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ABSTRACT 
This paper proposes how to learn and generate multiple action sequences of a humanoid robot. At first, all the basic 
action sequences, also called primitive behaviors, are learned by a recurrent neural network with parametric bias 
(RNNPB) and the value of the internal nodes which are parametric bias (PB) determining the output with different pri-
mitive behaviors are obtained. The training of the RNN uses back propagation through time (BPTT) method. After that, 
to generate the learned behaviors, or a more complex behavior which is the combination of the primitive behaviors, a 
reinforcement learning algorithm: Q-learning (QL) is adopt to determine which PB value is adaptive for the generation. 
Finally, using a real humanoid robot, the proposed method was confirmed its effectiveness by the results of experiment.  
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1. Introduction 
To recognize, learn, and generate adaptive behaviors for 
an intelligent social robot is a charming theme and it has 
been attracting researchers more than a decade. From the 
view that dynamic complex behaviors of the robot are 
composed by the spatiotemporal changed actions which 
are so-called “primitive behaviors”, or “element actions”, 
gesture recognition has been approached by lots of me-
thods such as 3D models [1], self-organizing map (SOM) 
[2,3], hidden Markov model (HMM) [4-7], dynamic 
Baysian network (DBN) [8], recurrent neural network 
(RNN) [9-11], and dynamic programming (DP) [12].  

Tani with his colleagues proposed a RNN with para-
metric bias (RNNPB) which realize not only recognition 
of multiple behaviors but also learning and generation of 
them, based the finding of mirror neuron system in the 
brain [13,14]. The input of RNNPB includes sensory 
(visual or auditory) information and teacher’s motor in-
formation during the learning period, and the imitative 
behaviors are output (generated) by the network accord-
ing to the observation of robot in the period of genera-
tion. 

In this paper, we propose to combine RNNPB and 
reinforcement learning (RL) [15] to realize (i) the mul-

tiple behaviors automatic generation or (ii) by the in-
struction of a human instructor. In another word, the 
adaptive PB values are determined as the result of RL in 
the generation process. Various patterns of primitive 
behaviors are learned by back-propagation through time 
(BPTT) [16] [17], and PB vectors are obtained as the 
result. Considering the PB vectors as finite states of a 
Markov decision process (MDP), a complex behavior 
can be learned as an optimal state transition process of 
these primitive behavior patterns using the RL algorithm 
such as Q-Learning. Using a humanoid robot “PALRO” 
(Fujisoft Inc., 2010), experiments results confirmed the 
effectiveness of the proposed method.   

2. Proposed System 

Multiple behavior instruction learning and complex 
behavior learning system for a robot is proposed here. It 
works as following process: (i) Time series data of 
angles of robot’s joints for primitive behaviors are given 
by a user (instructor) of the robot and they are recorded 
as teacher signals; (ii) Train a recurrent neural network 
with parameter bias (RNNPB) [9-11] with error back- 
propagation method [16,17], which output are time series 
angles of joints when arbitrary initial angles are set as 
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input of the network, to meet the different patterns of 
primitive behaviors; (iii) Explore the temporal order of 
different parameter bias (PB) vectors, which yields 
different primitive behaviors, by the reinforcement 
learning (RL) algorithm [15]. The details of the proposed 
method are given in this section. 

2.1. RNNPB 
The recurrent neural network with parametric biases 
(RNNPB) [9-11] is a Jordan-type recurrent feed forward 
neural network [18] with three kinds of internal layers: 
hidden layer, context layer and parametric bias (PB) 
layer (Figure 1). Nodes in Hidden layer and Context 
layer have their internal states with sigmoid function: 

 zz α−+
=

e
f

1
1)( .                  (1) 

where α, a positive constant, is the gradient of the 
function, and z is the input vector for the node.  

