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ABSTRACT 
We demonstrate rough set based attribute reduction is a sub-problem of propositional satisfiability problem. Since satis-
fiability problem is classical and sophisticated, it is a smart idea to find solutions of attribute reduction by methods of 
satisfiability. By extension rule, a method of satisfiability, the distribution of solutions with different numbers of 
attributes is obtained without finding all attribute reduction. The relation between attribute reduction and missing is also 
analyzed from computational cost and amount of solutions. 
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1. Introduction  
The size of dataset has been increasing dramatically, so it 
has been an important issue to reduce huge objects and 
large dimensionality. Attribute reduction finds a subset 
of attributes to reduce dimensionality. Reducing 
attributes can save cost of computational time and mem-
ory. It is also useful to improve classification accuracy as 
a result of removing redundant and irrelevant features 
[1,2].  

A hypothesis done in classical attribute reduction 
theory is that all available objects are completely de-
scribed by available attributes. This hypothesis contrasts 
with the empirical situation where the information con-
cerning attributes is only partial.  

Several methods have been used for handling missing 
values. One is complete case analysis ignoring the sam-
ples with missing values [3]. This method can only be 
used when the proportion of missing values is not large; 
moreover, much effective information is directly dis-
carded. The second approach, called imputation method, 
imputes the values of missing data by statistical methods 
or machine learning methods [4,5]. This kind of ap-
proach leads to additional bias in multivariate analysis 
[6]. Third method assumes a model for the covariates 
with missing values [7]. A disadvantage of this kind me-
thod assumes implicitly that data are missed at random.  

For attribute reduction, the above concepts are not 
suitable. They all make assumption, so complete analysis 
of missing value is reduced. In addition, it is hard or even 

impossible to check the correctness of assumption in 
practice. In contrast, rough set can hold complete analy-
sis, since it considers missing value as “everything is 
possible” [8, 9]. Rough set is proposed by Pawlak [10] as 
a mathematical theory of set approximation, which is 
now widely used in information system. In order to find 
the solution of incomplete system by rough set, tolerance 
relation is defined through relaxing the equivalence rela-
tion [8,11]. It is a NP-hard problem to find an optimal 
solution. Heuristic approaches have been proposed, keep-
ing the positive region of target decision unchanged [12] 
or employing conditional entropy to obtain a solution 
[13]. Each method aims at some basic requirement ac-
cording to their mechanisms of reduction, so no one can 
give a fair evaluation among these methods.  

In this paper, we find that rough set based attribute 
reduction with missing value is a sub-problem of propo-
sitional satisfiability problem (SAT). SAT is one of the 
most classical problems because of its significance in 
both theoretical research and practical application, so it is 
smart to find solutions of attribute reduction with miss-
ing value by method of SAT. Exclusion rule [14,15] 
checks the satisfiability by inverse of resolution. It can 
obtain all satisfiable solutions without trying every com-
bination of attributes. So it provides a possible way to 
find all possible reductions. According to the result of 
exclusion rule, the distribution of solution with different 
amount of attributes shows that the total number of solu-
tions is decided by the size of minimal reduction. The 
total number decreases with addition of missing before 
threshold. In general, threshold is smaller than 50%. The 
relationship between computational cost and missing is *Corresponding author. 
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also illustrated.  
The rest of paper is organized as follows. The basic 

knowledge about attribution reduction using rough set is 
given in Section 2. Its relationship with SAT is intro-
duced in Section 3. Experimental results are shown in 
section 4. Finally, the conclusion is drawn in Section 5. 

2. Background  
In this section, the basic notions [11] related to incom-
plete information systems and rough set are presented.  

Definition 2.1: Let ( , )IS U A= be an information system, 
where 
U - a nonempty, finite set called universe and  
A - a nonempty, finite set of attributes i.e. 

: aa U V→  for a A∈  
where aV  is called the value set of a . 

Definition 2.2: In an incomplete information sys-
tem ( , )IS U A= , an n n× matrix ( ijc ) called discernible 
matrix of IS  is defined as 

 
{ : ( ) ( ) ( ) ,

( ) , , } , 1, ,
ij i j i

j i j

c a A a x a x and a x null
and a x null x x U for i j n

= ∈ ≠ ≠

≠ ∈ = 
. (1) 

The discernible matrix is denoted as ( )M IS . It is 
straightforward to find ( )M IS is symmetric and iic = ∅ .  

