
Journal of Transportation Technologies, 2013, 3, 1-16
http://dx.doi.org/10.4236/jtts.2013.31001 Published Online January 2013 (http://www.scirp.org/journal/jtts)

FPGA-Based Traffic Sign Recognition for Advanced
Driver Assistance Systems

Sheldon Waite, Erdal Oruklu
Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, USA

Email: erdal@ece.iit.edu

Received October 11, 2012; revised November 12, 2012; accepted November 26, 2012

ABSTRACT

This paper presents the implementation of an embedded automotive system that detects and recognizes traffic signs
within a video stream. In addition, it discusses the recent advances in driver assistance technologies and highlights the
safety motivations for smart in-car embedded systems. An algorithm is presented that processes RGB image data, ex-
tracts relevant pixels, filters the image, labels prospective traffic signs and evaluates them against template traffic sign
images. A reconfigurable hardware system is described which uses the Virtex-5 Xilinx FPGA and hardware/software
co-design tools in order to create an embedded processor and the necessary hardware IP peripherals. The implementa-
tion is shown to have robust performance results, both in terms of timing and accuracy.

Keywords: Traffic Sign Recognition; Advanced Driver Assistance Systems; Field Programmable Gate Array (FPGA)

1. Introduction

Advances in materials, engine design, embedded elec-
tronics, and production methods have made the personal
vehicle one of the most transformative technologies of
the past century [1,2]. With cars becoming almost ubiq-
uitous in developed nations, there has also been a large
rise in associated risks. According to the US Census Bu-
reau in 2009 alone 10.8 million motor vehicle accidents
occurred resulting in almost 36 thousand fatalities. As
horrible as these number are, they are a significant im-
provement from the previous decade. In 1990 there were
11.5 million accidents resulting in 46.8 thousand deaths
[3]. This marked reduction in accidents (6%) and fatali-
ties (23%) despite the population increasing by nearly
10% [4] is a testament to the efforts being made to driver
safety and accident avoidance. Technologies like airbags,
antilock brakes, tire pressure monitors, and traction con-
trol have become very common if not standard. More
recently a new level of intelligence and intervention has
surfaced in the form of systems commonly referred to as
Advanced Driver Assistance Systems (ADAS) such as
lane departure warning systems, intelligent speed adapta-
tion, and driver drowsiness detection [5]. These tech-
nologies have the capacity to greatly increase driver
safety by monitoring the driver and their environment
and providing information, warnings, or even taking ac-
tion. Traffic sign recognition (TSR) is one of these tech-
nologies.

Over the years, as our road system has matured, road

signs have become the de facto way of communicating
information to the driver. These road signs communicate
the local traffic laws, such as right of way and speed lim-
its as well as information like city limits and distances to
destinations. Road signs, however, are only useful if the
driver notices them. Though this fact is inherently obvi-
ous, it nonetheless is worth noting because it highlights
the fact that increasing a driver’s ability to see road signs
can increase road safety [6]. A driver may be distracted,
tired, or simply overwhelmed driving in a new environ-
ment and miss an important road sign. A system that
monitors the road ahead of a vehicle and detects road
signs could be a great service to the driver. This informa-
tion, summarizing the traffic sign topology of the area,
could be displayed to the driver or used in conjunction
with other vehicle information to take action such as
slowing the vehicle as it approaches a stop sign.

This paper describes in detail a specific implementa-
tion of a traffic sign recognition system done in recon-
figurable hardware. Following section discusses the chal-
lenges encountered for building traffic sign recognition
systems and briefly describes existing research and pro-
duct embodiments in this technology. The subsequent
sections detail the algorithm design, the actual hardware
implementation, and performance results.

A traffic sign recognition system monitors a complex
and ever changing environment and must do so accurately
and continuously. Here in lies the challenges for this type
of system: complex environment, expectation of accuracy,
and short response time. Essentially it must identify the

Copyright © 2013 SciRes. JTTs

S. WAITE, E. ORUKLU 2

road signs that are in view in real time. These efforts to
determine the presence of a road sign in real time are com-
plicated by the fact that the environment is continually
changing. Road signs will appear significantly different to
an artificial (i.e., computer) vision system depending on the
amount, direction, and type of light as well as weather con-
ditions. Road signs may also be damaged or tilted confus-
ing an automated system.

