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ABSTRACT 

Reliability optimization plays an important role in design, operation and management of the industrial systems. System 
reliability can be easily enhanced by improving the reliability of unreliable components and/or by using redundant con- 
figuration with subsystems/components in parallel. Redundancy Allocation Problem (RAP) was studied in this research. 
A mixed integer programming model was proposed to solve the problem, which considers simultaneously two objec- 
tives under several resource constraints. The model is only for the hierarchical series-parallel systems in which the ele- 
ments of any subset of subsystems or components are connected in series or parallel and constitute a larger subsystem 
or total system. At the end of the study, the performance of the proposed approach was evaluated by a numerical exam- 
ple. 
 
Keywords: Hierarchical Series-Parallel System; Optimal Redundancy Allocation; Mixed Integer Programming 

Formulation; Reliability Optimization 

1. Introduction 

The reliability optimization plays an important role in 
design, operation and management of the industrial sys- 
tems. The reliability of a system can be easily enhanced 
by improving the reliability of unreliable components 
and/or by using redundant configuration with subsys- 
tems/components in parallel. Improving component reli- 
ability has been generally preferred over adding redun- 
dancy in industry, because the redundancy is difficult to 
add to the real systems due to the technical limitations 
such as weight, volume, and cost. However, recently de- 
veloped advanced technologies such as semiconductor 
integrated circuits and nanotechnology, have revived the 
importance of the redundancy strategy [1]. 

A well-known and complex reliability optimization 
problem is the redundancy apportionment problem for 
the series-parallel systems which can be defined as the 
problem of the selection of the optimal combination of 
component type and redundancy level for each subsys- 
tem in order to meet various objectives under given con- 
straints on the overall system [2]. This problem was stu- 
died in this research. The objectives considered were the 
maximization of the system reliability, and the minimiza- 
tion of the system cost. The study was looking for the 
number and the type of the redundant components which 
optimize the objective function under several different 

constraints such as the overall system weight and total 
number of the components used in all redundancies. 

The literature abounds with numerous and very diffe- 
rent techniques for solving the optimal redundancy allo- 
cation problem with various objectives and different re- 
source constraints. Ha and Kuo [1] presented a branch- 
and-bound approach to solve the redundancy allocation 
problem (RAP) formulated as a non-convex integer non- 
linear programming model. Their computational experi- 
ments demonstrated that the method was superior to the 
other existing exact algorithms for RAP in terms of com- 
putation time. A combined approach was presented by 
Nourelfath and Dutuit [3] to solve the redundancy opti- 
mization problem for multi-state systems under repair 
policies. Azaron et al. [4] dealt with the reliability func- 
tion of a class of time-dependent systems with stand by 
redundancy. You and Chen [5] proposed a heuristic algo- 
rithm based on a multi-start search procedure for solving 
a series-parallel RAP with separable linear constraints. An 
Ant Colony Optimization (ACO) algorithm was propos- 
ed by Liang and Smith [6] for the RAP. Shelokar et al. [7] 
applied an ACO algorithm for single and multi-objective 
reliability optimization problems. Nahas and Nourelfath 
[8] examined applying an ant system to reliability opti- 
mization of a series system with multiple-choice and bud- 
get constraints. An ACO algorithm with a multi-objective 
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formulation was developed by Zhao et al. [2] in order to 
solve the redundancy apportionment problem of series- 
parallel k-out-of-n G: subsystems (denoted by ACSRAP). 
Mahapatra and Roy [9] dealt with the reliability optimi- 
zation problem with several mutually conflicting objec- 
tives, which were the minimization of the system cost 
and the maximization of the system reliability, and pro- 
posed a fuzzy multi-objective optimization method for 
the series and complex system reliability. Ouzineb et al. 
[10] presented a heuristic approach based on a combina- 
tion of space partitioning, genetic algorithm and tabu 
search to solve the redundancy allocation problem for 
series—parallel binary-state systems. The design goal of 
the RAP was to select the optimal combination of ele-
ments and redundancy levels to maximize system reli-
ability subject to the system budget and to the system 
weight. After dividing the search space into a set of dis-
joint subsets, this approach uses GA to select the sub-
spaces, and applies TS to each selected subspace. A het-
erogeneous redundancy optimization model based on ge- 
netic algorithm was proposed by Li et al. [11] for multi- 
state series—parallel systems subject to common cause 
failures, in order to provide a desired level of reliability 
with minimum cost. Recently, Sharma et al. [12] inve- 
stigated the heterogeneous RAP in multi-state series par- 
allel reliability structures with the objective of the mini- 
mization of the total cost of system design satisfying 
given reliability constraint and consumer load demand. 
The demand distribution was presented as a piecewise 
cumulative load curve and each subsystem was allowed 
to consist of parallel redundant components of not more 
than three types. They proposed an ACO algorithm to 
solve the problem. There are many other researches on 
this topic in the literature (see, for example [13-16]). This 
study dealt with the RAP for hierarchical series—parallel 
systems and a new approach for mathematically model- 
ing the problem was presented. 

