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ABSTRACT 

The research is focused on the development of automatic detection method of abnormal features, that occur in recorded 
time series of ionosphere critical frequency fOF2 during periods of high solar or seismic activity. The method is based 
on joint application of wavelet-transformation and neural networks. On the basis of wavelet transformation algorithms 
for the detection of features and estimation of their parameters were developed. Detection and analysis of characteristic 
components of time series are performed on the basis of joint application of wavelet transformation and neural networks. 
Method's approbation is performed on fOF2 data obtained at the observatory “Paratunka” (Paratunka settlement, 
Kamchatskiy Kray). 
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1. Introduction 
The subject of the investigationsis recorded time series 
of ionospheric parameters, which include components 
with different internal structure and determined by den-
sity of atmosphere, its chemical compound and the spec-
tral characteristics of solar radiation [1,2]. Ionosphere 
research is carried out by distant methods, one of which 
is vertical radio probing. Frequency of carrier radio im-
pulse for which the given area of ionosphere becomes 
transparent, is called critical (fOF2) and it characterises 
electron concentration. 

Against the regular changes caused by a daily and 
seasonal course, abnormal features with duration from 
some tens minutes till several hours [2-13] are observed 
in the fOF2 data. These anomalies have various structure 
and arise against powerful ionospheric disturbances 
which are caused by solar activity, in seismoactive areas 
they can arise during the seismic activity increase 
periods [2-13]. Complex structure of the ionospheric data 
makes traditional methods of the time series analysis 
inefficient for their analysis and abnormalities detection, 
because these methods are based on the procedure of 

smoothing and lead the important information loss [2,5]. 
Main tools for abnormalities detection are based on the 
analysis of the average and median values that does not 
allow to find out internal dependences in the data and 
single abnormal features.  

In connection with the wide variety of basis functions 
with compact carriers, wavelet-transformation is an 
effective tool for complex time series analysis [3,4,14- 
19]. Using the discrete wavelet-transformation construc- 
tion, the algorithm allowing to allocate abnormal features 
and to define their parametres in fOF2 data in an 
automatic mode is offered in this paper. 

For characteristic components of fOF2 time series 
detection and analysis this paper proposes the method 
based on joint application of wavelet-transformation with 
neural networks. Neural networks have well proved in 
complex nonlinear dependences reproduction [6,21-23]. 
The efficiency of this mathematical tool application for 
ionospheric data processing and analysis is demonstrated 
in [6,11,12,22,23]. These authors offer ways of fOF2 data 
analysis and prognosis on the basis of neural networks 
and show that in many respects their work result is 
defined by properties of training set. Experimental search 
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of suitable training set and neural network architecture is 
carried out in [22,23]. If modelled data are complex and 
noisy it is necessary to perform their preprocessing and 
to solve problems of uninformative and redundant data 
[5,6,13]. In [6,13] offered ways of joint application of 
wavelet-transformation and neural networks for uninfor- 
mative data removal, developed algorithms of training 
set formation on the basis of a wavelet-filtration, and 
showed that the given approach allows to optimise 
process of network training and to increase length of data 
anticipation interval. This paper, where the method of 
fOF2 characteristic components detection and prognosis 
on the basis of wavelet-packages construction and neural 
networks joint application is developed, is continuation 
of these investigations. 

In process of proposed method approbation, abnormal 
features in fOF2 data, arising during the periods of 
increased solar activity or caused by processes in 
lithosphere (seismic events of a power class with k>12 
analysis) were detected. 

2. Method description 
Detection of abnormal features and their parametres 
definition on the basis of discrete wavelet-transforma- 
tion. Formally complex time series can be presented as 
sum of different-scale components with various internal 
structure [5] ∑=

j
j tftf )()( , where j  is scale. 

As the jf  components structure is subject to change 
in random time moments, the most effective way for 
their description is application of approximation methods, 
based on decomposition of function on basis. Considering 
analyzed features local character, their different-scale 
and forms variety, the most suitable space for their 
representation is wavelet-space [5,13,14]. 