2. Background

Traffic sign recognition is an arena of active research. Al-
though there are many different algorithms and approaches,
some patterns do emerge as the existing body of work is
examined. The following is a summary of some of the
more recent and relevant work.

Lai et al. [7] present a sign recognition scheme aimed for
intelligent vehicles and smart phones. Color detection is
used and is performed in HSV color space. Template based
shape recognition is done by using a similarity calculation.
OCR is used on the pixels within the shape boarder to de-
termine provide a match to actual sign. The description is
purely algorithmic and implemented in software. Andrey et
al. [8] use a very similar approach involving color segmen-
tation and shape analysis. Histograms, however, are used as
the shape classification method after connected regions are
labeled. Actual sign recognition is done via template
matching by using a weighted direct comparison of the
interior portion of each shape to templates.

A different approach is used by Soendoro et al. [9]. Here,
a binary image is created using color segmentation. Mor-
phological filtering is used to improve the image. Shape
estimation is done by an application of Ramer-Douglas-
Peucker algorithm followed by classification using Support
Vector Machines (SVM).

Liu et al. [10] limit their application to speed limit signs
found in Europe, Asian, and Australia. This causes their
target signs to all be outlined in a red circle. The Canny
edge detection algorithm is applied followed by the Fast
Radial Symmetry Transform to detect circular signs. A
fuzzy template matching, a comparison of correlation coef-
ficient is used to initially match the information within the
circular sign. A character recognizer based on the local
feature vector is used to make the final match selection.
This algorithm is implemented in software running on a
standard PC.

A novel approach is described by Kastner et al. [11].
They use the difference of Gaussian and Gabor filter ker-
nels to model the characteristics of neural receptive fields
measured in the mammal brain. They attempt to process an
image in a similar way that human’s brains do. This high-
lights areas of important information in a frame identifying
regions of interest (ROIs). These ROIs have relevant in-
formation extracted in the form of week classifiers, essen-

tially a probability value that corresponds to a certain traffic
sign class. Their algorithm is implemented on a standard
PC running software.

The bulk of the research materials on this topic have fo-
cused on algorithms that are implemented in software. A
few have been targeted toward reconfigurable hardware,
but even these often have all or a large portion of the work
performed by an embedded processor running software.
Souki et al. [12] describe an algorithm implemented on
FPGA-Cyclone II 2C35 FPGA manufactured by Altera.
They use color segmentation to create a binary image. Edge
detection and Hugh Transforms are use to detect shapes.
Classification uses template matching. This algorithm is
implemented exclusively in software that runs on the Nios
II embedded processor. Computation times exceed 17 sec-
onds per frame.

Designed using SystemC, Muller et al. [13] present a
system that uses a Virtex-4 LX100 FPGA with implemen-
tations of multiple embedded LEON CPU cores. Their
algorithm of preprocessing, shape detection, segmentation,
extraction, and classification, is initially implemented ex-
clusively in software. To improve their performance they
move the classification stage to a synthesized hardware
block. With this improvement they are able to achieve a
computation time of about 0.5 seconds.

Similarly, Irmak [14] uses an embedded processor ap-
proach with minimal support from portions of the algo-
rithm implemented in hardware. Color segmentation, shape
extraction, morphological operations and template match-
ing are all performed in the Power PC processor that is part
of the system. Only edge detection is implemented in
hardware.

In addition to being a topic of active academic research,
Traffic Sign Recognition is also a technology that is being
researched and implemented in the industry. This technol-
ogy is developed by many car manufacturers who are part-
nering with traditional automotive suppliers such as Conti-
nental Automotive, TRW, Bosch [15] and newer image
recognition software product developers like Ayonix. Con-
tinental Automotive developed several products for traffic
sign recognition. Its Multi Function Camera specification
details its abilities for use in TSR [16]. This traffic sign
recognition system [17] began production in 2010 on the
BMW 5-series. In addition to BMW, many other carmakers
have rolled out some version of this technology. Volks-
wagen has done so on Phaeton and the Audi A8. Mer-
cedes-Benz E and S class both have an implementation of
TSR. As well as the Saab 9-5, Opel, Insignia, and the
European 2011 Ford Focus. Additionally, Google has de-
veloped technology that allows a vehicle to drive itself.
Using a combination of data stored in its map database and
data that it collects from its environment in real-time, the
Google Car is able to safely navigate complex urban envi-
ronments [18].

