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ABSTRACT 

In this research, the secondary current theory is used in investigating the role of phase shift angle between the secondary 
current and the channel axis displacement in stability analysis of a river channel. To achieve this, a small-perturbation 
stability analysis is developed for investigation of the role of the secondary current accompanying channel curvature in 
the initiation and early development of meanders in open channels. The secondary currents are generating in planes 
perpendicular to the primary direction of motion. The secondary currents form a helical motion in which the water in 
the upper part of the river is driven outward, whereas the water near the bottom is driven inward in a bend. Force-mo-
mentum equations for longitudinal and transverse direction in open channel bends were utilized. Assuming that the 
transverse force contributed by the bed is negligible, the pressure force associated with the transverse surface inclination 
is balanced by the centripetal force. Existing equations of the transverse velocity profile were analyzed. Since the mag- 
nitude of the vertical velocity is negligible compared to the transverse velocity in secondary currents, this study concen- 
trates on the transverse velocity which is the radial component of the secondary current. This formulation leads to a 
linear differential equation which is solved for its orthogonal components which give the rates of meander growth and 
downstream migration. It is shown that instability increases with decrease in phase shift angle. Transition from straight 
to meandering and then from meandering to braiding occurs when phase shift angle is reduced. 
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1. Introduction 

[1] presented a quantitative basis for differentiating straight, 
meandering, and braided channel patterns based on rela-
tionships between slope and discharge. [2] noted that an 
increase in the ratio of bed material load to total sediment 
load with a corresponding increase in channel gradient 
leads to a decrease in stability and hence causing channel 
patterns to shift from a meandering to braided channel 
form. [3] argued that the pattern of a river channel changes 
from meandering to braiding with increasing flow strength. 
[4] observed that the lower limit of sinuosity of a mean-
dering river is 1.5 and larger width-depth ratios charac-
terize braided rivers. According to [5] channel stability 
depends on river bed angle, sediment size and meander 
formation rate. [6] argued that straight streams are rela-
tively stable and are characterized by small sediment size, 
low velocities and low gradient. [7] developed sediment 
routing models to examine changes in channel width and 
planform, effects of sediment pulses and landscape evo-
lution. For width-depth ratio of up to 100, [8] used phys-
ics-based linear model to predict whether reducing or 
enlarging the width of a river will lead to meandering, 

transition from meandering to braiding or braided plan-
form. Figure 1 was used by [9] in summarizing stability 
of a river channel. 

Using depth (H)-width (B) ratio, longitudinal slope (S) 
and froude number (F), [10] observed that; braiding oc- 

curs when 
1

2

H S

B F
 , meander-braid transition falls in 

the region 
1

2

S H S

F B F
  , meandering develops when 

26 10
S H

F B
   , transition to straight falls in the region 

26 10 2 10
H

B
1      and channels remain straight 

when 12 10
H

B
  . 

Secondary currents represent circulation of fluids 
around the axis of the primary flow [11]. This leads to 
movement of fluid particles on a circular path which re- 
ferred to as spiral motion. Helical flow consists of spiral 
motion superimposed on the primary flow [12]. It has 
long been recognized that periodically reversing helical 
motion is fundamental characteristic of flow in mean- 
dering rivers. Therefore the velocity and the phase shift  *Corresponding author. 
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Figure 1. Channel classification and relative stability as hydraulic factors are varied. Source: [9]. 
 
angle of the secondary current from the channel axis dis- 
placement plays a critical role in determining meander 
pattern and stability of a river channel. Based on secon- 
dary current theory, there is no mathematical model that 
has been generated to classify river channels using the 
width-depth ratio and the phase shift angle. A small-per- 
turbation stability analysis is developed for investiga- 
tion of the role of the secondary current in the develop- 
ment of meanders and hence in classifying a river chan- 
nel. It’s shown that river channel changes from straight 
to meandering and then from meandering to braiding as 
the phase shift angle reduces. Instability increases with 
decrease in phase shift angle and meander growth domi- 
nates downstream meander migration at small phase shift 
angle and vice versa. 

2. Analytical Model 

A channel with a finite value of the radius of curvature is 
considered. The radius of curvature assumes an infinite 
value where the channel is straight. The analysis of flow 
in curved channels as presented herein is restricted to 
sub-critical flow with hydrostatic pressure distribution 
and the channel depth is assumed to be much less than 
the width and the radius of curvature. This is mostly ob- 
served at the lower course of a river channel. In deriving 
the equation of motion, a differential element of fluid in 
polar coordinate system is used as shown in Figure 2. 

