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ABSTRACT 

This paper presents new implicit algorithms for solving the variational inequality and shows that the proposed methods 
converge under certain conditions. Some special cases are also discussed. 
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1. Introduction 

Variational inequality theory, introduced by Stampaccia 
[1], provides simple and unified framework to study a 
large number of problems arising in finance, economics, 
transportation, network and structural analysis, elasticity 
and optimization. Variational inequality theory, was em- 
erged as an interesting and fascinating branch of applica- 
ble mathematics with a wide range of applications in un- 
related linear and nonlinear problems. 

The projection method provides important tools for 
finding the approximate solution of variational inequali- 
ties. This method is due to Lions and Stampacchia [2]. 
The main idea in this technique is to establish the equi- 
valence between the variational inequalities and the fix- 
ed-point problem by using the concept of projection. This 
alternative formulation has played a significant part in 
developing various projection-type methods, the impli- 
cit iterative method, and the extra-gradient method which 
is due to Korpelevich [3], for solving the variational ine- 
qualities. 

In this paper, we use the equivalent fixed point formu- 
lation to suggest and analyze some new implicit iterative 
methods for solving the variational inequalities. We have 
shown that these new implicit methods include the uni- 
fied implicit, the proximal point and the modified extra 
gradient methods of Noor et al. [4,5], Noor [6] and the 
extra gradient method of Korpelevich [3] as special cases. 
We consider the convergence analysis of these methods 
under certain conditions. 

2. Preliminaries 

Let H be a real Hilbert space whose inner product and 
norm are denoted by .,.  and .  respectively. Let K 
be a nonempty closed convex subset in .H  

For a given nonlinear operator , we con- 
sider the problem of finding 

:T H H
Ku  such that 

, 0,Tu v u v K    ,        (1) 

Problem (1) is called the variational inequality, intro- 
duced and studied by Stampacchia [1]. For more infor- 
mation about applications,numerical methods and other 
aspects of variational inequalities, one may refer to [1- 
12]. 

First we recall the following well-known results and 
concepts. 

Lemma 1. Let K be a nonempty, closed, and convex 
set in H . Then, for a given  in z H ,  satisfies 
the inequality 

u K

, 0,u z v u v K     ,  

if and only if 
,Ku P z  

where KP  is the projection of H  onto the closed and 
convex set . K

It is well known that the projection operator KP  is 
nonexpansive, that is  

, ,K KP u P v u v u v H     .  

Now if K  is a nonempty, closed and convex subset 
in H , then Problem (1) is equivalent to the existence of 
u K  such that 

 0 P
KTu N u  ,            (2) 

where  P
KN u  denotes the normal cone of K  at u . 

Problem (2) is called the variational inclusion problem 
associated with the variational inequality (1). 

Definition 1. An operator  is said to be 
strongly monotone if and only if there exists a constant 

:T H H

0   such that 
2

, ,Tu Tv u v u v u v H     , ,  

and Lipschitz continuous if there exists a constant 0   
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such that  

, , .  Tu Tv u v u v H    

3. Main Results 

In this section, using Lemma 1, one can easily show that 
the variational inequality (1) is equivalent to the exi- 
stence of  such that u K

 ,Ku P u Tu             (3) 

where 0   is constant. 
Equation (3) is a fixed point problem and will be used 

in suggesting some new implicit methods for solving the 
variational inequality (1), and this is the main motivation 
of this paper. 

Now, using the equivalent fixed point formulation (3), 
one can suggest the following iterative method for solv- 
ing the variational inequality (1). 

Algorithm 1. For a given 0  find the approxi- 
mate solution  by the iterative scheme  

,u K
1nu

 1 , 0,1,2n K n nu P u Tu n    .  

Algorithm 1 is known as the projection iterative me- 
thod. 

For a given  0,1  , we can rewrite (3) as 

    1 ,Ku P u Tu u Tu             (4) 

This fixed point formulation is used to suggest the fol- 
lowing iterative method for solving variational inequality 
(1). 

Algorithm 2. For a given 0 , find the approxi- 
mate solution  by the iterative scheme 

u K
1nu 

   1 1 11

0,1,2.

n K n n n nu P u Tu u Tu

n

         


 ,  

Note that Algorithm 2 is an implicit type iterative 
method and includes the implicit method of Noor [6] and 
the classical projection method as special cases. 

In order to implement this method, we use the predic- 
tor-corrector technique. We use Algorithm 1 as the predi- 
ctor and Algorithm 2 as the corrector. Consequently, we 
obtain the following two-step iterative method for solv- 
ing the variational inequality (1). 