Copyright © 2013 SciRes. JTTs

S. WAITE, E. ORUKLU

Copyright © 2013 SciRes. JTTs

3

3. Algorithm Design

3.1. Algorithm Overview

The problem of identifying traffic signs within an image
can be broken into the two sub-problems of detection and
recognition. Detection presents the challenge of analyz-
ing the image to identify portions of the image that could
contain a traffic sign. Recognition is the challenge of
determining if these candidates are indeed traffic signs
and if so which one.

Figure 1 depicts the proposed algorithm used for de-
tection and recognition of traffic signs. The following
sections discuss each portion of the algorithm and pre-
sent the specifics of the implementation of each part.

3.2. Hue Calculation and Detection

Traffic signs consist of solid color text, symbols, or
shapes on a solid color background as seen in Figure 2.
Scanning an image looking for this color signature will
allow for the quick identification of possible traffic signs
and the rejection of the remaining parts of the image.

Stop, yield, do not enter, wrong way, and prohibition
signs such as no left turn, all contain red backgrounds
with white text or white backgrounds with red text. Main
distinguishing color for these signs is red. Similar group-
ings can be done for signs that are primarily green, yellow,
blue, or black and white. The algorithm described here
and in the sections following must be performed for each
of these color groupings.

For each group of similarly colored signs, the algorithm

begins by scanning the image to calculate the hue of each
pixel. There are a variety of ways in which to express the
color of a pixel. Perhaps the most common is by using the
color’s primary color components or the RGB value. Al-
though this is very useful when displaying that color, it is
not as helpful when trying to extract all the pixels of a
specific hue. If, as in this case, the desire is to identify all
the pixels that would be considered red, there are colors
that contain a significant about of red as a primary color
contributor, but are themselves not red. The color yellow
is one such example. Figure 3(a) depicts the color repre-
sentations using RGB.

To determine the hue of a pixel, or its color regardless
of shade, a conversion must be made. Each RGB pixel is
converted to a different triplet called HSV: Hue, Satura-
tion, and Value. HSV represents the color spectrum by
having a value for the color (hue), the amount of that
color (saturation), and the brightness of that color (value)
[19]. The hue parameter represents the angle where the
pixel’s color lies on the cylinder depicted in Figure 3(b).
Thresholds can be chosen to categorize any hue value
found. Once this conversion is made, the hue values for
each pixel can be scanned. Detection is the process of
identifying the pixels whose hue value falls between the
thresholds for the relevant color. This will split the image
into two categories: pixels that have the hue of interest
and those that do not. At this point the full color image
being processed can be simplified into a binary image.
Active pixels had the desired hue while inactive pixels do
not. This step is called Hue Detection.

Figure 1. Algorithm flow chart.

S. WAITE, E. ORUKLU 4

Figure 2. Example traffic signs (red).

(a) (b)

Figure 3. (a) RGB color space, (b) HSV color space [19].

Figure 4. Hue calculation and detection example.

Figure 4 shows the effect of Hue Calculation and De-
tection on an example image. The red pixels have been
extracted and are now represented in the binary image as
active white pixels. Pixels of all other colors are repre-
sented as inactive or black pixels. At this point the system
has eliminated a significant amount of information to
consider it its effort to identify traffic signs. However, in
many images a peppering of red pixel groupings will be
found throughout. If each pixel grouping that remains
were to be considered a potential traffic sign, most of
these would clearly not be good candidates. A step is re-
quired where many of these small pixel groupings can be
eliminated without adversely affecting the pixel groupings
that are actually traffic signs. This measurement and
others are deliberate, using specifications that anticipate
your paper as one part of the entire journals, and not as
an independent document. Please do not revise any of the
current designations.

