z)—ﬁB[P*oprT(Z) has all its zeros in

z
z

<

>1. Hence by the maximum modulus principle, for
= 1’

[B[P<pc(2)-aB[Pop](2)

. (2.9)
B[P*opy | (z)-aB[P*op, |

*

<

(2)]
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A direct application of Rouche’s theorem shows that
with P(z)=a,z"+---+a,,

AsP(2)

{B[Pop:](2)-aB[Pop,](2)}e” +B[P oo, | (2)

-,

has all its zeros in |Z| >1 for every real o,
0<o<2m Therefore, A; is an admissible operator.
Applying (2.5) of Lemma 4, the desired result follows
immediately for each p>0.

From Lemma 5, we deduce the following more general
result.

Lemma 6. If Pe?P, then for every p>0,
R>r>1 and o real 0<o<2m,

[[{B[Pepe](e”)-aB[Pop, ()} e
[eleen ] ()-8 - T ()
(R =)o )" +(1-) |

J-Zn
0

Proof. Let Pe®, and let z,,z,,---,z, be the zeros
of P(z). If |zj|21 for all j=1,2,---,n, then the
result follows by Lemma 5. Henceforth, we assume that
P(z) has at least one zero in |Z|<1 so that we can
write

de
(2.10)

o

<

P(eig)‘p de,

P(2)=PR(2)R(2)
=a[[(z-7) [1 (z-2)),

j=1 j=k+1
0<k<n-1,a=0,

where the zeros z,,z,,---,z, of B(z) lic in |z|>1
and the zeros z,,,,7,,,-+,2, of P,(z) lie in |z|<1.
First we suppose that P (z) has no zero on [z]=1 so
that all the zeros of P,(z) lie in |z|>1. Since all the
zeros of (n—k)th degree polynomial P,(z) lie in
|Z <1, all the zeroes of its conjugate polynomial

P (z)=2""P,(1/Z) licin |z|>1 and
Pz*(z)|:|P2(Z)| for |z|=1. Now consider the poly-

nomial

Copyright © 2013 SciRes.

f(2)=R(2)P’(2)

~a[[(z-2,) [T (1-22,).

j=1 j=k+1
then all the zeroes of f(z) lie in [z]>1, and for
7| =1,
[F(@I=[R ()P (2)
=R (2)||P: (2) =[P (2)]-
Therefore, it follows by Rouche’s Theorem that the
polynomial ¢(z)=P(z)+Af(z) has all its zeros in
|Z|>1 for every [, with |,B|>1 so that all the zeros
of T(z)=g(rz) licin |z|>1 for some 7 >1. Apply-

ing (2.9) and (2.8) to the polynomial T(z), we get for
R>1 and |z]<1,

[B[T e pe](z)-aB[Top](2)

<|B[T*ops | (2)-aB[T op, | (z)‘

@.11)

= ZO"’Zn_;J"ﬂ'zm]

8
-{R”T(z/R)—ar”T(z/r)}
_n - n*(n-1)

- ”15”27]

-{R”"zT’(z/R)—&r”’lzT’(z/r)}

+7, nT;{R"’zzzT”(z/R)—&r”’zzzT”(z/r)}

E)

that is,

B[Tepe](2)-aB[Top,](z)
2 en )
{R"g(rz/R)-ar"g(z2/r)}
_(,71 L,@MJ

2 4

<

2.12)

X{R”’lfzg'(rz/R)—c?l’"’lz'zg’(z'z/r)}

El

2
L %{R”*zzfzg"(rz/R)—&r”’zzzrzg”(fz/r)}

for |z]<1. If z=¢“/r,0<0<2n, then |z|=(1/r)<1
as 7>1 and we get

Blgopel(¢”/7)-aBlgep](<"/7)

AM
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X{Rn—leiﬁgf(eié'/R)_arn—leiﬁg/(eig/r)}

+ﬂ_.2 %{aneiﬂgn(eiG/R)_&rnZeiﬁgn(eie/r)}

b

Equivalently, for |z| =1,
B[g° 0 ](2)-aB[g°p,)(2)
8[g o pe] (2)-aB[g"op.] (2],

where p, (2)=tz.