Algorithm 3. For a given 0u , find the appro- 
ximate solution  by the iterative schemes 

K
1nu 

 ,n K n ny P u Tu            (5) 

    1 1

0,1,2.

n K n n n nu P y Ty u Tu

n

        


,   (6) 

Algorithm 3 is a new two-step implicit iterative me- 
thod for solving the variational inequality (1). For 0  , 
Algorithm 3 reduces to the following iterative method for 

solving variational inequality (1). 
Algorithm 4. For a given 0u , find the appro- 

ximate solution 
K

1nu   by the iterative schemes 

 ,n K n ny P u Tu   

 1 , 0,1,2n K n nu P y Ty n    ,  

which is known as the modified double projection me- 
thod, Noor [6]. 

For 1  , Algorithm 3 reduces to algorithm 1 for 
solving variational inequality (1). 

This shows that Algorithm 3 is a unified implicit me- 
thod and includes the previously known implicit and pre- 
dictor-corrector methods as special cases. 

Now for a given  0,1   and  0,1  , we can re- 
write (3) as 

   ,Ku P u u u Tu Tu Tu             (7) 

For   , the fixed point formulation (7) reduces to 
the fixed point formulation (4). 

Now we use (7) to suggest the following iterative me- 
thods for solving variational inequality (1). 

Algorithm 5. For a given 0 , find the approxi- 
mate solution 

u K
1nu   by the iterative scheme 

  
1

1 1 1 ,

0,1,2.

n

K n n n n n n

u

P u u u Tu Tu Tu

n

  


          


 

Note that Algorithm 5 is an implicit type iterative me- 
thod and includes the implicit method of Noor et al. [7], 
and the classical implicit method of Korpelevich [3] as 
special cases. 

In order to implement this method, we use the pre- 
dictor-corrector technique. We use Algorithm 1 as the 
predictor and Algorithm 5 as the corrector. Consequently, 
we obtain the following iterative method for solving the 
variational inequality (1). 

Algorithm 6. For a given 0 , find the approxi- 
mate solution 

u K
1nu   by the iterative schemes  

 ,n K n ny P u Tu   

  1 ,

0,1,2.

n K n n n n n nu P y u u Ty Ty Tu

n

        


  
 (8) 

Algorithm 6 is a new two-step implicit iterative me- 
thod for solving the variational inequality (1). For 0  , 
Algorithm 6 reduces to the following iterative method for 
solving variational inequality (1). 

Algorithm 7. For a given 0 , find the approxi- 
mate solution 

u K
1nu   by the iterative schemes 

 ,n K n ny P u Tu   

 1 , 0,1,2n K n n n nu P u Ty Ty Tu n         .  
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Algorithm 7 was studied by Noor et al. [4]. Note that for 
1 
0
, Algorithm 7 reduces to Algorithm 1, and for  

  , Algorithm 7 reduces to Korpelevich [3]. 
For 1  , Algorithm 6 reduces to the following itera- 

tive method for solving variational inequality (1), and ap- 
pears to be new. 

Algorithm 8. For a given 0 , find the approxi- 
mate solution  by the iterative schemes 

u K
1nu 

 ,n K n ny P u Tu   

 1 , 0,1,2n K n n n nu P y Ty Ty Tu n        .  

For 0  , Algorithm 6 reduces to the following ite- 
rative method for solving variational inequality (1), and 
appears to be new. 

Algorithm 9. For a given 0u , find the appro- 
ximate solution  by the iterative schemes 

K
1nu 

 ,n K n ny P u Tu   

 1 , 0,1,2n K n n n nu P y u u Ty n         .  

For 1,   Algorithm 9 reduces to Noor [6] and for 
0,   Algorithm 9 reduces to Korpelevich [3]. 

Now one can obtains the following iterative method 
for solving variational inequality (1), by using the fixed 
point formulation (7). 

Algorithm 10. For a given 0 , find the appro- 
ximate solution  by the iterative scheme 

u K
1nu 

  
1

1 1 1 1 ,

0,1,2.

n

K n n n n n n

u

P u u u Tu Tu Tu

n

  


          


  

In order to implement this method, we use the predic- 
tor-corrector technique. We use Algorithm 1 as the pre- 
dictor and Algorithm 10 as the corrector. Consequently, 
we obtain the following two-step iterative method for 
solving the variational inequality (1). 

Algorithm 11. For a given 0 , find the approxi- 
mate solution  by the iterative scheme  

u K
1nu 

 ,n K n ny P u Tu   

   
1

,

0,1,2.

n

K n n n n n n

u

P u y y Ty Ty Tu

n

  


       


 (9) 

Algorithm 11 is a new two-step implicit iterative me- 
thod for solving the variational inequality (1). For 1  , 
Algorithm 11 reduces to Algorithm 7 [4], and for 0  , 
Algorithm 11 reduces to Algorithm 8 which is a new one, 
as we mentioned above. 