Specially, the input vector zh for the Hidden layer 
nodes: 

ccpbpbiih vuvuvuz ++= .            (2) 

where ui = x(t), upb, uc and vi, vpb, vc are the output and 
the connection weight of Input layer, PB layer and lower 
Context layer respectively.  

The input vectors zo and zc for Output layer and Con-
text layer are given by:  

ohot wuz)x( ==+1 ,             (3) 
chc wuz = .                   (4) 
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Figure 1. The structure of RNNPB. Internal layers are ex- 
pressed in gray color and connections with synaptic weights 
between layers are depicted with broken arrow lines. Context 
layers are same one but with temporal varied values of its 
internal state, input and output. 
where uh = f (zh) is the output of Hidden layer given by 
Equation (1), and wo, wc are the connection weights be-

tween the Hidden layer and the Output layer, the Context 
layers, respectively.   

For the nodes of PB layer, its internal state upb changes 
with the delta errors bp

tδ during a period (a time series 
window) l, when the network is trained by the error 
back-propagation (BP) method [16,17]:   
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where 2121 ,,, kkηη are learning coefficient, learning rate, 
and internal coefficient of PB nodes. 

The modification of connection weights is executed by 
the back-propagation through time (BPTT) [16,17], that 
is, errors between the output of the network and the 
teacher data are used to adjust the weights of connections. 
Detail formula is omitted here. 

2.2. Q-Learning algorithm 
Reinforcement learning (RL) is a kind of active learning 
method which makes a learner finds its optimal action 
policy by an iterative process of exploration and exploit- 
tation [15]. For a process of finite state transition, usually 
a Markov decision process (MDP), that is, the transition 
is and is only decided by the transition probability of the 
last state, RL intends to find the optimal transition prob- 
abilities by adopting value functions of states and state- 
action pairs. The state-action value function, usually 
called Q function, serves as an index variable in a sto- 
chastic function of action selection policy. In this study, 
we use a traditional RL named Q-learning (QL) [15] and 
its learning algorithm is as follows.  

QL algorithm: 
Step 1 Initialize Q(s,a)=0.0, where s,a are available finite 

state space, and action space of the robot re- 
spectively. 

Step 2 Observe the state s of the environment around 
the learner. 

Step 3 Select an action a to change the state according 
to a stochastic function. For example, select an 
action which has the highest value of ),( asQ  
function dealing with the current state, with a 
big probability and select other candidate actions 
with a small valueε . (Notice that if the num- 
ber of actions is A, then the selection probabil- 
ity of the highest Q value is A/1 εε +− , and 
the selection probability of any other action is 

10,/ ≤≤ εε A . 
Step 4 Receive reward/punishment R from the environ- 

ment/instructor. 
Step 5 Renew ),( asQ  as following:   
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)]Q(-)maxQ(QQ s,aa,sRasas ′′++← γλ[),(),( .  (6) 
where 1,0 ≤≤ γλ are learning rate and discount rate 
respectively. 

Step 6 Repeat Step 2 to Step 5 until the value of ),( asQ  
converged. 

The state space in our system is defined as different 
PB vectors, and the action space of QL is also these PB 
vectors fixed after the BP learning process. So the optimal 
state transition process approvals correct combination of 
primitive behaviors to be a complex behavior of robot, or 
the correct execution of the primitive behavior.  

3. Experiments 
The proposed method was applied to a complex behavior 
learning and generation of a humanoid robot named 
“PALRO” (Fujisoft, Inc., 2010) as shown in Figure 2. 

There are 20 joints (actuators) in PALRO (arms, legs, 
neck, and body) and the control of these angles of joints 
in time series composes various actions of the robot. 
Two kinds of experiments were designed:  

Experiment I: a time series angles of joints yield a 
primitive behavior, such as raising a hand, or turning to 
left/right, and several primitive behaviors yield a complex 

 

 
Figure 2. A robot used in the experiment: PALRO, product 
of Fujisoft, Inc., 2010. 