2. Assumptions and Notations 

The assumptions considered in this study were as fol-
lows: 

1) The model was only for the hierarchical series—par- 
allel systems. A reliability system is called a Hierarchical 
Series Parallel system (HSP) if the system can be viewed 
as a set of subsystems arranged in a series parallel; each 
subsystem has a similar configuration; subsystems of each 
subsystem have a similar configuration and so on. 

2) It was assumed that in a parallel configuration, at 
least one active component is required for the function; 
and in a series configuration, all components have to be 
active for the function. 

3) The constrained resources considered in this prob- 
lem were the repair times (in man-months, for example) 
and total number of components used in all redundancies. 

4) The overall system weight (including all redundan- 
cies) could not exceed its upper limit. 

5) Although in many real-world optimization prob- 
lems, the financial budget is the most important con- 
strained resource, in the reliability optimization problems, 
it is usually of less importance than technical constraints 
such as lower limit of whole system reliability; and 
therefore, in the problem studied in this paper, it was not 
considered as a constraint of the model and inadequacy 
of the system reliability coming from the budget limita- 
tion would not occur. Instead, the cost minimization was 
taken into account as an objective. 

6) The maximization of the overall system reliability 
was also considered as an objective; moreover, it was 
assumed that the overall system reliability can not be less 
than its lower limit. 

7) For each subsystem (component or system), there 
were several choices of subsystems (components or sys- 
tems) with different reliability and resource requirements 
which could be used as redundancies. 

The following notations were used in the proposed 
method. 

2.1. Indices 

i: If the total system is decomposed into several series/ 
parallel subsystems again and again until indecompos- 
able subsystems (i.e. components) are reached, then a 
subsystem is at level i if it is result of decomposing the 
total system to series/parallel subsystems (n − i) times (if 
the total system can be decomposed up to n levels). We 
have i = 0, ..., n; i = n for the total system, and i = 0 for 
the components at the last level). 

j: denotes jth subsystem of a given decomposition 
level (say i), j = 1, 2, …, mi; i.e. at level i, there are mi 
subsystems. Note that a subsystem may be a component 
or a set of components configured as a series/parallel 
system. 

k: denotes kth redundant subsystem for a given sub- 
system. 

2.2. Parameters 
i
jk : Number of redundant subsystems for subsystem j 

at level i. These redundancies have different characteris- 
tics and performances, i.e. different reliabilities, pro- 
curement costs, repair costs, ..., and any arbitrary subset 
of them can be used as redundant subsystems for that 
subsystem; so k = 1, 2, ..., i

jk . 
i
jk : Procurement cost of redundant subsystem k for 

subsystem j at level i. 
Cp

i
jkCr : Repair cost of redundant subsystem k for sub- 

system j at level i. 
i
jkR : Reliability of redundant subsystem k for subsys- 

tem j at level i. 
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i
jk : Failure rate of redundant subsystem k for subsys- 

tem j at level i. 
i
jkt : Repair time of redundant subsystem k for subsys- 

tem j at level i. 
i
jkw : Weight of redundant subsystem k for subsystem j 

at level i. 
i
jkN : Number of components used in redundant sub- 

system k for subsystem j at level i. Therefore, if the sub- 
system is a component, then its i

jkN  is equal to 1. 
i
jRS : Reliability of subsystem j at level i. 
0
jS : Failure rate of subsystem j at level 0 (which is a 

component). 
0
jt : Repair time of subsystem j at level 0 (i.e. a com-

ponent). 
0
jWS : Weight of subsystem j at level 0 (i.e. a compo-

nent). 
L: A scaling parameter. 
T: Mission time. 
Tr: Total available repair time (for example man- 

months). 
R: A lower limit on the overall system (including its 

redundant subsystems) reliability. 
W: Maximum weight of the overall system (including 

its redundant subsystems). 
A: An upper limit on the number of all redundant com-

ponents used in the system. 