3.3. Morphological Filtering

Morphological transformation is a technique for proc-
essing digital images by exploiting the relationship be-
tween each pixel and its neighboring pixels. This rela-
tionship is defined by the type of morphological trans-
formation and the structural element used. There are two
basic transformations: Dilation and Erosion. These two
can also be combined to create the Open and Close
transformations. The structural element is essentially a
small geometric shape such as a square, disk, line, or
cross. During a transformation operation, each pixel is

compared to its neighbors as defined by the window
specified by the structural element. During erosion, the
pixel in question will be deactivated unless all of the
other pixels in the structural element window are also
active. During dilation, the pixel will be activated if any
of the other pixels in the structural element window are
active. As their names might suggest, erosion has the
effect of trimming the edges of objects where dilation has
the effect of puffing out the edges [20,21]. Open and
close operations are achieved by combining erosion and
dilation. An open is obtained by erosion followed by
dilation and a close is a dilation followed by erosion. The
results of these operations are less dramatic because the
second step tends to temper the effects of the first. Fig-
ure 5 shows example morphological transformations,
erosion and dilation.

3.4. Labeling

After detecting the pixels in the image that match the
desired hue and after filtering the resulting binary image
to reduce the number of pixel “blobs”, the resulting im-
age is ready for the labeling step. Labeling is the process
of scanning the image to detect pixel groupings. Pixels
that share an edge or a vertex are considered to be mem-
bers of the same pixel grouping or “blob”. The remainder
of this section will detail our proposed algorithm used to
detect these blobs.

The goal with labeling is to identify a bounding box
for each and every pixel grouping in the image. This will
result in four parameters for every blob: Xmin, Ymin,
Xmax, Ymax. These are the two diagonal corners that
define the bounding box. Simply put, the labeling algo-
rithm scans the image from bottom to top and left to right
(raster order) keeping track of Xmin, Ymin, Xmax,
Ymax for all the pixel groupings it encounters. During
this scanning only one row plus 2 pixels are stored and
labeled at a time. Labels are assigned and a table built
containing the Xmin, Ymin, Xmax and Ymax values for
each label. While scanning, a window of 5 pixels is ex-
amined at a time: the current pixel and its 4 previously
visited neighbors. Each pixel initially starts with a label
of 0 (not labeled) and if the pixel is a foreground pixel
then a non-zero label is assigned. The value of that label

(a) (b) (c)

Figure 5. Morphological transformation example: (a) Origi-
nal image; (b) After erosion operation with 3 × 3 square
structural element (gray pixels are removed); (c) After dila-
tion operation (yellow pixels added to the original).

Copyright © 2013 SciRes. JTTs

S. WAITE, E. ORUKLU 5

depends on the labels of its four neighbors.
Figure 6 shows all the possible combinations for con-

sideration when determining the label of the current pixel.
Each of these diagrams represents the current pixel, X, its
immediately previously scanned neighbor, P, and it’s
previously scanned neighbors 1, 2, and 3. Shaded pixels
are active and labeled. The key to this labeling algorithm
is in recognizing that these sixteen possible combinations
can be grouped into just three categories. There are two
special cases distinguished by the red and blue borders,
and the remaining are all the normal cases. The first spe-
cial case, marked in red, is the case in which none of the
current pixel’s neighbors have a label. In this case the
current pixel receives a new label. The second special
case, marked in blue, is the case when the current pixel
has multiple neighbors that have labels, and these labels
may not be the same. This may be the most interesting
case because it happens when different labels meet at the
current pixel. When this occurs, relabeling must happen
so that a single bounding box is generated to encompass
what had been two separate labels. The remaining case is
the simplest: the current pixel has one or more previously
labeled neighbors and they all have the same label. In
this case the current pixel is simply labeled in kind. At
the same time that pixel labels are being assigned, the
bounding box for each label is being grown to encompass
all the pixels that contain that label. This is done by
maintaining a record table that holds Xmin, Ymin, Xmax,
and Ymax for each label.

The second special case described above is the most
challenging part of the labeling algorithm. When two
labels meet, the algorithm is discovering for the first time
that what was previously thought to be two distinct blobs
is indeed one. The records that have been maintained
thus far will need to be updated to include this informa-
tion. One possible approach would be to rescan all or
portions of the image. However, given that doubling
back to reliable portions of the image can be a time con-
suming step, it was chosen to solve this problem by using
a level of indirection: Each pixel is given a label. This
label does not point to a record of Xmin, Xmax, Ymin

Figure 6. Possible pixel configurations.

and Ymax, but rather to a record number. This record
number points to these actual bounding box parameters.
In this way, when two labels meet both labels can be
made to point to the same record that will now encom-
pass what was once two label groupings [22].