[13] used force-momentum equations in polar cylin- 
drical coordinates to relate the longitudinal velocity  u , 

 

Figure 2. Transverse velocity profile in curved channel. 
 
transverse velocity  v , vertical velocity , the lon- 
gitudinal slope 

 w
 S , transverse water surface slope (Sr), 

transverse shear stress (τr), longitudinal shear stress (τs) 
and radius of curvature  r  as follows: 

su u u u uv
u v w gS

t s r z r z



   

      
    

  (1) 

2
r

r

v v v v u
u v w gS

t s r z r z



   

     
    

   (2) 

For steady flow, the time derivatives 
u

t




 and 
v

t




 in  

Equations (1) and (2) can be dropped. Also second order  

terms 
v

w
z




, 
u

w
z




, 
v

v
r




, and 
uv

r
 can be eliminated  
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because  and  are small compared with u. Substi-
tuting all these in Equation (2), yields; 

v w

2
r

r

v u
u gS

s r z





  
 

         (3) 

Equation (3) represents fluid motion in the transverse 
direction. The mechanism of secondary flow develop- 
ment can be described by each term of Equation (3). The 
left-hand side in Equation (3) is longitudinal variation of 
transverse velocity. In the right-hand side, the first term 
represents centrifugal acceleration, the second term re- 
presents the transverse water-surface slope and the third 
term represents the turbulent shear. From Equation (3) 
the transverse water surface velocity  sv , longitudinal 
water surface velocity  su  and radius of curvature 
from centerline of the channel  cr  are related as; 

2
s s r

s r
c z H

v u
u gS

s r z


 

 
  

 
       (4) 

[14] noted that; 

2r
s

z H

u
v

z H

 







 


          (5) 

2

r
c

u
s

gr
                (6) 

Substituting (5) and (6) into (4), yields; 

2s s
s

s c s

v uu u u
v

s Hu r u u

   
    

      (7) 

[15] observed that; 

1su m

u m


              (8) 

where m is the friction term in steady flow which is de-
fined as; 

1 6 1 0.5m R n g               (9) 

Substituting Equation (8) into (7) and since sv  is a 
function of s  only, it yields; 

 
 
 

*
2 1d 2 1

d 1
s

s
c

u mv m u
v

s Hu m r m m

   
   

     

Since meander initiate in a river channel at a very 
large value of radius of curvature (r), the transverse slope 
according to Equation (6) is almost negligible and there- 
fore the channel cross-section can be assumed to be rec- 
tangular when meander just forms in a river channel. The 
channel-alignment perturbation will be taken to be a mi- 
grating sinusoid as shown in Figure 3. 

According to [16], the perturbation displacement from 
the convex bank to concave bank is given by; 

    , sin x t A t k x ct           (11) 

2π
k

L
                 (12) 

[16] observed that; 
2

2

1 d

dcr x


               (13) 

Substituting (11) into (13) yields; 

21
sin

c

k A k x ct
r
         (14) 

Substituting (14) into (10) yields; 

 
 
   

*

2

d 2

d 1

2 1
sin

1

s
s

v m u
v

x Hu m

k Au m
k x ct

m m

 
  

  


 


     (15) 

Equation (15) is linear ordinary differential equation. 
The solution of this equation that is periodic and inde-
pendent of the initial condition is: 

 

2 2

1
22 2 2 2 2 2 2

1
2

4 1

sin

s

k Hu A
m

v

m u k H u m

k x ct
k





  
 

    
    
 

   (16) 

where 

1





  (10)  1
tan

2

Hu m k

m u








         (17) 

 
 L

 A t ,x t x

 

Figure 3. Sinusoidal perturbation. 
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The phase shift    must vary between zero and pie 

because the primary flow is assumed to be stronger than 
the secondary current. The velocity of secondary current 
attains maximum when the phase shift is approximately 
equal to 0.5 . This happens when the inertial term is 
dominant over the friction term. The velocity of secon- 
dary current is in phase with the channel axis displace- 
ment when the phase shift is approximately equal to zero. 
[16], argued that as the control volume moves laterally in 
a curved river channel, the difference between the rates 
of these processes at the concave and convex banks is 
given by; 

π

d

d
l

G

Q
V

s
               (18) 

Since the channel centerline is curved, the centroid of 
the central volume is not at mid width of the channel, but 
is displaced toward the concave bank, the displacement 
being inversely proportional to the radius of the curva- 
ture. [16] argued that for a rectangular channel cross-  

section, the displacement is 
3 c

b

r
. They obtained the rate  

of lateral migration as; 

2 3

23G

b
V

t t x

  
 
  