4. Convergence 

We now consider the convergence analysis of Algorithm 

3, 6 and 11, and this is the motivation of next results. 
Theorem 1. Let the operator  be strongly mono- 

tone with constant 
T

0   and Lipschitz continuous with 
constant 0  . If there exists a constant 0   such 
that  

   2 2

2 2

1 1 1 2

1 2 0

   

   

   

   
       (10) 

then, the approximate solution 1n  obtained from Al- 
gorithm 3 converges strongly to the exact solution  

u 

,u K  satisfying the variational inequality (1). 
Proof. Let u K  be a solution of (1) and 1nu   be 

the approximate solution obtained from Algorithm 3. 
Then, from (3) and (5), we have 

   
 

n K n n K

n n

y u P u Tu P u Tu

u u Tu Tu

 



    

   
   (11) 

From the strongly monotonicity and Lipschitz conti- 
nuity of the operator , one obtains T

 

 

2

2 22

22 2

2 ,

1 2 .

n n

n n n n

n

u u Tu Tu

u u u u Tu Tu Tu Tu

u u





  

  

      

   

 (12) 

From (11) and (12), one obtains 

2 21 2

,

n n

n

y u u u

u u

  



    

 
  (13) 

where 

2 21 2       

Now from (3), (6) and (13), we have 

      
     
   

1

2

1

1

1 1

,

n

K n n n n K

n n n n

n n n

n

u u

P y Ty u Tu P u T

y u Ty Tu u u Tu Tu

y u u u u u

u u

    

   

     



 

        

        

 

u

         
 

 

where 

    2 2

2 2

1 1 1 2

1 2

2       

   

      

  
 

From (10), it follows that 1  . Hence, the fixed 
point Problem (3) has a unique solution and consequently 
the iterative solution 1nu   obtained from Algorithm 3 
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converges to the exact solution u  and satisfying the 
variational inequality (1). □ 

Theorem 2. Let the operator T be strongly monotone 
with constant 0   and Lipschitz continuous with con- 
stant 0  . If there exists a constant 0   such that 

  

2 2 2

2

 





2 2

1 1 2

1 1 0

  

      

   

     
   (14) 

then, the approximate solution 1n  obtained from Al- 
gorithm 6 converges strongly to the exact solution  

 satisfying the variational inequality (1). 

u

u K
Proof. Let  be a solution of (1) and 1nu K u   be 

the approximate solution obtained from Algorithm 6. 
Then, from (3), (8) and (13), we have 

 
 

 

  

1

2 2 2

2 2 2

1

1 2

1

1 2 1

n

n n n n Tu 



n

n n n

n

n

n

u u

y u u u Tu

Ty Tu

y u u u u u

u u

u u

u u

 

 

     

  

         



 

    

  

       

  

        
 

 

 

where 

  

  

2 2

2 2





2

2

2 2

1 2

1

1 2

1 1 2

    

    

   

      

   

  

   

   

0



 

From (14), it follows that 1   . Hence, the fixed 
point Problem (3) has a unique solution and consequently 
the iterative solution 1nu   obtained from algorithm 6 
converges to the exact solution  of (1). □ u

Theorem 3. Let the operator T be strongly monotone 
with constant 0   and Lipschitz continuous with con- 
stant 0  . If there exists a constant 0   such that 

  
2 2

2 2

2

1 1 2



0

  

    



    
 (15) 

then, the approximate solution 1n  obtained from Al- 
gorithm 11 converges strongly to the exact solution  

 and satisfying the variational inequality (1). 

u

u K
Proof. Let  be a solution of (1) and 1nu K u   be 

the approximate solution obtained from Algorithm 11. 
Then, from (3), (9) and (13), we have 

 

 
  

1

2

2

1

1

,

n n n n n

n n

n n n

n n

n

n

n

u u u y y u Ty Tu

Ty Tu Tu Tu

y u u u y u

y u u u

u u

u u

u u

 

 

  

 

    

   



       

   

     

   

       
      

 

 

where  

  

   
2

2 2 2 2

1

1 1 2 1 2

    

       

   

       
 

From (15), it follows that 1 0  . Hence, the fixed 
point Problem (3) has a unique solution and consequently 
the iterative solution 1nu   obtained from algorithm 11 
converges to the exact solution  of (1). □ u

5. Conclusion 

In this paper, we have used the equivalence between the 
variational inequality and the fixed point problem to sug- 
gest and analyze some new implicit iterative methods for 
solving the variational inequality. We also show that the 
new implicit methods includes the extra gradient me- 
thod of Korpelevich [3], the modified extra gradient me- 
thod of Noor [6], the proximal point methods of Noor et 
al. [4], and the unified implicit methods of Noor et al. [5] 
as special cases. We also have discussed the convergence 
analysis of the proposed new iterative methods under 
some suitable conditions. One may modify again this al- 
gorithmic schemes by different choices and rearrange- 
ment of the values of   and  . 
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