For example, consider the image in Figure 7. This is a
simple 16 × 16 pixel image that contains two blobs that
should be labeled by the labeling algorithm. As the algo-
rithm begins as shown in Figure 7(a), the first three pix-
els encountered are labeled with new labels as they have
no labeled neighbors that have been encountered yet. The
pixels that are marked with red indicate special case, and
a new label is used. The Record Table to the right shows
the values it would take at this point in the scan of the
image. Figures 7(b) and (c) show what happens when
labels 1 and 2 meet and when labels 2 and 3 meet. The
yellow box shows the window the algorithm is consider-
ing at that point in time. When two labels meet, the label
table is updated to point to the lower record entry. This
entry is also updated so that the points it describes en-
compass all the pixels of both labels. In this way this
information is carried along. When labels 2 and 3 meet,
label table 3 is made to point to record 1 also and record
1 is updated to encompass label 3’s pixels. This way the
algorithm encompasses all the pixels of each pixel group-
ing. Figure 7(d) shows the fully labeled image with its
completed record table.

3.5. Candidate Scaling

During the Labeling portion of the algorithm, contiguous
pixel groupings are identified. These groupings are can-
didate traffic signs. Not all of these will be good candi-
dates; many will simply be too small to contain enough
information. These candidates are filtered to remove ones
that do not contain enough resolution to match a traffic
sign template. The remaining candidates are considered
good candidates. Since the matching algorithm discussed
in the next section requires that the template and the can-
didate images both be of the same resolution, these re-
maining candidates must next be scaled to match the
template images resolution. Once the candidate is scaled
to match the resolution of the traffic sign templates, they
are subjected to the template matching portion of the
algorithm.

3.6. Template Matching

Template Matching is the portion of the algorithm that
takes candidates found in the previous steps and compares
them with images of known good traffic signs. These
traffic sign images will comprise the template library.
Each potential traffic sign will be compared with each
member of the template library and, if a close match is
found, it is declared to be th t traffic sign. This template a

Copyright © 2013 SciRes. JTTs

S. WAITE, E. ORUKLU

Copyright © 2013 SciRes. JTTs

6

(a)

(b)

(c)

(d)

Figure 7. Labeling algorithm example. (a) Initial Labeling and Record table; (b) Labeling and Record table when Labels 1
and 2 meet; (c) Labeling and Record table when Labels 2 and 3 meet; (d) Completed Labeling (Labels 1-3 all point to the
ame segment). s

S. WAITE, E. ORUKLU 7

matching is done by calculating the Hausdorff distance
between the candidate and each template. The Hausdorff
distance calculation is a method and metric used to com-
pare two binary image shapes. A benefit over other
comparison methods is that does not rely on explicit
point correspondence measuring proximity rather than
exact superposition [23]. The Hausdorff distance is de-
fined as [24]:

Given two non-empty finite sets of points

 1, ,
FnF f f  and  1, ,

GnG g g  of 2 ,

and an underlying d d, the Hausdorf sta is istance f di nce
given:

      , max , , ,HD F G h F G h G F (1)

where

 (2)

If two binary images are considered
po

sign, a Xilinx FPGA platform and
toolkit was chosen. The hardware selected was Digilent’s

Virtex-5 OpenSPARC Evaluation Platform, Xilinx

he Xilinx
plements a MicroBlaze proc-
RAM memory and the image

els in

    , max min ,
g Gf F

h F G d f g




 to each be a set of
ints, then this definition essentially describes an algo-

rithm that for each pixel of the first set will calculate the
minimum distance between that pixel and every pixel in
the second set. A minimum distance is also calculated for
each pixel of the second image with relation to every
pixel of the first image. The maximum of these mini-
mums is the Hausdorff distance. In other words, it is a
measurement of the most out-of-place pixel. This dis-
tance calculation technique has been successfully applied
in other image recognition applications such as face rec-
ognition and object matching [25].

