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ABSTRACT 

We illustrate the influence of an external periodic force and noise on a physical system by the example of an oscillator. 
These two forces seem to be the reverse of each other, since the latter leads to disorder while the former works in an 
orderly fashion. Nevertheless, it is shown that they may influence a system in a similar way, sometime even substituting 
for one another. These examples serve to illustrate one of the main achievements of twentieth-century physics, which 
has established that deterministic and random phenomena complement rather than contradict each other. 
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1. Introduction 

Physical intuition suggests that the action of periodic (for 
instance, sinusoidal) and random (for instance, white 
noise) forces on a physical system act in the reverse 
manner, namely, the latter leads to disorder while the 
former works in an orderly fashion. The best known ex- 
ample against this conclusion is the phenomenon of 
fluctuation driven transport and the stochastic resonance 
[1], where the noise helps to increase a weak input signal. 
In addition to the stochastic resonance, there are different 
phenomena showing that noise may be a source of order 
rather than disorder. Let us mention noise-induced transi- 
tions [2], noise-induce transport [3], noise-induced pat- 
tern formation [4], noise-induced resonances [5], noise- 
enhanced stability [6], noise-induced hypersensitivity [7], 
resonance activation [8], stochastic transport in ratches 
[9], stochastic localization [10], self-organization and 
dissipative structures [11], coherent stochastic resonance 
[12], fluctuation barrier kinetics [13] and amplification of 
weak signals via on-off intermittency [14]. 

However, according to the second law of thermody-
namics, a system naturally progresses from order to dis-
order and not in the opposite direction. The explanation 
of this apparent paradox is that noise does not transfer 
energy to a system, playing the role of a tuner (like emit-
ter in a transistor), helping the system absorb more en-
ergy from the external force [15]. In this note, using the 
simple example of an oscillator, we give other examples 
of such “unnatural” behavior of noise and a periodic sig-
nal. This example is complementary to that of a classical 
rotor, where it was shown [16] that “order and chaos are 
complementary rather than contradictory”. 

2. Overdamped Harmonic Oscillator 

The simple equation 

 d

d

x
ax t x

t
                  (1) 

can be solved both in the absence and in the presence of 
white noise  t  of strength  In the former case, 
the solution is 

.D
     0 exp ,x t x at 

.t 
 which vanishes at 

 In the presence of noise, the average moment 

     0 expx t x a D t    

.t  ,D a

         (2) 

diverges as  for  i.e., noise plays its 
usual “destructive” role. 

With an additional periodic force, 

   d
cos

d

x
ax t x A t

t
             (3) 

the solution of Equation (3) performs oscillations with 
the frequency   for a ,D  as expected for a peri-
odic external force. However, as we will show, the situa-
tion is not so simple for nonlinear equations. 

One can illustrate the appearance of stochastic reso-
nance by Equation (3) with dichotomous noise of strength 
  and rate  for transitions 2     and 

.  0,a For the limiting case     the particle 
executes periodic motion with an amplitude A  . If 
there is no random force, 0  0a , for , the particle 
moves along the parabola 2 2U ax . For dichotomous 
noise  , the particle moves along the parabola  

  2 2U a x   

  to the parabola then jumps at rate 

Copyright © 2013 SciRes.                                                                                 JMP 



M. GITTERMAN 95

  2 2U a x 

a

 etc. 1 2

0 2

4
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2

a Ab
x

b a

    
For  

 
, but 

1 22 2 ,a a    

these two parabolas have curvatures of opposite sign, and 
thus they act in opposite directions tending to increase 
(decrease) the displacement x  of the particle. Their 
mutual influence is defined by noise which causes jumps 
between the parabolas and by a periodic force which de-
termines the amplitude of oscillations along the parabolas. 
Accordingly, the amplitude of the stationary output sig-
nal has a maximum as a function of noise strength (sto-
chastic resonance). 

3. Birth-Death Process 

The birth-death differential equation for positive x  

2d

d

x
ax bx

t
 

 2 dU ax bx x

                  (4) 

has an exact solution. The associated potential energy 

   is shown in Figure 1. There are  

two two fixed points  and 0x  ,x a b  which are 
stable for  and  respectively. If the 
parameter  fluctuates, 

0a 
a

0,a 
a a   , with white noise 

,      D t t 
a D


0,a 

0, 0x

1 2 2 1 , Equation (4) has two 
control parameters,  and  For  the fixed 
point  is stable. For  the point 

t t 

0
.

ax   
becomes unstable but most probable for 0 .a D   
Finally, for ,A D  the point x b a  becomes stable. 