On the basis of discrete wavelet-transformation for jf  
components the following representation in the form of 
the wavelet-scheme is obtained [14, 23]:  

∑ Ψ=
n

njnjj tctf ),()( ,,          (1) 

where { } 2),(, Ζ∈
Ψ

njnj  is orthonormalized basis of the 

)(2 RL  Lebega space , ( )ntjj
nj −Ψ=Ψ 22 2/

, , 

)(2 RLf j ∈ . { }
Ζ∈

=
nnjj cc ,  coefficients are result of 

mapping of  f  into the space with resolution  j , 

njnj fc ,, ,Ψ= . 

Without breaking general coherence, we will consider 
that an initial discrete time series belong to space with 
scale 0=j . The importance of representation f  as 
Equation (1) is defined by sorting and storing of 

different-scale components of complex time series in 
various spaces jW  with resolution j : 

j
J

jj WW −
−== ⊕= 10 , { }

Znnj ∈
Ψ ,  is basis of jW  space. 

For the purpose of possibility to construct adaptive 
approximating wavelet-schemes, we will use nonlinear 
mappings [5, 14]: 

)()( ,
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Inj
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M

Ψ= ∑
∈
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where Mf  is projection of f  onto M  vectors 
which indexes are contained in some set MI . In this 
case f  function approximation is carried out by M 
vectors depending on its structure. 

The error of approximation (2) is the sum of the 

remained coefficients [ ] 2

),(
,

2 ∑
∉

=−=
MInj

njM cffMε . 

Assuming that  )()( ,
),(

, tcte nj
Inj

nj
M

Ψ= ∑
∉

 component is 

a consequence of the noise factor influence, we receive 
representation of random time series in wavelet-space: 

( )
∑
∈

+Ψ=
MInj

njnj tetctf
,

,, )()()( . 

As a time series includes characteristic components and 
abnormal features, we will present it as follows: 

 e(t)(t))(

)()()()(
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are set of approximating coefficients, describing 
characteristic  features of data, { }

DInjnjd
∈),(, is set of 

the detailing coefficients describing abnormal features, 
MDA III =∪ . 

In [14,24] demonstrated that absence of amplitude 
coefficients decrease when 0→j , characterises 
presence of local features in )(tf  and operation of their 
detection can be realized on the basis of requirement 
check Td nj ≥, , when 0→j , where T  is some 

threshold value. Meantime, the least analyzed scale is 
limited by step of discrete time series sampling. 

If wavelet Ψ  has compact carrier equal to [ ]CC,− , 
then assemblage of ( )nj,  point pairs, such that some 
pointν  is contained in nj,Ψ  carrier, defines influence 
cone of point ν  in scale-spatial plane [14]. As the 
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carrier nj,Ψ  on the scale j  is equal to 

[ ]jj CnCn −− +− 2*,2* , 
then influence cone of point ν  on the scale j  is 
defined by inequality: 

JjCvn j −−−=∗≤− − ,...,2,1,2 . 
Let's consider that function f  in the neighbourhood 

of some point v  has abnormal feature of scale j , if in 
the neighbourhood of the point v  with the sizes defined 
by an influence cone, the condition is satisfied: 

jnj Td ≥, ,              (4) 

where jT  is threshold value on scale j , time duration 
of abnormality is defined by the influence cone of point 
ν . 
Operation of scale j  abnormal features detection can 

be realized on the basis of threshold functions 
application 

.
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The sets of detailing components  { }( ) DInjnjd
∈,,  

allocated in such a way define the component  )(2 tf  of 
model Equation (3). 

Intensity of abnormality on scale j  in point v  

neighborhood we will define as nj
n

f dE
j ,max
,
=

ν
, where 

:n jCvn −∗≤− 2 . 
Changes of intensity in time can be analyzed on the 

basis of value 

)(tfE ∑=
j

njс , .             (5) 

The construction of wavelet-packages [14, 24] assumes 
recursive splitting of space jW : i

i

p
j

I
ij WW 1=⊕= . Space 
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Integration of corresponding basises of wavelet-packages 
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i
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1,
2/ 22  defines orthonormalized 

basis jW , that allows to restore function completely. 
Detection and analysis of characteristic components 

of time series on the basis of wavelet-packages and 
neural networks joint application. 

The Neural network creates mapping ': ffy → . 
The set of weight coefficients of neuron input 

connections represents a column-vector [21]  

[ ]TNuuU ,...,1= , 
where N  is length of network input vector. 
If 'f̂  is a real network output, and 'f  is a desired 

one, then ( )fyf ='  is an unknown function, and а 

( )UfGf ,ˆ ' =  is its approximation which is reproduced 
by neural network. Procedure of network training is 
reduced to minimisation of approximation mean-square 
error on parameter U .  