There are other approaches that can be used for this
step in the overall algorithm. Several have shown good
success in a variety of applications especially in contexts
where the candidates may be shifts or tilts of the template.
Neural Networks can be used to create a cascade of clas-
sifiers that will allow for very fast sign detection [26].
However, the process of teaching a neural network is a
long one; on the order of days. Therefore, building clas-
sifiers for multiple signs become a time prohibitive ap-
proach [27]. Other possible methods for traffic sign iden-
tification use interest point correspondence to find
matches. One such approach is SURF or Speeded Up
Robust Features [28]. SURF makes use of 2D Haar
wavelet responses to find these points of interest [29].
Various applications of SURF have been shown to be
fast and robust to image transformations. Since the main
objective is a practical hardware implementation, Haus-
dorff distance calculation was used in this work.

4. Hardware Implementation

4.1. Environment

To implement this de

XUPV5-LX110T, which is a version of the ML505 Xil-
inx evaluation board with a larger version of the Virtex 5
FPGA. This is a versatile board with many on-board pe-
ripherals that allow for a diverse number of applications.
To develop for this platform, Xilinx’s Embedded Devel-
opment Kit (EDK) was used [29]. EDK enables the quick
creation of an on-chip embedded processor (MicroBlaze)
and user specific logic (peripherals) on a Field Program-
mable Gate Array (FPGA). EDK allows for strategic de-
cisions regarding the partitioning of hardware and soft-
ware implementation. Although software run time is of-
ten slower than hardware implementation, there are tasks
that may be simpler to accomplish in software.

4.2. System Overview

The testing system included a Intel PC and t
XUPV5-LX110T which im
essor that uses external SD
processing IP peripheral. The PC ran a custom applica-
tion that opened BMP images and transferred the RGB
data to the MicroBlaze over a serial UART connection.
The MicroBlaze received this image data, stored it to
RAM and transferred it in turn to the hardware peripheral.
The hardware IP peripheral processed the image and re-
turned it to the MicroBlaze. After highlighting any traffic
signs that were found, the original image was transferred
back to the PC. The MicroBlaze also used a second
UART connection used for debugging and reporting.

Figure 8 shows a flowchart for the design. Here, the
operational flow of the system is described in its entirety.
It can be noted that each subsystem (PC, MicroBlaze, and
IP peripheral) fulfills key portions of the work required.
The application running on the PC is concerned with pre-
paring the image RGB data, sending it to the embedded
system, receiving it back after it has been processed, and
writing it back to the file system. The MicroBlaze, in turn,
receives this RGB image data, stores it, transfers it to the
IP peripheral, receives it from the IP peripheral after
processing, and finishes processing it before returning an
updated image back to the PC. The IP peripheral receives
the image data and processes it according to the algorithm
steps and returns it to the MicroBlaze.

An image resolution of QVGA or quarter VGA of 320
× 240 pixels was chosen for implementation. This choice
was made because it is large enough for images to contain
enough information to process, but small enough to not
become a limiting factor during development. The fol-
lowing sections describe the implementation of the key
five algorithm steps as they are shown in Figure 9.

4.3. Hue Calculation and Detection

Hue calculation involves taking the stream of pix

Copyright © 2013 SciRes. JTTs

S. WAITE, E. ORUKLU 8

Figure 8. System flow chart.

Figure 9. Image processing algorithm implementation.

Copyright © 2013 SciRes. JTTs

S. WAITE, E. ORUKLU 9

GB format and determining wh

 the pixel is red, the Saturation indi-
ca

ngle range be-
tw

o avoid modulo calculation for

rtion of the algorithm involves
ta

4.4. Morphological Filtering

ering, a pixel must be

R ich pixels are red. As it has red at the 0 angle. T
was described in the previous chapter, this is done by
converting the RGB triplet into a different representation
of the color spectrum called HSV. However, it should be
noted that one byte of this new triplet contains all the in-
formation we need.

Hue indicates that
tes where it lies between the lightest pink and solid red,

and Value indicates where it lies between the darkest red
and solid red. Therefore, the Saturation and Value com-
ponents do not need to be calculated. Given this simplifi-
cation, Figure 10 shows the implementation in hardware.
This circuit accepts the RGB values and calculates the
representative hue value. Most of the circuit is combina-
torial. The division, however, introduces the need to add
some pipelining. The division requires 17 clock cycles to
fill the pipeline, but afterwards will calculate a new quo-
tient every clock cycle. This fact required the introduction
of a delay register that would allow the control signals,
offsets, and quotient to align. The Hue value is taken as
an angle, meaning that it takes a value between 0 and 359.
This 360-degree range is normally divided into sextants
representing Magenta, Red, Yellow, Green, Cyan, and
Blue. These sextants then, cover a range of 60 degrees
each. To simplify calculation, this implementation used
sextants with a range of 0 to 63.