Since g(z) has all its zeros in [z|>1, it follows
that g*(z) has its zeros in |z[<1 and hence (pro-
ceeding similarly as in proof of Lemma 3) the poly-
nomial g o pg(2)-ag”op,(z) also has all its zeros
in |Z| <1. By Lemma I,

<

(BIP-pe)(2)-aBlPop)(2)e” +{B[P" o] (2)-aB[P o] (2)
(B[f < pe)(2)-aB[f o pi](2)} e +{B[ "o pu ] (2)-B[ oprT(Z)}

<

B[g* opRJ(Z)—aB[g* oprJ(z) has all zeros in

|z|<1 and thus B[g* opR]* (Z)—&B[g* opr]* (2)
does not vanish in |z <1.

An application of Rouche’s theorem shows that the
polynomial

L(z)={B[g°p:](2)-aB[g°p](2)}e"
+B[g"ope | (2)-@B[g"op, | (2)

has all zeros in |z|>1. Writing in
g(z)=P(z)+pf(z) and noting that B is a lincar
operator, it follows that the polynomial

L(2)={B[g°p:](z)~aB[gep](2)}e"
+{8[g"op] (2)-@B[g o] (2)]
+ﬁ{{8[f o pp|(z)—aB[ f o pg](2)}e”.

ol nT (-anl 1T 0]

has all its zeros in |z|>1 for every £ with |ﬂ|>1.
We claim

(2.13)

2.14)

(2.15)

>

for |z|<1. If Inequality (2.15) is not true, then there exists a point z =2, with |z,|<1 such that

‘{B[PopR](zo)—aB[Popr](zo)}ei” +{B[P* °pe | (2,)-aB[ P’ opr]*(zo)}
(BLf o pe(z)-aB[f op)(@)}e +{B[ "] (z)-aB[ 1 op,] (2],

>

Since f(z) has all its zeros in |Z|>1,proceeding similarly as in the proof of (2.13), it follows that
{B[fopR](z)—aB[fopR](Z)}eiu{B[f*opR]*(z)—&B[f*opr]*(z)};so for |z|<1 We take

[{B[popR](zo)_aB[popr](zo)}ew+{B[p* opa ] (2))-aB[ P oprT(Zo)ﬂ

B=

so that B is a well-defined real or complex number
with | ﬂ| >1 and with this choice of £, from (2.14), we
get L(Z0 ) =0. This clearly is a contradiction to the fact

JZT[
0

2n
<
0

Copyright © 2013 SciRes.

{B[PopR](em)—aB[Popr](eig)}ei"+{B[P* O'DRT (eig)—&B[P* oprT (ei")}
{B[fopq](c”)-aB[f opR](e“’)}e“’+{B[f*opR]*(e“’)_aB[f* opr]*(eiﬂ)} i

[{B[f o pr(zy)—aB[ f opR](ZO)}ei”+{B[f* opR]*(ZO)—&B[f*opr]*(zo)ﬂ

that L(z) hasallits zeros in |z|>1. Thus (2.15) holds,
which in particular gives foreach p>0 and o real,

p

de

deé.

AM
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Lemma 4 and (2.7) applied to f, gives foreach p>0,

02"{B[P°PR](ei‘g)—aB[P°Pr](e”)}e”+{B[P*°PR]*(6”)—5B[P*°Pr]*(e“’)}
<|(R"—ar") (4. 4.2, )€ +( 0‘ x[[f (<)) a6 (2.16)
=|(R" = ar")g( Ay A 2o ) +(1-a) 2| %[ ‘P ‘

Now if Pl(z) has a zero on |Z|:l , then applying (2.16) to the polynomial IS(Z):PI(,uZ)PZ(Z) where
O<p<l,wegetforeach p>0, R>r>1 and o real,

f‘ °/7R aB[Popr]< )}ei"+{B[|5*OpR]*(em)—aB[ls*Opr}*(e”’)}
<|(R"-ar ) (Zo> s 2 )€ +(1-&)

