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ABSTRACT 

We analyze the behaviour of TE, TM electromagnetic fields in a toroidal space through Maxwell and wave equations. 
Their solutions are discussed in a space endowed with a refractive index making separable the wave equations. 
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1. Introduction 

Toroidal functions have been known for a long time and 
an important bibliography is given in [1,2] with some 
applications to diffraction of acoustic and electromagntic 
plane waves by a torus. These functions have played a 
major role in the analysis of plasma confinement in a to- 
rus configuration [3], where further references can be 
found] and, more recently, important works have been de- 
voted to their application in particular situations [4-6]. 

We are interested here in TE, TM electromagnetic 
fields in a toroidal medium which becomes of impor- 
tance for the so-called transformation media: a tool used 
to tackle invisibility problems [7]. We start with a pre- 
sentation of the main properties of the toroidal coordi-
nates   . Then, we discuss the Maxwell equations 
satisfied by the components E, H, H of TE modes (it is 
easy to transpose these results to TM modes H, E, E) 
and, we finally get the wave equation satisfied by E. 
Approximate solutions of this equation are obtained 
when the index of refraction in the toroidal space makes 
separable the wave equation. 

2. Toroidal Coordinates 

2.1. Geometric Parameters 

In terms of the Cartesian coordinates x, y, z, the toroidal 
coordinates       are defined by the relations [8-10] 

 
 

 

asin cos cosh cos

asin sin cosh cos

asin cosh cos

x

y

z

 



 



   

  

  

        (1) 

in which 0, π π,0 2π, a 0,          with the 
inverse relations 

 
 

1 2

2 2 2
1 2 1

tan , ln ,

cos 4 2

y x d d

a d d d d

 

   

 


 

2

    (2) 

2z

The surfaces of constant 

   2 22 2 2
1 2

2 2 2

, ,d a z d a

x y

 



     

 
   (2a) 

  correspond to spheres 
with different radii 
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the surfaces of constant  are non intersecting tori of dif- 
ferent radii (anchor rings) 
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the normal derivative to these surfaces is 
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Now, from the toroidal metric 
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Remark: the metric (5) may be written with (i,j) = 1, 2, 
3 and summation on the repeated indices 

        (7b) 
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2 ,i j
ijds g dx dx  1 2 3, ,x x x ,      and, g  denot- 

ing the matrix with components ijg , it comes g = diag. 
a2h2 (1, 1, sinh2) where  cos cos

1
h h    . 

2.2. Differential Operators 

Using the general definition of th ferential operators 
in orthogonal coordinates [10,11],  get 
gradient: 
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and, for the laplacian of a scalar field 
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3. TE Field 

The components of the TE field  
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ic medium

 is easy to get, in a hom
 with permittivity 

o- 
geneous isotrop   and per- 
meability   the Maxwell equations they satisfy 
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Substituting (10(a) and (b)) into (10(c)) gives the wave 
equation satisfied by 
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Multiplying (11) by 2h   and using (6(a)), we get 
with 
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et a more tractable wave equation, we introduce 
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Taking into account (17a) and (19a), we get 
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Deleting the last term in Equation (23) reduces the 
wave equation to the Laplace equation with the variables 

,s   separated so that looking for  ,s   in the form 
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whose solutions are the conical (Mehler) harm
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Then, a 11a), (14)ccording to ( , (27), the component 
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so  lution of (23). Substituting (30) into (10(a) and

the magnetic components    ,, ,H H
 
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of the TE
TM field: These results are easy to transpose to TM 

change

 field. 

fields: just   ,s  , ,E H H   , and    into 
,,H E E    and    ,s  with a constant perme- 

ability while the permittivity is defined so that the refrac- 
tive index has still the expression (26). 

4. Discussion 

e importance of the func- 
tion (14) in toroidal coordinates either as in [8,10] to make 
manageable the 3D Laplace equation

This work is an illustration of th

 which separates 
 or as here to get a similar result with 

 equation. It is remarkable that for TE, 
into three equations.
the 2D Helmholtz
TM propagation in a toroidal medium this choice of a 
particular form for the   component of these fields 
works so efficiently that we get an exact equation what- 
ever is the refractive index. In some sense, the function 
(14) is consubstantial to toroidal and bispherical coordi- 
nates. 

The results obtained here are only illutrative because 
to get analytical solutions of the exact Equation (23), 
satisfied by  ,s  , we had to impose rather drastic con-
ditions on the refractive index with a constant permit- 
tivity (TE) or constant permeability (TM) , in order to get 
a separable equation. In practice, to solve (23), requires 
numerical calculations with algorithms to tackle 2D par-
tial differentia q ations which is not a real difficulty in 
particular for propagation in isotropic homogeneous me-
dia where the refractive index is constant. 

The toroidal geometry has made a comeback in two 
different domains: first in the string theory of elemen- 
tary particles [13,14] and second in cosmology. The 
quest of cosmic origin [15] has suggested [16] that the 
Universe could have the shape of a drough nut that is of a 
3D

l e u

 torus. 
Clearly, the present work on electromagnetic wave 
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