Let us now add a periodic force to Equation (4), 

 cosA t 2d

d

x
ax bx

t
           (5) 

If the amplitude of the external field A  is smaller 
than the barrier height, 3 26A a b

0

  the particle will 
never leave the well provided that the initial position x  
satisfies the condition 

 
U(x) 

a/b x0 

 

Figure 1. A single-well potential. 

  
 

           (6) 
  

This follows from the fact that for A  obeying Equa-
tion (6), the right-hand side of Equation (5) has two real 
roots, 1x  and 2x  implying that 1 2x x x   and the 
particle is trapped. Although the dependence of the 
solution of Equation (5) on A  is physically obvious, 
the dependence on the field frequency  is not so ob-
vious. It turns out that even a change of only 


510  in the 

frequency changes the time at which the particle escapes 
from the potential well. 

Consider now the common action of both random and 
periodic forces, 

   2d
cos

d

x
ax bx t A t

t
            (7) 

The numerical solution of Equation (7) shows that for 
A  not too small, both the periodic force and the noise 

increase the escape time, i.e., these two factors act in the 
same direction. However, adding noise to a periodically 
driven system will increase the escape time for some 
noise strengths. This effect is known as noise-enhanced 
stability [17]. 

4. Piece-Wise Potential 

Since the behavior of a system is probably not too sensi-
tive to the exact form of the nonlinear potential, we con-
sider the simplest form of the piece-wise potential, 
shown in Figure 2, 

   
0 for

=
for

x L
U x

E k x L L x b


    

      (8) 

 
xU( )

b 

E 

L L+E/k 
x

 

Figure 2. The triangle piece-wise potential described by 
Equation (8). 
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where  is the height of the potential barrier, and  
is the absorbing boundary. The states for 

E b
0 x L   

are metastable, and those for  are unstable. 
The overdamped periodically driven motion of a parti-
cle in the potential (8) is described by the following 
equation 

L x  b

   d d
sin

d d

x U
A t t 

t
t x
           (9) 

with white noise   of strength .  D
Consider first the time-independent potential  0A  . 

If the initial position of a particle is unstable, 

0 , the average escape time grows in the 
presence of noise since the particle may jump into the 
potential well. For very weak noise, the probability of 
such jumps is very low. If only these jumps are operating, 
the particle will be trapped in the well for a long time 
(noise enhanced stability). 

L x L E k  

0,x 
0

Consider now  For 0  the particle at 0.A 
x L   will move according to the equation  

     1 cosx t A  t    . 

If 2 A L 
0, L

, the particle will always remain inside 
the region . However, if  2 ,A L 

 ,
 the particle 

surmounts the region  and its position will 
change with time as 

0, L

   

 

1 cos ,

0 ,

t

x t L

  

 1for 0 ,

A
x t

t t

 


 
          (10) 

and 

     1 cos ,1

1for ,

A
x t k t t

t t L x b

  


  

t   

1t

  (11) 

where  is the time at which the particle crosses the 
point x L , 

1

1
arccos 1

L
t .

A

     
           (12) 

Noise enhanced stability occurs at time  

2  (when the periodic force changes it 
sign), tending to return the particle to the region 

2 π ,t T  
 0, ,L  

and the particle is still located inside the interval  0,b
 

, 

2x t b . Using (12) and (11), the latter inequality can 
be rewritten as 

2
π arccos 1

A k

b b


 

L

A

        
     (13) 

In addition to the inequality 2 ,A L 

U

 Equation 
(13) defines the conditions for the appearance of the 
noise enhanced stability. Therefore, both noise and a 
periodic force influence the escape time of a particle in a 
metastable state, thereby increasing the stability of the 

system. Another form of potential barrier is the rectan-
gular bistable potential shown in Figure 3. The barriers 
heights 1  and 2U  are different for the right (stable) 
and the left (metastable) states. For such a form of the 
potential, there is no force in the equation of motion, 
which has the following form 

   d
cos

d

x
t A t

t
  

0,A

          (14) 

For the case   one can easily solve the Fok-
ker-Planck equation associated with the Langevin equa-
tion (14) in each of the three regions in Figure 3 and find 
the integration constants from the matching conditions on 
two boundaries between different regions complemented 
by reflection boundary conditions at the walls, x .L 

n

0A

 
Finally, one can find the time-independent number of 
particles r  and ln  in the right (stable) and in the left 
(metastable) wells, respectively. Therefore, the popula-
tion of a metastable state can be increased by adding an 
external periodic field or by fluctuations of the barrier 
height. The analogous situation exists with a simple 
pendulum which is stable (metastable) in the vertically 
downward (upward) position. One can, however, stabi-
lize a metastable position by high-frequency harmonic 
vibrations of its suspension parametric oscillations of a 
pendulum (“Kapitza pendulum” [18]). 