Definition 2.3: A discernible function ISf for an in-
formation system ( , )IS U A= is a Boolean function of 
m variables 1, , ma a , which is defined as 
 { }1( , , ) ( ) :1 , ( )IS m ij ijf a a c j i n c= ∧ ∨ ≤ < ≤ ∨ ≠ ∅ , (2) 
where ia denotes an attributes in A and ( )ijc∨ is the dis-
junction of the variable a′ such that ija c′∈ .  

Definition 2.4: For any subset of attributes B A⊆ , a 
relation ( )IND B called B-indiscernible relation is defined 
as follows: 

 1( ) {{ , , , }: ( ) ( ) ( )
( ) , , , , 1 }

l i

i i

IND B x y y a x a y or a x null
ora y null a B x y U i l

= = =
= ∀ ∈ ∈ ≤ ≤


. (3) 

Definition 2.5: ( )BPOS a∗ representing B-positive region 
of a ∗ is defined as  
 ( )BPOS a BX∗ =   (4) 
where, for each ( )BX IND B∈ , ({ })Z IND a BX Z∃ ∈ ∗ ⊆ . 

3. Quantization of attribute reduction  
In this work, we just show the concepts between attribute 
reduction and SAT. The details of the demonstrations 
can be found in our future work.   

Definition 3.1: For an information system ( , )IS U A= , 
a ( 1)n n× + matrix ( ijC∗ ) called a ∗ -discernible-checked 
matrix is defined in two steps: 

i. 
{ }

{ }

{ : ( ) ( ) ( )

( ) } ( ) ( ) , 1, ,

( ) ( )

i j i

ij j i j

i j

a A a a x a x and a x null
C and a x null if a x a x for i j n

A a if a x a x

∗

 ∈ − ∗ ≠ ≠
= ≠ ∗ ≠ ∗ =


− ∗ ∗ = ∗

 (5) 

{ }
{ }( 1)

1, , ,
1, ,ij

i n

if j n c
C for i n

A a otherwise

∗
∗

+

∅ ∃ ∈ =∅= =
− ∗


 ;  (6) 

ii. 
{ } ( 1) ( 1) , , 1, ,ij i n j nC A a if c c for i j n∗ ∗ ∗

+ += − ∗ = = ∅ =  . (7) 
a ∗ -discernible-checked matrix is denoted as ( )M IS∗ , 
and 1n + column is called state checking. In step ii., the 

ijc∗ of two samples neither in { }A a− ∗ -Positive Region is 
reduced, making sure that every attribute in minimal re-
duction is necessary. a ∗ -discernible-checking function is 

{ }1 1( , , ) ( ) :1 1,IS m ij ijf a a c i j n c∗ ∗ ∗
− = ∧ ∨ ≤ < ≤ + ≠ ∅ .  

Definition 3.2 [16] An information system ( , )IS U A=  
is consistent if all objects, which have the same value 
concerning { }A a− ∗ , also have the same value of deci-
sional attribute a ∗ ; otherwise, the information system is 
inconsistent.  

Theorem 3.1: In a consistent information system, there 
is not ∅  in its a ∗ -discernible-checked matrix, and all 
samples are in { }( )A aPOS a− ∗ ∗ .  

Theorem 3.2: In an inconsistent information system, 
only the sample having ∅  value of state checking is 
not in { }( )A aPOS a− ∗ ∗ .  

Definition 3.3: For a subset B of { }A a− ∗ , it is an 
attribute reduction when { }( ) ( )B A aPOS a POS a− ∗∗ = ∗ . 

Theorem 3.3: B is an attribute reduction 
iff 1 1( ( ), , ( )) 1

IS B B mf V a V a∗
− = , where { }( ) : 0, 1BV a⋅ → such 

that a B∈ iff ( ) 1BV a = . 
Definition 3.4 a ∗ -improved-discernible function 

ISf ∗∗ for an information system ( , )IS U A= is a Boolean 
function of 1m − variables 1 1, , ma a − , which is defined as 

{ }1 1( , , ) ( ) :1 , ( ) ( )IS m ij i jf a a C i j n a x a x∗∗ ∗
− = ∧ ∨ ≤ < ≤ ∗ ≠ ∗  (8) 

where ia denotes an attributes in A .  
Theorem 3.4 IS ISf f∗∗ ∗= . 
Definition 3.5 [17] An instance of SAT is a Boolean 

formula in conjunctive normal formula. Each disjunction 
formula is called a clause, and the instance is called a 
clause set.  

An example of conjunctive normal formula 
is { } { } { }t l t l t m∨ ∧ ∨ ∧ ∨ . t , l and m are Boolean va-
riables; overbar is logical operation denoting 
“not”; , t l∨ , and t m∨ are clauses. Each Boolean varia-
ble can be assigned either true or false. 