         (19) 

They also argued that the rate of differential erosion- 
deposition across the channel is proportional to the rate 
of a fictious lateral transport of sediment from the outer 
to the inner bank. Therefore; 

d

d
l

s

Q
V

s
               (20) 

Substitution of (20) into (18) yields; 

GV sv                (21) 

Substitution of (21) into (19) yields; 

2 3

23 s

b
v

t t x

   
 

  
       (22) 

Substitution of (11) and (16) into (22) and simplifying 
yields: 

 

 
   

2 2

12 2
22 2 2 2 2 2 2

1
2 sin

1 d
cot

d
1 4 1 sin

3

k Hu k x ct
A m k

kc k x ct
A t b k

m u k H u m k x ct





        
     

          


         (23) 

Integrating Equation (23) and simplifying it yields; 

 
 

 

 

2

1 12 2
22 2 2 2 2 2 2

2 2

12 2
22 2 2 2 2 2 2

1
2 sin

ln 1 ln sin

1 4 1
3

1
2 cos

1 4 1
3

kHu
m

A C k
b k

m u k H u m C

k Hu t
m

b k
m u k H u m

 

 





    
                    

  
 

          

x ct

           (24) 

Equation (24) is satisfied if; 

 

2

12 2
22 2 2 2 2 2 2

1
2 sin

1 4 1
3

kHu
m

C
b k

m u k H u m

 



  
 

          

                           (25) 

Therefore Equation (24) reduces to; 

 

 

2 2

1 12 2
22 2 2 2 2 2 2

1
2 cos

ln

1 4 1
3

k Hu t
m

A C
b k

m u k H u m

 



  
  

          

                     (26) 
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Since at  Equation (26) simplifies; 00, ,t A A 

 
 

2

0 2 2 2

2 2 1 sin
exp

1 tan1

m u
A A t

H m

 
 


    
        

  (27) 

where 

 

2 2 2 2
2

22 2

4

3 1

m u b

H u m
 




          (28) 

And 

 
 

22 2
2

22 2 2 2 2 2

1
sin

4 1

H u m

m u k H u m








  
  (29) 

Equation (27) therefore simplifies to (see Equation (30) 
below). 

The exponent in Equation (30) is positive for all k. 
Therefore the amplitude of the sinusoidal perturbation in- 
creases exponentially with time. 

It is observed in Equation (30) that the exponent tends 
to zero again for k = ∞. However there is a dominant 
wave number for which the rate of growth is maximum. 
The dominant wave number for which the rate of growth  

is maximum is observed when 
2

0
A

t k




 
. Substituting  

this in (28) and simplifying yields. 
1

2tan  


  

where 

0 π 2                 (31) 

Substitution of (17) and (28) into (31) yields; 

 

1

212

1

m u
k

Hu m b


 
 

  
          (32) 

Equation (32) defines the dominant wave number. 
Substitution of (12) into (30) yields; 

 
1

22 1
π

3

bHu m
L

m u

 
 

  
        (33) 

Substitution of (10) into (33) yields; 
1

2

π
3

sBHu
L

u

 
 

  

where 2B b . Since Q BHu  Equation (34) simpli- 
fies to; 

1

2

π
3

sQu
L

u u

 
  

  
            (35) 

Therefore the predicted/dominant meander wavelength 
as a function of dominant discharge is given by Equation 
(35). Substitution of (32) into (17) and then (8) yields; 

1

23
tan w sH u

u




 
   

           (36) 

Making   the subject in (36) yields; 
1

2
1 3

tan w sH u

u
 



 
    

 

where, 
π

0
2

                   (37) 

Substitution of (32), into (25) and after some algebraic 
manipulations yields; 

 
 

42 1 sin

1

u m
C

m m

 



         (38) 

According to [13],   1
m u u 

  while [17] noted  

that 0.354u u  f  and therefore . Sub-  0.51.131m f 
stituting all this in Equation (38) yields. 

  4

0.5

0.884 2 sin

0.884 1

u f
C

f

 






    (39) 

Equation (39) defines the migration velocity of the 
meander pattern which is also called the celerity (C). 