An external force   in Equation (14) can be cho-
sen as a periodic force acting on the left well or as a ran-
dom force acting on the barrier. It turns out that for both 
cases, an external force tends to equalize the populations 
as  (stabilizing the metastable state), and even 
reversing the populations of these states. Our choice of 
the periodic signal does not introduce an additional force 
into the equation of motion, and the periodic signal en-
ters only in the matching conditions. It turns out that with 
the help of an external periodic field, one can increase 
the population of the left (metastable) state, or even re-
verse the populations [19]. 

t 

 
U(x)

U1 U2 

 

Figure 3. The rectangular piece-wise bistable potential. 
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5. Harmonic Oscillator with Random Mass 

Recently we considered a harmonic oscillator subject to 
the periodic force  cos A t  and white noise t  of 
strength  with asymmetric (D A  and ) dichoto-
mous random mass, which is described by the following 
equation 

B

 
  

2d
cos 

2
2 2d d

1 2
d

x x
x

t
t

t
t A

    


2



  

 
       (15) 

where AB  . and A B    The asymptotic val-
ues of the first two moments x  and 2x  have been 
found in [20]. 

For 0,   Equation (15) describes Brownian motion 
with adhesion, when the surrounding molecules not only 
collide with the Brownian particle, inducing zigzag mo-
tion, but also adhere to it for a random time. For this case, 
the stationary  d d = 0t  second moment 2v  of 
the velocity d dv x t  of the Brownian particle has the 
following form [20] 

   
2 24

4

 22

2 4

D A
v

        
 

  

0,A 

 
 

   (16) 

Let us consider the different limiting cases of Equation 
(16). 

1) In the absence of an external field,  the sec-
ond moment 2v  is given by 

   
2 2

2

2 2

2
4

4 1 2 1

D
v

 
     

  
     

 
   (17) 

i.e., 2v 2 becomes negative for large strength   of 
the mass fluctuations, showing an instability of the sys-
tem, i.e., a system cannot reach a stationary state. 

2) In the absence of the mass fluctuation, 2 0,   the 
system becomes unstable for large amplitude A  of the 
external periodic field. 

In both cases, the instability occurs due to the violation 
of the energetic balance (fluctuation-dissipation theorem) 
for the Brownian motion, namely, the energy gained by a 
system due to the external field or due to fluctuations is 
not balanced by the friction. However, Equation (16) 
shows that including a strong external field in the former 
case or large fluctuations in the latter case, one can re-
store the energetic balance and the stability of a system. 
Therefore, both the external periodic force and fluctua-
tions are able to be “ordering” factors. 

6. Vibrational Resonance 

As we have already seen, a shift of the stable points oc-
curs either through multiplicative noise or through a pa-
rametric periodic force, although the physical mechanism 
is quite different. Indeed, this effect occurs because of 

the low frequencies of the correlator of noise and the 
high frequencies of an external field. It turns out that the 
analogous effect occurs for two additive periodic fields. 
A bistable underdamped oscillator subject to two peri-
odic fields is described by the following equation 

   
2

2 3
02

d d
sin sin .

dd

x x
x bx A t C t

tt
          (18) 

Analogous to Equation (7), the stochastic resonance 
occurs also in a bistable underdamped oscillator de-
scribed by the following Equations [21,22] 

   
2

2 3
02

d d
cos

dd

x x
x bx t A t

tt
          (19) 

One can link the last two equations. The phenomenon 
of the stochastic resonance, described by Equation (19), 
was considered previously. We now turn to the analysis 
of Equation (18). Suppose that one of the fields has a 
large amplitude (larger than the barrier height 

2 4U b  2 4C b0 ), 0  and high frequency,  
 . The former means that during each half-period, 

this field transfers the particle from one potential well to 
the other. A similar situation holds in a random system 
where the large amplitude field in (18) is replaced by an 
additive random force, which plays the same role of 
switching the particle between the two minima. There-
fore, by choosing the appropriate relation between the 
input signal  sinA t  and the amplitude  of the 
large signal (or the strength of noise), one can obtain a 
non-monotonic dependence of the output signal on the 
noise strength (stochastic resonance as considered before) 
or on the amplitude C  (vibrational resonance [21]). 
Therefore, paradoxically the “ordered” periodic signal 
and “disordering” noise play analogous roles in stochas-
tic and vibrational resonances. 

C

7. Conclusion 

As it follows from all the examples considered, periodic 
and random signals do not unnecessarily act in opposite 
directions. They may play the same role, sometimes even 
substituting for one another in both above considered 
linear (overdamped harmonic oscillator, harmonic oscil-
lator with random mass, harmonic oscillator with piece- 
wise potentials) and nonlinear (birth-death process, vi-
brational resonance) systems. 
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