2.3. Variables 
i
jkX : Binary variable taking value 1 if redundant sub- 

system k for subsystem j at level i is used for improving 
the system reliability and 0 otherwise. 

i
jTRS  ( ia

jTRS / ib
jTRS ): Total reliability of subsystem j 

at level i (including its redundant subsystems). The letter 
a (letter b) denotes that the subsystem is constituted of 
several subsystems connected in series (parallel). 

3. Mixed Integer Programming Model 

In this section, a mixed integer programming formulation 
is presented to solve the problem. 
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In the above model, 1   is the reliability 
of the overall system if its subsystems are connected in 
series (parallel). Constraint sets (1) and (2) are recursive 
equations for calculating the reliability of any subsystem. 
Constraint (3) ensures that total required repair time does 
not exceed total available repair time. Constraint (4) gua- 
rantees that the overall system reliability is not less than 
its lower limit. Constraint sets (5) and (6) ensure that the 
overall system weight and the total number of compo-
nents used in redundancies do not exceed their upper li- 
mits. 

TRS  1TRS 

i j

4. Numerical Example 

The proposed method was applied to solve a test problem. 
Figure 1 shows this problem of the hierarchical series- 
parallel system configuration. The parameter values for 
the problem are listed in Table 1.  

Other input data are L = 2, A = 10, T = 0.5, Tr = 0.98, 
R = 30, W = 8, . The results obtained from 
solving the problem were as follows: 

2 ,i
jk  

The objective function value was −590.0054, 
2
1 0.997312bTRS  , , 1

1 0.720aTRS 
1
1 0.9904bTRS  , , 0

1 0.800TRS 
0
3 0.880TRS  , , 0

4 0.920TRS 
0
2 0.900TRS  , 

 

 
jk (2) 

Figure 1. A hierarchical series-parallel system ( i
jS  denotes 

subsystem j at level i). 
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Table 1. Parameter values for the test problem. 

 0

jt  0

jS  0

jWS  i

jRS  1

i

jCp  2

i

jCp  1

i

jCr  2

i

jCr  1

i

j  

0

1S  0.003 2 2 0.8 8 7 2 3 2 

0

2S  0.004 1 2 0.9 9 8 1 2 1 

0

3S  0.002 3 3 0.7 7 6 5 4 3 

0

4S  0.003 4 4 0.6 6 10 4 5 4 

1

1S  – – – 0.72 8 7 2 3 3 

1

2S  – – – 0.88 9 8 1 2 2 

2

1S  – – – 0.9664 10 9 1 1 1 

 
 2

i

j  1

i

jN  2

i

jN  1

i

jR  2

i

jR  1

i

jw  2

i

jw  1

i

jt  2

i

jt  

0

1S  3 1 1 0.8 0.7 2 2 0.003 0.002 

0

2S  2 1 1 0.9 0.8 2 3 0.004 0.003 

0

3S  4 1 1 0.7 0.6 3 4 0.003 0.002 

0

4S  5 1 1 0.6 0.5 4 3 0.002 0.001 

1

1S  4 2 1 0.7 0.6 2 1 0.006 0.005 

1

2S  3 2 3 0.8 0.7 2 2 0.008 0.007 

2

1S  2 2 2 0.9 0.8 1 2 0.009 0.008 

 
0
32 1X  , , , 0

41 1X 
i

0
42 1X 

All other jkX ’s were zero. 

5. Conclusion 

In this paper, the RAP for a hierarchical series-parallel 
system under several resource constraints was studied. 
The following two objectives were considered: the maxi- 
mization of the system reliability, and the minimization 
of the system cost. A new approach for mathematically 
modeling the problem was presented. The implemen- 
tation of the proposed approach was illustrated by a sam- 
ple application on a numerical example. Further work can 
be performed on to adapt the approach to other objectives 
and to extend it to more complex systems. 
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