Giving to the input of the trained neural network values 
of function f   from an interval [ ]lTl ,1+− , network 
becomes capable to compute anticipated function values 
on time interval [ ]α++ ll ,1 , where l  is a current 
discrete moment of time; α  is length of anticipation 
interval. The decision error is defined as difference 
between desired 'f  and real 'f̂  output values during 
the discrete time moment l .  

The error vector is the vector where i  element is 
)()(ˆ)( '' lflfl iii −=ε ,                (6) 

where l  is a current time moment, i  is a current 
position on anticipation interval. 

Algorithm of training and control sets formation:  
1. An initial data array ( ){ }K

kkf 1= , where K  is a 
sampling length, is divided on L  blocks  
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2. On the basis of wavelet-packages construction, for 
each block s  we have representation f  in the form of 
a linear combination different-scale components: 
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3. Every detected component defines a subspace of time 
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Thus, for each unit s  separation of data features in 
space is received Figure 1. Using the following sets of 
detected features 
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control sets for neural networks.  
 

 
Figure 1. The scheme of data separation in wavelet-images 
space. 

 
Algorithm of “the best" network construction: 
Step 1: Carry out wavelet-restoration of a component 

s
pjf

11,  for each data unit s  and form training set on the 
basis of combinations of the restored data  from various 
units. Construct network 1 of variable structure [21] 
(variable structure network is a multilayer feed forward 
network, which architecture is defined by minimisation 
of decision error on training vectors set), train and test it. 

Step 2: Carry out wavelet-restoration of components 
s

pj II
f ,  for each data unit s  and form training set on the 

basis of combinations of the restored data from various 
units. Construct a network 2 of variable structure, train 
and test it. 

Etc. 
Step r: Carry out wavelet-restoration of components 

s
pj

s
pj

s
pj IIII

fff ,,, ,...,,
21

 for each data unit s  and form 
training set on the basis of combinations of the restored 
data from various units. Construct network r of variable 
structure, train and test it. 

On the basis of the analysis of results of received neural 
networks operation the “best” network is defined: "the 
best" is considered to be the  network having the least 
decision error on test set 

( )∑∑
Μ

= =
Μ Μ

=
1 1

2
min, )1(min

l

f

i
i lE ε

α
,        (7) 

where α  is a neural network number, 
____
,1 r=α , Μ  

is a length of analyzed network output vector, f  is a 
length of an anticipation interval. 

The training data set is a set of observations containing 
features of studied process. On the basis of wavelet- 
packages construction, we have data features separation 
in space. During training and designing each network 

learns a subset of input data features and approximates 
them. "The best" network is the network having the least 
decision error on test set. Therefore data subset used at 
training of the "best" network will contain the most 
typical features of studied process. In wavelet-space this 
subset is represented by set of coefficients  
{ }

AInjnja
∈),(,  , defining component )(1 tf  of time series 

model Equation (3). 
If there is an abnormal feature in the data, then a change 

of their structure occurs. Therefore operation of 
abnormal features detection on the basis of a neural 
network can be constructed by processing and analysis of 
decision errors iε : if 

( ) Ρ≥= ∑∑
= =

Z

l

f

i
iZ l

Z
E

1 1

21 ε ,           (8) 

where Z  is an observation frame length, Ρ  is a 
beforehand specified threshold value, then within an 
analyzed time frame we have abnormality. 

3. Results of experiments 
In experiments fOF2 data were used, received by 
automatic ionospheric station located in Paratunka 
settlement, Kamchatka peninsula. Data recording occurs 
once an hour. For experiments results of fOF2 
measurements dated  1979 - 2011 were taken. In the 
process of analysis, data of the Earth magnetic field 
(H-component) were used to define  magnetospheric 
disturbances degree, characterising Solar activity. As 
basic functions the class of Daubechies orthogonal 
wavelets: db2, db3, db4 was used. 

