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ABSTRACT

The main aim of this paper is to define and study of a new matrix functions, say, the p/(m, n)-Kummer matrix function
of two complex variables. The radius of regularity, recurrence relation and several new results on this function are es-
tablished when the positive integers p is greater than one. Finally, we obtain a higher order partial differential equation
satisfied by the pl(m, n)-Kummer matrix function and some special properties.
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1. Introduction

Many Special matrix functions appear in connection with
statistics [1], mathematical physics, theoretical physics,
group representation theory, Lie groups theory [2] and
orthogonal matrix polynomials are closely related [3-5].
The hypergeometric matrix function has been introduced
as a matrix power series and an integral representation
and the hypergeometric matrix differential equation in
[6-9] and the explicit closed form general solution of it
has been given in [10]. The author has earlier studied the
Kummer’s and Horn’s H, matrix function of two com-
plex variables under differential operators [11-13]. In
[14-16], extension to the matrix function framework of
the classical families of p-Kummer’s matrix function, p
and g-Appell matrix function and Humbert matrix func-
tion have been proposed.

Throughout this paper for a matrix A4 in CV*" | its
spectrum o(A4) denotes the set of all the eigenvalues of
A.If 4 isamatrix in CV", its two-norm denoted by
|4, is defined by [17]

4,
4], = sup
x#0 [[X 2

1
where for a vector y in CY, [y, =(yTy)5 is the

Euclidean norm of y .

If f (z) and g(z) are holomorphic functions of
the complex variable z, defined in an open set Q of
the complex plane, and if 4 and B are a matrix in
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™ with o(4)cQ and o(B)cQ also and if
AB = BA, then from the properties of the matrix func-
tional calculus [18], it follows that

f(4)g(B)=g(B)f(4). (1.1)
The reciprocal gamma function denoted by
1
I'(z)=
(Z) F(Z)

riable z. Then for any matrix 4 in C"*", the image
of I''(z) actingon A4 denoted by I''(A4) isa well
defined matrix. Furthermore, if

is an entire function of the complex va-

A+ nl is invertible for every (12)
non-negative integer n '

where [ is the identity matrix in C"", then I'(A4)
is invertible, its inverse coincides with I'"'(4) and one
gets [6]
(4), =A(A+1)(A4+20)--(4+(n=1)I) (13
=T(A+n)T(A); n21(4), =1

Jodar and Cortés have proved in [6], that
T(4)=tim(n-D1(4),] »". @D

n—o

2. On pl(m, n)-Kummer Matrix Function

We We define the pl(m, n)-Kummer matrix function
"®,(4;B;z,w) of two complex variables in the form
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where
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l(m,n :l m+n+1)(m+n)+n [19]and p, m and
2

n  are non-negative integer numbers. Notice that /(m,n)
is a non-negative integer number.

For simplicity, we can write the *®,(A4+1;B;z,w)
= 2 U, (zw) in the form ?®,(A4+), "®,(4B*l;z,w) in the
form ?®,(B+) and ’®,(A+I;B+l;z,w) in the
form ”®,(A+,B*).

u,, ( z,w) =V "W, We begin the study of this function by calculating its
' ' » radius of regularity R of such function for this purpose
(A)l(m " [(B)z(m n)] we recall relation (1.3.10) of [19] and keeping in mind

" (pl(m.n)) that 1<o,,<2 2 .Hence

m+n

- manEoo sup (pl (m, n)) lo,.,

AT ]

1

(4x(m 1)) e
= lim sup \/zn(A+(l(m,n)—l)1){(A+(l(m’n)_1)[)J

m+n—»0 e

1
m+n

-1

x \/zn(B+(Z(m’”)—l)1){(B+(Z(m’")—1)I)J(B+(l(m’”)‘l)’)

e

1

y [,/2pnf(m,n)(pl(m,n)jp’('"’")] o

e o

m,n

(A+(l(m,n)—l)[)J(A1) ((A+(l(m,n)—l)])]l(m’n)1 —

m+n—»0 e

< lim Sup [
e

1

. [(B—i—(l(m,n)—l)])JB” [(B +(l(m,n)—1)[)}l(m’n)1 {(pl(m,n))](pl(m’")) mtn

e e

1

(A+(l(m,n)—1)[) I(mn)1 ﬁ (B+(l(m,n)—1)]) ~I(m.n)1 , J”l(”’v“) —
) )

< 1 -
B mllgwsup I(m,n I(m,n) pl(m,n
(m.n) e (m.n) (m.n) e
I(m,n)I || m+n —I(m,n)I pl(m,n) (| m+n
< lim sup|| [+ A-1 x| 1+ B-1 ¢ =0.
P ) (mmy) \pt(mon)
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where

m

n
m+n)\2({m+n)2
_ , mn#0;
(o} =
m,n m n

1, m,n=0.