Theorem 3.5 Attribute reduction based on rough set is 
a problem of SAT.  

According to Theorem 3.3, a set of attributes is a solu-
tion of reduction iff the related 1ISf ∗ = . The set of 
attributes can be translated as an assignment of variables. 
The values of attributes are true, when they are included 
in the reduction; otherwise, the values are false.  

Not all of instances in SAT are converted into attribute 
reduction. Give an example to explain this. 
( ) ( ) ( )t l t l t l∨ ∧ ∨ ∧ ∨ is an instance of SAT, but it can 
not be converted into attribute reduction. There are 3 
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clauses, so the number of objects in the universe is also 3. 
According to the definition of a ∗ -discernible-checking 
function, t  means the values of two objects are the 
same. In the instance, two clauses include t . That is to 
say that there are two pairs having the same values con-
cerning the attribute t . As a result, the 3 objects appear to 
have the same value of t because of transitivity. But it is 
inconsistent with the third clause. So the clause set can 
not be written as an instance of attribution reduction. 
Based on this analysis, we have concluded that attribute 
reduction based on rough set is the subset of SAT. 

Definition3.6 [14]: { } { }C C t C t′ = ∨ ∧ ∨  is called the 
result of extension rule on a clause C , where t is an 
attribute not in C . 

Definition 3.7 [14]: A clause is a maximum term iff it 
contains all attributes in either positive form or negative 
form.  

Theorem 3.6 [14]: For a clause set with 
1m − attributes, the clause set is unsatisfiable iff 

12m− maximum term can be extended by the clauses.  
Theorem 3.7 [14]: Given a clause 

set 1 2 nC C C= ∧ ∧ ∧∑  , let iP be the set of all the maxi-
mum terms obtained from iC by using the extension rule, 
and set NM the number of distinct maximum terms got 
from ∑ .  

 

1 1 1

1
1 2

1

1

( 1) ,

2 ,

0 ,

2 .

i

i j

n

i i j i j l
i i j n i j l n

n
n

m C
i

i j

i j m C C

NM P P P P P P

P P P

P

complementary forms in C and C
P P

otherwise

= ≤ < ≤ ≤ < < ≤

+

− −

− − ∪

= − ∩ + ∩ ∩ −

+ − ∩ ∩ ∩

=

∩ = 


∑ ∑ ∑ 


(9) 

By knowledge compilation using extension rule, each 
pair of clauses in the new clause set contains comple-
mentary form of the same attribute [15]. So

1

n

i
i

NM P
′

=

′= ∑ .  
Algorithm 3.1 shows process of knowledge compilation 
[15]. 
Algorithm 3.1 Knowledge compilation using the extension rule 
Input: Let 1 1 2 , , nC C C∑ = ∧ ∧ ∧ be a set of clauses, 2 3∑ = ∑ =∅  
While 1∑ ≠∅  
Loop 

Select a clause from 1∑ , say 1C , and add it into 2∑  
While i  the number of clauses in 1∑  
Loop 

While j  the number of clauses in 2∑  
Loop 

If iC and jC contain complementary forms of the same 
attribute, skip. 
Else if iC subsumes jC , eliminate jC from 2∑ . 
Else if jC subsumes iC , eliminate iC from 1∑ . 
Else extend jC on a variable using extension rule. 

1j j= +  
End loop 

1i i= +  
End loop 

3 3 2∑ = ∑ ∪∑ ; 2∑ =∅  
End loop 

Output: 3∑ is the result of the compilation process. 

Theorem 3.8: Set 1 1( , , ) ( )c m ijf a a C ∗
− = ∨  

and 1 1( , , ) ( ( ) ) ( ( ) )c m ij ijf a a C t C t∗ ∗
−

′ = ∨ ∨ ∧ ∨ ∨ , where t is 
an attribute not included ( )ijC ∗∨ . 

1 1( ( ), , ( )) 1c B B mf V a V a − = iff 1 1( ( ), , ( )) 1c B B mf V a V a −
′ = , 

where { }( ) : 0, 1BV a⋅ → such that a B∈ iff ( ) 1BV a = . 
Theorem 3.9: If a maximum term of conditional 

attributes dose not subsume any clause in ISf ∗∗ , the 
attributes with negative form in the maximum term is a 
solution of attributes reduction; if a maximum term of 
conditional attributes dose not subsume any clause in the 
extended results of ISf ∗∗ , the attributes with negative form 
is a solution of attributes reduction. 