This resulted in a color wheel with an a
een 0 and 383 [22]. In addition, the normal color wheel

red pixels, the color wheel was rotated in this implement-
tation. Magenta, a much less likely color to find in nature,
was placed at the origin.

The Hue detection po

king the stream of hue values and categorizing them as
red or not-red. Given the adjusted color wheel described
above, red is centered at value 64. Therefore the range
within which each pixel, P, must fall is (48 ≤ P ≤ 80). As
pixels are categorized, the resulting stream is binary.
Figure 11(a) shows an example image and Figure 11(b)
shows how this image has been converted to a binary
image. This second image contains only pixels that were
detected to be of a red hue.

To implement morphological filt
compared to its neighbors. Given that the image data ar-
rives one pixel at a time, structures must be created to
buffer enough pixels that will allow for these compari-
sons. These buffers will create a window. The center of
the window is the pixel under evaluation and the other
pixels in the window will contribute to whether this pixel
is output as or active inactive. In this design, a 5 × 5 win-
dow was chosen. In addition to this window, a BRAM
(Block RAM) buffer was used to guarantee the arrival to
all pixels to be at consecutive clock cycles. The FIFO

Figure 10. Hue calculator.

Copyright © 2013 SciRes. JTTs

S. WAITE, E. ORUKLU 10

(a)

(b)

Figure 11. Results of Hue detection (red). (a) Original test

inking the MicroBlaze and the IP peripheral

si

-
lo

 image; (b) Image after detecting Red Hue.

structures l
do not send a solid stream of pixels and these breaks will
affect the outcome of the morphological filtering.

Using a 5 × 5 window means that the algorithm is con-
dering pixels from 5 different rows of the image. To

allow for this, row buffers are used. A row buffer holds
all the pixels in a given row to make them available when
they are needed. Single bit registers were used to hold the
pixels within the window. Combinational logic compares
the structural element to the contents of the window and
decides if the output pixel should be active or inactive.

Figure 12 shows the block diagram for the morpho
gical filter circuit. This implementation can be used for

both erosion and dilation exploiting the fact that they are
duals of each other. Additionally the structural element is
programmable. This allows for reuse when multiple
passes are desired as in the case of combining erosion
and dilation to perform an open or close operation. This
flexibility proved to be very helpful when testing to iden-
tify the combination of operations that best filtered the
image. A structural element of a 3 × 3 disk and a single
open operation were shown to best clean up the image
while not harming the traffic signs. The first step, erosion,
would serve to eliminate many of the stray pixels com-
pletely and the second dilation step would serve to repair
any undesired degradation to the larger pixel clusters that
may be traffic signs. When the resolution of the images

Figure 12. Morphological filter implementation with FPGA.

Copyright © 2013 SciRes. JTTs

S. WAITE, E. ORUKLU 11

eing processed is increased,

ing morphologi-
ca

4.5. Labeling

orphological filtering, labeling requires a

st of labeled pixel groupings.

b larger structural elements to ultimately arrive at a li
may be needed to do adequate filtering.

Figure 13 shows the effect of perform
l filtering on the test image after hue detection. The

number of extraneous pixels has been greatly reduced
from those in Figure 11(b). This prepares the image for
the next step in the algorithm; Labeling.

Similar to the m
window where a pixel’s neighbors are observed. This
window includes 5 pixels, the one current pixel and its 4
previously visited neighbors. A row buffer is needed to
hold the labels of previously visited pixels until they
come back into the window. Figure 14 shows the block
diagram for the labeling circuit. A Label Table and Re-
cord Table are used to store the bounding box coordi-
nates for each label. As the pixels and their labels fill the
window, the update logic evaluates what the current pixels
label should be and how to update the Label Table and
Record Table. These two tables are continually updated

The Update Logic block represents a behavioral process
that determines the labels for each pixel and updates the
Label and Record table. Given that the current pixel is
active, this logic determines if this pixel will receive a
new label, if it is the meeting of two labels, or simply if it
is a pixel that should receive a previous label. After this,
the logic will determine how to update the Label and

Figure 13. Test image after morphological filtering.