Summarizing, the following result has been establi-
shed.

Theorem 2.1. Let A and B be matrices in C"*"
such that B +l(m,n)l are invertible for all integer
l(m,n) >0. Then, the pl(m, n)-Kummer matrix function
is an entire function.

For p=1, wehave

l= lim sup " J'"*”
R m+n—o m,n

)0 [ (B

I(m,n)!o,

m,n

| \m+n

= lim sup

m+n—o0

i.e., the I(m, n)-Kummer matrix function is an entire func-
tion.

Some matrix recurrence relations are carried out on the
pl(m, n)-Kummer matrix function. In this connection the
following matrix contiguous functions relations follow,
directly by increasing or decreasing one in original

PO, (4+B+)=A"B Y, (A+1(mn)I)[(B+1(mn)I)]

> (A+1(mn)I)(B+(1(

l(m,n)ZO
'@, (A+;B-)=A"(B-1)"

(m,n)=0

"®,(A4—B+)

l(m,n)ZO

—B(4-1) ¥ [(A+(l(m,n)—1)1)}_l[(B+l(m,n)lﬂ_lUm,n(z,w),

relation

"®, (A+;B;z,w)

I(m,
I(m‘n)ZO (pl(m’n)
-1
A ! (A +l(m, n)l)(A)/(m n) |:(B)l(m n):|

_ Z men

()20 (pl(m.m))!
—4" Y (4+l(mn)D)U,, (z,w)

I(m,n)=0
2.2)

Similarly

o) (A B;z,w)

= > (4-1) (A+(1(m,n)—1)1)}71Um,”(z,w),
1(m,n)=0

P®, (4; B+;z,w)

(2.3)

=Y B[(B+l(m,n)1ﬂ_l Uy (2:W),

I(m,n)ZO

"®,(A4;B—;z,w)

:,<,,%ZO(B Iy (B+(1( )—I)I)Umn(z w).

By the same way, we have

-1

U,.. (z, w),

m,n)—l)I)Um,n (z,w),

2.4)

"0, (4-B-)=(4-1)(B-1)" ¥ [(A+(1(m,n)—1)1)]71(B+(1(m,n)—1)1)Umn(z w).

Now, we consider the following differential operators

1 1
D= E(D)z +d, = 5(D2

where D=d, +d,, dl=zg and d2=wi.
z ow

It is clear that

D’®, (4;B;z,w)= E(D2 +D)+ dz} "D, (4;B;z,w) =

e re ) en (@]

B 1(mom)20 (pl(m.n))!
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2.5)
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So that
D'®, (A4;B;z,w)

) () [ ()]

= Z z"w" (2.6)

l(m,n)ZO (pl(m n))'

Ly ]
_pl(n%zo [(pl(m n)) IJ'

Putting in this relation m—1 and n+1 instead of
m and n respectively, then

l(m—l,n+1):%(m+n)(m+n+1)+n+l:l(m,n)+1

. . 1
and so that we can be written the relation m—— and
p

1. .
n+— instead of m and n yields
p

l(m—l,n+lj:l(m,n)+l

p p p

and pl{m—l,n+l)= pl(m,n)+1.
p p

Therefore, the power series @, (A;B;z, w), as fol-
lows

{D[D_%j(l)_%]..{l)_%—lﬂpq>2<A;B;Z,w>

l(m,n){l(m,n)—;}[l(m,n)—2}---{1(}%,”)—]9—}(A)/(m,n) (B) |

D' ®, (A;B;z,w)

1
= l(ﬁj" (A)[(8)] o, (A LB +l1;z,wj
p\z p p
i.e., the pl(m, n)-Kummer matrix function is a solution of
the matrix differential equation

D7, (A;B;z,w)

1
1 » - 1 1
——(Kj” (4)[(B)] @, (A+—I;B+—I;z,w] —0.
p\z p p
2.7)
In this paper, we affect by differential operator D the
pl(m, n)-Kummer matrix function, successively, then we
have

— ZWIW}’!

l(m%zo (pl(m,n))'

—1 -1

:L Z (A)](m,n) |:(B)](m,n):| mw" :L (A)](m,n)ﬂ I:(B)l(m,n)+1:| m=1_ n+l

Pp (m,n)=0 Pl(myn)_l?)' Pp (m,n)=0 (pl(m:n))'

-1 1 -1

:XL z (A)l(m,n)+l|: B l(m,n)+1:| men :KL Z |:A+l n)[:l|:B+l(m’n)]:| (A)l(m,n) |:(B)l(m,n):| men

zp a0 (pl(m.n))! zZ P’ im0 (pl(m,n))!