Theorem 3.10: The number of attribute reduction 
is 12m NM− − , where NM is the number of distinct max-
imum terms got from ISf ∗∗  and 1m − is the number of con-
ditional attributes. 

According to the results of complication knowledge, 
the distribution of solution can be found directly. That is 
because every clause has complementary literature of 
other clauses. That is to say that the maximum terms 
extended by each clause are totally different from others. 
The supplementary of maximum terms extended by the 
clauses after complication knowledge is the set of all 
solutions. It is not generally necessary to obtain all solu-
tions, because it will take memory cost of 12m− . In this 
work, the distribution of solution is found without ex-
tending maximum terms, which is shown in Algorithm 
3.2.         
Algorithm 3.2 Distribution of attribution reduction 
Input: Clause set after knowledge compilation 1 2 nf C C C ′

′ ′ ′ ′= ∧ ∧ ∧ ; 
a count set include m elements, where 1m − is number of conditional 
attributes. 
Set 0i = .  
Initial count set: 
While 1i m≤ −  
Loop 

Value of the ( 1)i th+ element in count set is 
set !( 1, )

( 1)!( 1 )!
iC m i

m m i
− =

− − −
. 

End loop 
Set 1i = . 
While i n′≤  
Loop 

Select iC from f ′ . 
Denote the number of literatures L , and number of negative 

form NL .  
The value of ( 1)NL th+ element in count set is decreased 1. 
Set 1j NL= + .  
While 1j m −   
Loop 

The ( 1)j th+ element in count set is decreased 
( )!( 1 , )

( 1 )!( 1 )!
j NLC m L j NL

m L m j L NL
−

− − − =
− − − − − +

. 
End loop 

End loop 
Output: The distribution of attribute reduction is in the count set. 

4. Experiments  
In this section, we show the process finding distribution 
of solutions to analyze the characteristics of attribute 
reduction. Table 1 shows the details of 3 UCI datasets.  
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Table 1 Dataset description 

Datasets Samples Attribute Classes Proportion of missing 

Zoo 101 18 7 0% 

Soybean 47 36 4 0% 

Voting 435 17 2 14.7% 

Table 2 Number of clause 

Dataset 
Missing Zoo Soybean Voting 

Equation 8 3873 810 44859 

Original dataset 956 615 8460 

1% 1144.9 664 - 

3% 1458.9 711.3 - 

5% 1685.2 744 - 

10% 2125.9 771.7 - 

20% 2451.1 784.5 4122 

30% 2081.8 751 2378 

40% 1326.4 694.9 1018 

50% 230.1 450.9 465 

60% 3.4 114.1 0 

70% 0 0 0 

80% 0 0 0 

90% 0 0 0 

4.1. Analysis of a ∗  -improved discernible  
a ∗ -improved-discernible function depicts the discerni-
ble relationship among samples. It reduces unnecessary 
elements of a ∗ -discernible-checked matrix for correct 
classification purpose. First, element about 2 samples in 
the same class is abandoned. Second, element about 2 
samples neither in the { }A a− ∗ -positive region is omit-
ted. It is not possible that these samples are correctly 
classified by rough set. The clauses in a ∗ -improved- 
discernible function is 

 
1 1 2 2

2 2 2 2 2
1 2

( 1) ( 1) ( 1) ( 1) ( 1)
2 2 2 2 2

( )
2

w w

w

n n l l l l l l n n

n n n l l l

− − − − −
− − − − −

+ − − + + +
=

 


  
, (10) 

where n is the total number of samples, n is the number 
of samples not in { }A a− ∗ -positive region, and il is the 
number of samples in the same class. 

By the characteristic of conjunction, a ∗ -improved- 
discernible function just keeps one copy of the same 

clauses to reduce memory burden. So its exact number of 
clauses is smaller than Equation 8 in Definition 3.4. Null 
value is randomly set in order to obverse the variation 
rule of clauses with varying of missing proportion. Table 
2 shows a summary of exact clauses in a ∗ -improved- 
discernible function. It can be observed that exact num-
ber of clauses increase with addition of missing. Missing 
damages the distribution of values in each attribute. As a 
result, the relationship of samples in different class is 
more complex with increasing of missing. However, the 
addition of clauses stops, when the missing proportion is 
large enough. That is because that the samples in the 

{ }A a− ∗ -positive region decreases. The maximum of 
clauses are found with missing from 10% to 20%.  