      

  (a) Pattern 1                     (b) Pattern 2 

     

(c) Pattern 3                     (d) Pattern 4 

Figure 3. Primitive behaviors of the robot in experiment I. 
behavior of the robot such as a “dance” behavior; 

Experiment II: 3 kinds of voice instructions corres-
ponding to 3 kinds of behaviors of robot were learned 
and recognized.  

Details of the experiments and results were described 
in this section. 

3.1. Experiment I: Complex Behavior Learning 
and Generation 

3.1.1 Primitive Behavior Learning / Generation 

We designed 4 kinds of patterns of primitive behaviors 
of the robot as shown in Figure 3: (a) Turn to left and 
shake the hands; (b) Turn to right and shake the hands; 
(c) Turn to right and shake the hands; (d) Raise the left 
hand and stop in a special pose. Angle vector with 20 
dimensions served the input of RNNPB, that is, the 
number of nodes in Input layer and Output layer was 20 
respectively. Teach signals of the primitive behaviors 
were recorded by the storage function of the robot, that is, 
the time series values of angles of the movements (pri-
mitive behaviors) obtained by the drive of an instructor. 
Parameters of RNNPB and its learning process used in 
the experiment are listed in Table 1. 

Training results of RNNPB for the 4 primitive beha-
viors are shown in Figure 4, where (a) shows the learn-
ing curve (Iteration time vs. RMSE); (b) PB values of the 
4 patterns of behaviors; (c)-(f) time series values of 20 
angles of behaviors (generation with 30% teacher signals). 
The time interval “step” was set with 0.1 second/step in 
(c)-(f). 
 

Table 1. Parameters used in RNNPB in Experiment I. 

Description Symbol Value 

The number of nodes in Input layer N 20 

The number of nodes in Output layer N 20 

The number of nodes in Hidden layer H 30 

The number of nodes in PB layer P 2 

The number of nodes in Context layer M 30 

Learning rate of BP for connections β 0.02 

Learning coefficient of PB nodes 1η  0.9 

Learning rate of PB nodes 2η  0.9 

Length of time series (width of time window) l 20 

Internal coefficients f PB nodes  k1, k2 0.9, 0.9 

Gradient of sigmoid function  α  2.0 

Gradient of sigmoid function for PB pbα  5.0 
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In fact, if the teacher signals were not added during the 
generation process, that is, the input signal was given by 
following equation: 

)1()1()1()( −+−−= trtrt dxxx        (7) 

where x(t-1) is the output of the network on time t-1, 
xd(t-1) is the teacher data and r is the ratio of the teacher 
signal.  

When r = 0.0, the output of the network was easily to 
fall in a static state and this problem needs to be im-
proved in the future study. 

3.1.2. Complex Behavior Learning / Generation 
Using the Q-Learning algorithm (QL) described in last 
section, we decided the required orders of the primitive 
patterns to compose the complex behavior: a “dance” of 
robot. 

The QL was defined with 4 states, that is, 4 values of 
PB nodes and 4 actions as same as these PB values. The 
training results gave the order of PB values used in the 
generation process of robot as follows: 

“Pattern 3 - Pattern 1 – Pattern 2 – Pattern 3 – Pattern 
4”. 

The reward to reinforce the adaptive transition was  
 

 
(a) Learning curve of RNNPB 

 Pattern 1   ＋ 
Pattern 2   × 
Pattern 3   ＊ 
Pattern 4   □ 

 
(b) PB values of 4 patterns 

 
(c) Angles for Pattern 1 

 
(d) Angles for Pattern 2 

 
(e) Angles for Pattern 3 

 
(f) Angles for Pattern 4 

Figure 4. Leaning results of primitive behaviors. 
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input by the voice of instructor. “Good” said by the in-
structor indicated the value of reward R = 0.1, and “Bad” 
meant R = -0.1. Parameters used in the QL are listed in 
Table 2. The learning curve (Iteration times vs. Success 
rate; 10 experiments averages) and final time series val-
ues of angles of the complex behavior “dance” are shown 
in Figure 5. The success rate of the dance composed by 
the fixed order of primitive behaviors reached to 100.0% 
after 12 trials of QL. 