-1
Do By

:XL [A—i—l (m,n) 1}[B+l (m,n)I ] 1( )](M) frr) ] gy

z p l(mn >0 pl(m,n))'

-1

w 1 ( )l(m,n) |:(B I(m n):| m. o

= 2 pp /(m,zn;zo (pl(m’n))| zw
1

ol (A [ (B |
+—— A-B)| B+I(m, "w"

z p” ](m%zo( [B+i(mm1 ] (pl(m,n))' o
2L o, (4B5zw)+ Y (4= B) B 10, (45 Bz, w)

z p? z p?
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i.e. the (m, n)-Kummer matrix function is a solution to this matrix differential equation

(oo o222

(A Bzw) -l (4=B) 0, (4Brzw) =0, 28)

z p’

{D[D—%)[D—%}---[D—%}(D[+B I)}”CDZ(A;B;Z,W)

S R

= z"w'
z(n%zo (pl
1 -1
(B+(0nm) D) A B ], 1 EHOD D)D) D]
- — w
P inarsz0 (pl(m,n)- p)‘ P’ et (pl(m,n))!
1 -1
w 1 (B+l(m’n)1)(A)l(m,n)+1 ':(B)l(m,n)+l:| w1 |:A+l(m’n)l:|(A)l(m,n) |:(B)l(m,n):|
— Z m A Z men
z pp 1(m,n)=0 (pl(m:n))' z Pp (m,n)=0 (pl(m;n))'
=KLA"CD ,(4;B;z,w)
z p?
Therefore, the following result has been established. and
Theorem 2.2. Let A and B be matrices in CVV. DX’ (A'B'z w)
Then the pl(m, n)-Kummer matrix function is solution of SN
this matrix differential equation =(B-1)(B-21)"®,(A4;B-2I;z,w)

e

—KLA} PO, (4;B;z,w)=0.
zp

The «(D) differential operator has been defined by
Sayyed [19] in the form

2.9)

N
a(D)=1+>.D"; D" =DD"".

k=1

From (2.1), (2.3) and (2.5), we obtain
(DI+B—I) ', (A;B;z,w)

(B+(1(m.n)=1)1)(4),,., [(B)«m,nf

= mwn
Hm20 (pt(m,n))!
B-1 [B I J
_ Z ( )( )mn ( )lmn men
(m,n)=0 (pl m n))
=(B-1)"®,(4;B~1;z,w)
(2.10)
hence
D?®,(4;B;z,w)
@2.11)
:(B—I)["CDZ(A;B—I;Z,W)—"d)l(A;B;z,w)]
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—[(B—I)(B—2I)+(B—])2J "D, (4 B~T;z,w) (2.12)
+(B—])2 PCDZ (A;B;Z,W)_

Thus by mathematical induction, we have the fol-
lowing general form

N
a(D)"®,(4;B;z,w) = [1+;Dk ) "®,(4;B;z,w)

Nk
=0, (A;B;z,w)+ZH(B—jI) o, (A;B—j];z,w)

|
1
=
—
U:J
\.
~
~
+
=
—
o
|
. ~
~
~
—
o
|
~
~
~
| I

_1:1 j=1 Jj=1 Jj=1
k-3
+Z(B—j1)(B—(]+1)1)
Jj=1
k-4

*®, (4B~ (j~2)I;z,w) 4+
+(-1)" (B-1)

"®,(4;B;z,w).
2.13)
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where N is a finite positive integer.
Special cases: we can be written the matrix function
®, (4;—z,w) in the form
(A)l(m,n)

PO, (A= z,w)= Y

1(m,n)=0 (pl (m, n))'

m 7

(2.14)

we see that
DD, (4;—;2,w) =—(DI + 4) "D, (4;=;2,w).
z

ie,the "®,(A4;—z,w) is a solution to this matrix dif-
ferential equation

{0(1—2}—34 ®, (4;—;2,w) =0.

z z

(2.15)

Also
D'®, (A4;—z,w)

:%(DIJrA)"(DZ(A;—;z,w)
2

+VZ”—2(DJ +A)(DI+A+1)7 D, (4;=2,w).
ie.,the "®,(4;—z,w) isa solution for the matrix par-
tial differential equations

2

{DZI—K(DHA)—W—Z(DH A)(DI+A+1)}
z z

P®, (4;—;z,w)=0.

The results of this paper are variant, significant and so
it is interesting and capable to develop its study in the fu-
ture. One can use the same class of differential opera-
tors for some other function of several complex variables.
Hence, new results and further applications can be obtained.
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