Following the results obtained in [3], for detection of 
abnormalities on the basis of operation Equation  (4) 
were used the threshold values defined in the process of 
algorithm operation by formula: 

( ) jnj
Vnn

j StdmedT *,
,1,

_____
θ+=

=

, where 

( )∑
=

−
−

=
V

n
njnjj dd

V
St

1

2
,,1

1 , njd ,  is the average 

value defined within the analyzed sliding time frame of 
length V , 168=V  readouts, med  is a median 
defined within the analyzed sliding time frame of length 
V . The coefficient  =θ  3 has been defined statistically. 
The detected time-and-frequency intervals containing 
abnormal features, are shown on Figure 2-5 (b) by 
shades of grey colour. Ionospheric disturbances intensity 
changes in time were analyzed on the basis of value 
Equation (5), Figure 2-5 (c). 

On the basis of described above algorithms training and 
control sets for neural networks have been generated and 
"the best" network consisting of  three layers that 
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allows to perform  forecast of the fOF2 data with 
anticipation step equal to 3 hours has been constructed. 
Detected on the basis of "the best" network characteristic 
component of fOF2 time series looks like follows: 

i
i

i
i

i

i
ii

p
j

p
j

kj

p
jkj Watf ∈ΨΨ=∑ ,)(

,
,1 , 1,3 == ii pj , 

Ζ∈k . 
The analysis of neural networks decision errors 

(Equations (6), (7)) has shown that Daubechies basis 
function of an order 3 provides the least fOF2 data 
approximation error for the analyzed time periods. The 
analysis Figure 2-5 (а) shows that during the periods of 
increasing seismic activity, neural network error increase, 
characterising presence of abnormal features in the data 
is observed. The abnormalities detected on the basis of 
discrete wavelet-transformation (Equation (4), Figure 
2-5 (b)) also prove this result. The detailed analysis of 
abnormalities shows that they are non-uniformly 
distributed both in time and on scales and characterised 
by various intensity (value )(tfE , Figure 2-5 (c)). 
Comparison of the received results with the Earth 
magnetic field data Figure 2-5 (d) shows that analyzed 
litospheric processes in most cases are observed against 
increased solar activity. 
 
 (a) 

(b) 

(c) 

(d) 
 

Figure 2. Results of fOF2 data processing 1969: (a) a vector 
of a neural network error; (b) the time-and- frequency 
intervals containing abnormal features; (c) intensity of 
abnormalities; (d) H-component of the Earth magnetic field. 
Arrows note the moments of earthquakes occurrence. 

 
 

(a) 

(b) 

(c) 

(d) 

 
Figure 3. Results of fOF2 data processing 1983: (a) a vector 
of a neural network error; (b) the time-and-frequency 
intervals containing abnormal features; (c) intensity of 
abnormalities; (d) H-component of the Earth magnetic field. 
Arrows note the moments of earthquakes occurrence. 

 
(a) 

(b) 

(c) 

(d) 

 
Figure 4. Results of fOF2 data processing 1984: (a) a vector 
of a neural network error; (b) the time-and-frequency 
intervals containing abnormal features; (c) intensity of 
abnormalities; (d) H-component of the Earth magnetic field. 
Arrows note the moments of earthquakes occurrence. 
 
 (a) 

(b) 

(c) 

(d) 
 

Figure 5. Results of fOF2 data processing 1992: (a) a vector 
of a neural network error; (b) the time-and-frequency 
intervals containing abnormal features; (c) intensity of 
abnormalities; (d) H-component of the Earth magnetic field. 
Arrows note the moments of earthquakes occurrence. 

4. Conclusions 
On an example of the fOF2 data for studying of time 
features of ionosphere parametres and detection of 
abnormalities arising during the periods of increased 
solar or seismic activity, the method based on combination 
of wavelet-transformation and neural networks is offered. 
Automatic algorithms of detection and analysis of 
characteristic components of fOF2 series are developed. 

Method approbation on the data received by automatic 
ionospheric station Paratunka settlement Kamchatka 
peninsula, has proved its efficiency and has allowed to 
detect the abnormal features arising during the periods of 
solar activity increasing and on the eve of catastrophic 
earthquakes on Kamchatka. The detected characteristic 
components of fOF2 series have allowed to analyse 
ionospheric parametres variations during the summer 
period of time and their essential change during the 
periods of seismic and solar activity increasing. The 
detailed analysis of the allocated abnormal features has 
shown that during the periods of seismic or solar activity 
increasing in variations of fOF2 series local different- 
scale periodicities having non-uniform distribution both 
on time and on scales arise. 
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