Substitution of (32) into (30) and after some algebraic 
manipulations, equation of the amplitude of the dominant 
wave is obtained as follows; 

  2 4

0 2 2

6 2 1 cos
exp

Hu m
A A

m B u

t 







   (40) 

Since  Equation (40) simplifies to; 0.51.131m f 

 2 1 4
0 exp 37.529 cos 2.262A A HuB f    t     

             (34) 
(41) 

 

  
    

0

3 2 3 2

2 2 2
2 22 2 2 2 2 2 2 2 2

2

1
exp 8 2 1

4
1 4 1

A A m t m u Hu
m u

H u m m u k H u m
k









 
 
            
   

   (30)
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4. Results and Discussion 

The foregoing analysis demonstrates that secondary cur- 
rents produced by small periodic perturbations in the 
alignment of an otherwise straight channel can cause the 
amplitude of the perturbations to increase with time, and 
produce downstream migration of the resulting meanders. 
The stability analysis is linear and it’s therefore applica- 
ble only to small-amplitude meanders. It’s observed from 
Equation (34) that the predicted/dominant wavelength (L) 
at which meandering occurs is proportional to square 
root of the ratio of longitudinal surface velocity to bed 
shear velocity. This is the ratio at which meandering oc- 
curs and it therefore reduces as meandering process con- 
tinues. This ratio can only be maximized if the shear ve- 
locity is minimized and longitudinal surface velocity is 
maximized. It is observed from Equations (39) and (41) 
that channel roughness increases as meandering process 
continues. This is in agreement with the existing theory 
since more alternate bars and ripples which causes an 
increase in roughness forms as meandering process oc-
curs. Hence there is a need to determine the ratio of lon-
gitudinal surface velocity to shear velocity at which me-
andering occurs. 

Several laboratory experiments have been conducted 
to determine the dominant wavelength (L). Based on 
Equation (34) the flume experimental results obtained by 
[18] were used to determine the above ratio. This was 
done by rearranging Equation (34) to get; 

2

2

π

3s

u BH

u L
                (42) 

[18] presented a data from 167 laboratory flume ex- 
periments which were carried out by nine groups of re- 

searchers. To determine the ratio 
s

u

u
  the results from  

the same flume type (S-E) were used to avoid errors that 
might arise by using results from different flume types. 
The mean value was found to be 0.01. Hence from ex-
perimental results it’s observed that the ratio at which 
meander forms in a river channel is approximately 0.01.  

Hence 100su

u

 . 

Substituting the above mean in Equation (36) and tak- 
ing 0.4   [19] yields; 

37.74KEL  BH



          (43) 

Equation (43) gives the approximate predicted/domi- 
nant meander wavelength  KEL  obtained from experi- 
mental flume data. 

Due to errors that occur in any experiment, simulations 
were carried out using MATLAB version nine to deter-  

mine again the ratio of s
r

u
U

u

  at which meander  

forms in a river channel. Using Equation (34), Figures 
4(a) and (b) were obtained for different values of chan- 
nel breadth (B) and depth (H). 

It’s observed from Figures 4(a) and (b) that the chan-
nel remains straight beyond point B. From B to A, mean-
dering takes place. From A to O, braiding is observed. 
Meandering therefore forms in a river channel at a 
maximum value of rU  being 200 and the minimum 
value being 100. The average value of r at which me-
andering forms is therefore 150. Therefore river channel 
will remain straight when , transition from 
straight to meandering occurs when 150 , 
meandering occurs when  transition from me- 
andering to braiding occurs when 100  and 
braiding occurs when r

U

U

200rU 

150r 

100

200rU 

150r 
U

U  . Therefore as rU  de- 
creases, the channel pattern changes from straight to 
meandering and then from meandering to braiding. This 
is because of the fact that r  can only reduce when U u  
increases and according to [17] the friction factor will 
also increase. An increase in friction factor causes more  
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Figure 4. (a) Predicted wavelength (L) against the ratio of 
longitudinal surface velocity to shear velocity (Ur); B = 
0.4917 and H = 0.00809; (b) Predicted wavelength (L) 
against the ratio of longitudinal surface velocity to shear 
velocity (Ur); B = 127.1 and H = 8.2. 
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resistance to the flow and hence deposition which leads 
to formation of bars that forms braiding. 

The channel is expected to be straight when the phase 
shift is maximum . This happens when the iner- 
tial term is dominant over the friction term and the se- 
condary current is said to have the maximum velocity 
near the channel axis. The secondary current is nearly in 
phase with the channel axis displacement if the phase 
shift is approximately equal to zero. Therefore meander- 
ing process is expected to start in a river channel when 
phase shift angle decreases from  towards zero. 
This is why downstream migration is dominant when 
meandering starts in a river channel. As phase shift re- 
duces towards zero, meander growth is dominant. 

0.5π

0.5π

Based on Equation (37) simulations were done using 
MATLAB version nine to determine the value of the 
phase shift at which meandering occurs. 