The complex behavior generation movie is shown on 
the WWW site: 

http://www.nn.csse.yamaguchi-u.ac.jp/images/researc
h/Palro11Hashiguchi.wmv   
 

Table 2. Parameters used in Q-Learning. 

Description Symbol Value 

Learning rate of Q λ  0.1 

Discount rate γ  0.9 

Reward (positive / negative) R  0.1/ -0.1 

Rate of random action ε  0.1 

 

 
(a) Learning curve of QL 

 
(b) Time series values of 20-joint angles to realize the “dance” as a 

composition of 4 primitive behaviors. 

Figure 5. Leaning results of a complex behavior “dance”. 

3.2. Experiment II: Behavior Instruction 
Learning and Recognition 

Voice instruction can be captured and recognized by the 
recorder and microphone of PALRO. However, special 
behaviors need to be learned by the instructor and the 
learning system RNNPB, and the relationship between 
PB values and the voice instructions is able to be decided 
by QL algorithm as same as the situation of order decision 
of primitive behaviors for complex behavior learning and 
generation. In this experiment, we designed 3 kinds of 
behaviors for PALRO which static picture are shown in 
Figure 6: (a) Shake a hand; (b) Raise 2 hands; (3) A 
handclap. Because the behaviors were limited in several 
joints, 8 input / output nodes were designed in RNNPB, 
and other parameters used in the experiment II are listed 
in Table 3. Parameters used in QL were as same as in the 
Experiment I (Table 2). Figure 7 shows the scene of 
teaching process where angles of 8 joints were changed 
by the instructor and they were recorded as a time series 
data as a teach signal of a behavior. The voice instruction 
learning and recognition results also achieved 100.0% of 
successful rate, and the details are omitted here for the 
limit of space. 

        
(a) Raise a hand        (b) Raise 2 hands      (c) A handclap 

Figure 6. Leaning results of a complex behavior “dance”. 
 

Table 3. Parameters used in RNNPB in Experiment II. 

Description Symbol Value 

The number of nodes in Input layer N 8 

The number of nodes in Output layer N 8 

The number of nodes in Hidden layer H 20 

The number of nodes in PB layer P 2 

The number of nodes in Context layer M 30 

Learning rate of BP for connections β 0.01 

Learning coefficient of PB nodes 1η  0.1 

Learning rate of PB nodes 2η  0.9 
Length of time series 
(width of time window) l 20 

Internal coefficients f PB nodes  k1, k2 0.8, 0.5 

Gradient of sigmoid function  α  2.0 

Gradient of sigmoid function for PB pbα  5.0 
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Figure 7. Leaning results of a complex behavior “dance”. 

4. Conclusion 
The combination of a recurrent neural network with bias 
parameters (RNNPB) and reinforcement learning algorithm 
was proposed to realize the complex behavior learning 
and generation of robot. All angles of joints of robot 
were considered as the input and output of RNNPB and 
their time series data formed kinds of patterns of primitive 
behaviors of robot at first, then the complex behavior of 
robot were composed by the time series of different 
primitive behaviors. The learning rule of RNNPB used 
error back propagation through time (BPTT) method, 
and to generate a series of primitive behaviors in correct 
order, Q-learning (QL) was adopt in the training process. 
Using a humanoid robot “PALRO”, the proposed method 
was confirmed its effectiveness by the results of two kinds 
of experiments. The generation of primitive behaviors 
showed a satisfied representation of required movement 
when a certain of teach signal was added during the 
generation process and a 100.0% of success rate of a 
complex behavior “dance” was acquired after the training 
with the QL algorithm. Voice instruction learning and 
recognition also reached to 100.0% success rate in the 
experiment.  
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