4.2. The number of Clauses after Knowledge 
Compilation 

During the process of knowledge compilation using ex-
tension rule, one clause is deleted from the clause set, 
when the clause subsumes another clause [15]. So the 
subsuming plays important role in the computational cost 
of memory and time. Since the number of clauses in 
a ∗ -improved-discernible function is large, authors can 
not find anything in the figures showing all the clauses. 
In Fig.1, 200 clauses in the original datasets are random-
ly picked as example to explain subsuming. 

Every figure in Fig.1 includes three subfigures. The 
middle one describes the 200 clauses of a ∗ -improved- 
discernible matrix. Every column expresses one feature; 
one raw is a clause. Red denotes the feature in the related 
clause, and blue means the feature not in a clause. For a 
clause, its set of red features contains all red features of 
another clause. Then, this clause is directly deleted in 
knowledge compilation. The third subfigure shows this 
detail of the first 10 clauses. For example, in the third 
subfigure of Fig.1a, the red features of the first clause are 
included by other 9 clause, so the 9 clauses are deleted. 
The first subfigure gives a summary of subsuming in the 
second subfigure. The clauses in every two circles are in 
a subsuming set where only the first clause is kept. It can 
be observed that the clauses of Zoo and Voting are dy-
namically deleted, shown in Fig. 1(a) and1(c). 

Fig. 2 illustrates the amount variation of clauses under 
increasing of missing during the process of knowledge 
compilation. It is very interesting that the variation of 
deleted clauses is similar with a ∗ -improved discernible 
function. We can conclude that the subsuming characte-
ristic of dataset is not changed by missing proportion. In 
Figs. 2(a) and 2(b), clauses in the extended sets increase 
with addition of missing, and their increasing stops in 
enough large missing proportion. The rule is also found 
in Figs. 2(c) although the variation is not dramatic.  
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Figure 1. Subsuming of feature values. (a): Zoo; (b): 
Soybean; (c): Voting.  
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Figure 2. Amount variation of clause. The value “F” in 
Different set axis expresses the number of clauses in the ex- 
tended set; A denotes the additional clauses in the processes 
of knowledge compilation; S is the number of subsuming set 
in a ∗ -improved discernible function; D expresses the 
deleted clauses; M is the clauses in a ∗ -improved discernible 
function. (a): Zoo; (b): Soybean; (c): Voting. 
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Figure 3. Distribution of solutions. (a): Zoo; (b): Soybean; 
(c): Voting. 

4.3. Distribution of Solutions 
According to Algorithm 3.2, the distribution of all possi-
ble solutions can be found, shown in Fig.3. It can be 
observed that the amount of all solutions is decided by 
the size of minimal reduction. The number of all solu-
tions is approximated to the area delimited by the cure 
and x-axis. For a dataset, a reduction having the smallest 
size among all possible solution is minimal reduction. In 
every figure, if the minimal reduction has smaller size, 
its number of all solutions is larger. The reason is that 
any set containing minimal reduction is also a solution.  

Table 3 is the summary about amount of solutions. 
The number of all solutions decreases with addition of 
missing before threshold. Then, the number increases. 
For each attribute, the original distribution of values in 
different class is disordered by missing. This brings 

Table 3. Number of solutions. 

Dataset 
Missing 

Zoo Soybean Voting 

Original dataset 74448 103.16 10×  32 

1% 65622.6 103.022 10×  - 

3% 37285.3 102.837 10×  - 

5% 23799 102.659 10×  - 

10% 3869.9 101.916 10×  - 

20% 38.3 94.622 10×  16 

30% 2 95.485 10×  16 

40% 2.2 4870963.2 64 

50% 94.8 445644.8 256 

60% 118067.2 144703488 65536 

70% 131072 103.44 10×  65536 

80% 131072 103.44 10×  65536 

90% 131072 103.44 10×  65536 

 
about decrease of discernible ability of every attribute, 
so more attributes are needed to provide the same sam-
ples in { }A a− ∗ - positive region. It results in decrease of 
all solution with the addition of missing. However, the 
samples in { }A a− ∗ - positive region are so fewer that 
small mount of attributes is enough to provide the same 
discernible ability, after missing is larger than threshold. 
So solution begins increasing. In Table3, the minimum 
of solutions is obtained before missing is smaller than 
50%.  

5. Conclusions  
Rough set based attribute reduction with missing value is 
demonstrated as a sub-problem of satisfiability problem. 
Extension rule, a satisfiability method, is employed to 
obtain distribution of solutions without finding all 
attribute reductions. The relation between attribute re-
duction and missing is analyzed from computational cost 
and amount of solutions.  
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