Comparing the results shown in Figure 5 and the 
above argument given by [10], it’s noted that; braiding  

occurs when 0.02
H

B
 , meander-braid transition falls in 

the region 0.02 0.04
H

B
  , meandering develops when 

0.04 0.08
H

B
  , straight to meander transition falls in 

the region 0.08 0.12
H

B
  , channels remain straight 

when 0.12
H

B
 . 

It’s therefore observed from Figure 5 that: 1) OA 
represents braiding; 2) AB represents transition from 
meandering to braiding; 3) BC represents meandering; 4) 
CD represents transition from straight to meandering and 
beyond D represents straight channel. Using Equation 
(37), values of r obtained from Figures 4(a) and (b), 
values of W

U
H  obtained from Figure 5 and using Fig- 

ure 1, it’s observed that the river is stable when 
1.56  , moderately stable when 1.55 1.56 

1.55
, mo- 

derately unstable when 1.53   , unstable when 
1.46 1.53   and highly unstable when 1.46  . It’s 
also noted that the river remains straight when 1.56  , 
transition from straight to meandering occurs when 
1.55 1.56  , meandering occurs when 1.53 1.55  , 
transition from meandering to braiding occurs when 
1.46 1.53   and braiding occurs when 1.46  . 
Therefore river changes from straight to meandering and 
then from meandering to braiding as the phase shift angle 
reduces. This is because of the fact that the resistance 
that the secondary current causes on the primary flow 
increases with decrease in phase shift angle and hence 
causing more deposition which leads to braiding. 

Therefore the dominant/predicted meander wavelength 
occurs when phase shift ranges between 1.53 to 1.55.  

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
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Figure 5. Phase shift against the aspect ratio 
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 
 
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H
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B
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Therefore the predicted phase shift ranges between 

1.53 to 1.55. This is in agreement with [16] findings who 
noted that the predicted phase shift should be greater than 
0.786. According to [20,21] such large phase shift indi- 
cates that the frictional torque is generally smaller than 
the torsional inertia and is also associated with strong 
tendency of the meanders to migrate downstream incase 
of weakly meandering channels. [22] argued that flows 
on strongly curved channels indicate small phase shifts 
and pronounced rates of meander growth as compared 
with migration velocities. 

5. Conclusion 

The phase shift between the secondary current and the 
channel axis displacement were calculated and used to 
distinguish between braiding, meandering and straight 
patterns of the river channel. It’s observed that river 
channel changes from straight to meandering and then 
from meandering to braiding as the phase shift angle re- 
duces. This is because of the fact that the resistance that 
the secondary current causes on the primary flow in- 
creases with decrease in phase shift angle and hence 
causing more deposition which leads to braiding. Insta- 
bility was observed to increase with decrease in phase 
shift angle. This is due to the fact that secondary currents 
are more directed on the river banks and hence causing 
more erosion on the concave bank and more deposition 
on the convex bank at small phase shift angle. Meander 
growth dominates downstream meander migration at small 
phase shift angle and vice versa. It was also noted that 
channel changes from straight to meandering and then 
from meandering to braiding takes place as the ratio of 
longitudinal surface velocity to bottom shear velocity 
reduces. This is due to the fact that the reduction in the 
ratio is caused by an increase in bottom shear velocity  
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which implies that there’s an increase in channel rough- 
ness. Increase in channel roughness causes an increase in 
resistance to the flow and hence causing more deposition 
to take place which leads to the formation of bars that 
result to braiding. According to this research meander is 
initiated in a river channel when secondary flow is gen- 
erated. Therefore any factor that triggers the formation of 
secondary currents will have a major contribution in in- 
terfering with the stability of a river channel. Some of 
these factors are: i) change in slope; ii) change in channel 
width; and iii) formation of ripples among others. It’s 
therefore noted that phase shift angle and the ratio of 
longitudinal surface velocity to bottom shear velocity 
play a major role in determining the stability and the pat- 
tern of a river channel. The theory developed has pro- 
vided a hydrodynamic explanation of meandering pro- 
cess. 
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Nomenclature 

b: Channel half-width 
F: Froude number 
f: Darch-Weisbach friction factor 
H: Average water depth 
HW: Depth-width ratio 
k: Wave number 
L: Meander wavelength 
n: Manning’s roughness coefficient 
Q: Discharge 

Qd: Dominant discharge 
Ql: Lateral discharge 
R: Hydraulic radius 
u : Depth-averaged longitudinal velocity 

*

α: Von Karman constant 
u : Shear velocity at the bottom 

 : Positive dimensionless constant 

G

x: Coordinate distance along the unperturbed channel 
axis 

V : Local displacement of Control volume of length ds. 
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