Letting x# —1 in (2.17) and using continuity, the desired result follows immediately and this proves Lemma 6.
Lemma7.1f PeP  thenforevery p>0, R>r>1 and 0<o<2m,

2.17)

. p
{B[p o) aB[Popr](Z)}+elo'{B|:P*opR:I(Z)—aB[P*oprJ(Z)}‘ dodo
“|(r" - )/1/112,2)6+1a/10‘d0'.[‘P ‘d&,

where BeB,, p,(z)=tz and ¢,(4,.4,4,) is defined by (1.13). The result is best possible and P(z)=bz" is an

extremal polynomial for any b # 0.
Proof. By Lemma 6, foreach p>0, 0<a<2n and R>r >1, the Inequality (2.6) holds. Since

B[P* OPRT (Z)—&B[P* opr]* (z) is the conjugate polynomial of B[P* opR](Z)—&B[P* opr](z) ,

B[P« puJa)-a8 [P op. )2 -[pLP o, (e*)-aB[P o0 ] (¢},
and therefore foreach p>0, R>r>1 and 0<a <2m , we have

Izn‘ B[PopR](ew)—aB[Popr](eig)}+eio (B[P <, ()~ B[P <, ](c")] p

(2.18)

do

B[P pq](c”)-aB[Pep, ()| + B[P*opR](eig)—aB[P*opr](eig)‘pda (2.19)
B[P<p](z)-aB[Pop,](e”)+e B[P g |(¢”)-aB[ P op, | () "o
Integrating (2.19) both sides with respect to @ from 0to 27 and using (2.6), we get
{ Pope](e”)-aB[Pop,](€”)le + B[P o pp ]() B[P o p, ](e* )| dodo

el + dode,

P
dé:do

=[], opR](eig)—aB[Popr](ew) B[P*opR]*(e”)—5B[P*oprJ*(eig) p
[ Blpenlter)-aslpep e +[eeonc] () -a8leon T (¢
<|(R"~ar")¢, (4,4, ,12)e”+(1—a)20‘pdajoz“‘P(e”)‘pda

( ar") g, (Ao, 42y )€ +(1-@)

which establishes Inequality (2.18).

(e“")‘p de,

Copyright © 2013 SciRes. AM
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3. Proof of Theorems

Proof of Theorem. By hypothesis P € P,, we can write
P(2)=R(z)R.(2)
k n
:aH(z—zj)H(z—zj),kzl,aio,

i1 j=k+1
where the zeros z,z,,--,z, of P(z) lie in |z|<1
and the zeros z,,,,2,,,,-,Z, of P,(z) lie in |z]>1.
First, we suppose that all the zeros of B(z) lie in
|z <1. Since all the zeros of P,(z) lie in |z|>1, the

polynomial P (z)=2z""P,(1/Z) has all its zeroes in
Pz*(z)|=|P2(z)| for |z|=1. Now consider
the polynomial
M (2)=R(2)P (z)=2]
J
then all the zeros of M(z) lie in |z|<1, and for
|z =1,
M (2[R )7 ()] -[r (2] (2] - (2] @1

Observe that P(Z)/M (Z) — I/H?:kﬂ(—fj) when

|Z|<l and

=

(Z_Zi) ﬁ (1_271)’

j=k+1

a

Z — 0, so it is regular even at o and thus from (3.1)
and by the maximum modulus principle, it follows that

[P(2)| <M (z)| for |2|>1.

Since M (Z);tO for |Z|21, a direct application of
Rouche’s theorem shows that the polynomial
H(z)=P(z)+AM(z) has all its zeros in |z|<1 for
every A with |/1| >1. Applying Lemma 2 to the poly-
nomial H(z) and noting that the zeros of H(Rz) lie
in |Z| <1/R<1, we deduce (as in Lemma 3) that for
every real or complex a with |a|<1, all the zeros of
polynomial
G(z)=H(Rz)-aH(rz)
={P(Rz)-aP(rz)}-A{M (Rz)-aM (rz)}
lie in |z|<1. Applying Lemma 1 to G(z) and noting
that B is a linear operator, it follows that all the zeroes
of

B[G](2)={B[P<p:](z)-aB[P<p,](2)}
~2{B[M o p;](z)-aB[Mep,](2)}.

lie in |Z|<1 for every A with |/1|>1. This implies
for |Z|>l,

B[P re](2)-aB[Pop](2)
<[B[M < p:](2)-aB[Mep,](2),

which, in particular, gives for each p>0, R>r>1
and 0<0<2m,

Copyright © 2013 SciRes.

_[02" B[PopR](em)—aB[Popr](eig)‘p de

SJ.OZR B[M opR](em)—aB[M opr](em) ’

Again,(as in case of H(z)) M(Rz)-aM(rz) has
all its zeros in |Z|<1, thus by Lemma 1,
B[Popg](z)-aB[Pop,](z) also has all its zeros in

|z] <1. Therefore, if E(z)=e,z"+--+ez+e, has all
its zeros in |Z| <1, then the operator A; defined by

AE(2)=B[E+p,)(2)-aB[E =1, 2)
:(R” —ar”)(ﬂo + A ;w@ n(n 1)]enz”

8
+o+(1-a) Ayey,

(3.2)
de.

(3.3)

is admissible. Since M (z)=b z"+---+b,, has all its
zeros in 7] <1, in view of (3.3) it follows by (2.5) of
Lemma 4 that foreach p>0,

[7[BIM e pe](e”)-aB[Mop,](e)[ do

R —ar"|’|g, (4. 2.4 )|

Combining Inequalities (3.3), (3.4) and noting that
‘M (eig )‘ = ‘P(eig )‘ , we obtain foreach p>0 and
R>1,

J-Zn
0

R"—ar"

(3.4)
<

M (e“")‘p de,

B[Popg](c”)-aB[Pop,](c”)) do

"oy (22| [P ()] a6,

In case P, (Z) has a zero on |Z| =1, then Inequality
(3.5) follows by continuity. This proves Theorem 1 for
p > 0. To obtain this result for p =0, we simply make
p—>0+.

Proof of Theorem 2. By hypothesis P(z) does not
vanish in |Z|<1, p(z)=tz and R>r>1, therefore,
for 0<8<2m, (2.1) holds. Also, for each p>0 and
o real, (2.18) holds.

Now it can be easily verified that for every real
number o and Ss>1,

<

|s+ei"

2|1+ei‘y

This implies for each p>0,
foznS+ei“|pd0'ZJ.02n|l+ei"|pda.
If B[PopR](em)—aB[Popr](em);tO,wetake
_ B[P ope(e”)-aB[Popr ()
B[PopR](em)—aB[Popr](eia) ’
then by (2.1),5>1 and we get with the help of (3.6),

(3.6)

AM
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'[27[
0

:‘B[PopR](ei‘g)—aB[Popr](eig)‘pjozn1

P J-Zn
0

BIPe e ](c)-aBPop ] () [

:‘B[PopR](eig)—aB[Popr](eig)

>

0, this in-

equality is trivially true. Using this in (2.18), we con-
clude that foreach p>0,

.[Zn
0

B[PopR](eia)—aB[Popr](eig)‘p a6 1+¢°| do

<J7(RM-ar")o(2. 2, 2)e” +(1-2) 4| do

.[27[
0

P(e”)"’ do,

from which Theorem 2 follows for p>0. To establish
this result for p=0, we simplylet p—0+.

Proof of Theorem 3. Since P(z) is a self-inversive

polynomial, then we have for some v, with |V| =1
P(z)=vP*(z) for all zeC, where P*(z) is the
conjugate polynomial P(z). This gives, for 0<6<2n

‘B[PopR](eig)—aB[Popr](em)‘

N R )

Using this in place of (2.1) and proceeding similarly as
in the proof of Theorem 2, we get the desired result for
each p>0. The extension to p=0 obtains by letting

p—>0+.
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