Figure 14. Labeling algorithm hardware implementation.

Copyright © 2013 SciRes. JTTs

S. WAITE, E. ORUKLU 12

ecord tables. New labels simp

the
la

mple filter is implemented this number
of

4.6. Candidate Resizing

are implemented in software

s the ratio between the
or

4.7. Template Matching

comparing each of these

R le result in new entries in
both tables. Pixel meetings result in Label Table entries
pointing to different records as it is found that two entries
should merge. Previously used labels result in the Record
Table entry being grown to encompass the new pixel.

The Acknowledgement Generator (Ack) monitors
beling process to determine when labeling is complete.

This Ack signal goes high only when the Xmin, Ymin,
Xmax, Ymax values become valid. For every clock cycle
that this signal is high, these bounding box values indi-
cate another labeled blob. This output is then fed back to
the MicroBlaze via the FIFO for further processing. Fig-
ure 15(a) shows the test image fully labeled. At this
point these are the candidates to be considered for traffic
sign matching.

However if a si
 candidates is greatly reduced. By ignoring bounding

boxes that have at least one dimension smaller than a
specified threshold most of the candidates are rejected. It
was experimentally found that a blob smaller than 16 ×
16 pixels would not contain enough information to pro-
vide a good chance for any match. Figure 15(b) shows
the test image after this simple filter is applied. Only 3
candidates remain. These 3 candidates will be the only
ones considered during the scaling and matching steps.

The last two algorithm steps
running on the MicroBlaze CPU. At this point in the im-
age processing algorithm, each traffic sign candidate
must be extracted from the binary image, scaled to a
resolution that will match that of the template images,
and then compared to existing templates. To extract the
candidate, the bounding box is passed to a routine that
uses these boundaries as the edges of an image. The re-
sulting extracted image is then scaled according to the
ratio of its length and width to the length and width of
the template images. The initial resolution chosen for the
templates was 160 × 160 pixels.

The scaling algorithm calculate
iginal size of the candidate and the template size by

calculating an integer portion and a fractional part. This
avoids the use of floating point arithmetic. A new mem-
ory location is used as the storage location of the new
resized candidate. The algorithm scans the original size
candidate and sets the pixels of the scaled candidate to
active or inactive according to calculated ratios. Figure
16 depicts the extraction of the candidate from the binary
image and its scaling to match the template size.

Template Matching involves
scaled candidates to the library of template images. As

(a)

(b)

Figure 15. Labeling results.
Test image after rejection of small labels.

(a) Test image after labeling; (b)

Figure 16. Extraction and scaling of candidate sign.

exp u-

ting the Hausdorff distance between the candidate and

g to the description of the
al

lained in Section 3, this comparison is done by calc
la
the template images. Figure 17 shows some of these
template images for red color.

The implementation of the calculation of the Haus-
dorff distance is done accordin

gorithm in the previous section. For each active pixel at
location (x,y) of the scaled candidate image, the same
pixel location of the template image is examined. If the
same (x,y) location of the template image contains an
active pixel that the distance between that pixel and the
template is 0. If it is not an active pixel, then a search
begins for the nearest active pixel. This search is con-
ducted with an increasing radius. When an active pixel is
found, the radius is the distance between that pixel of the
candidate image and the template. No more distances
need to be calculated for that same pixel since all other
distances will be equal or greater.

Copyright © 2013 SciRes. JTTs

S. WAITE, E. ORUKLU 13

Once a Hausdorff distance is calculated for each tem-
plate, they can be compared to determine if there is a
go

tilization

statistics of this design imple-
vice xc5vlx110t with package

ance: Timing

ic sign recognition system
l-time. Depending on the

od match. It was observed that at times there were high
outliers and at times there was very little margin between
the lowest and the next lowest value. It was determined
experimentally that if a the minimum distance is found to
be at least 10% lower than the average of the lowest three
distances, this can be considered a good match. Because
shifting to the right by 3 bits is a simpler calculation than
dividing by 10, 12.5% was used instead of 10%. This
method avoided the impacts of high valued outliers and
clusters of low values. This provides a threshold to show
that the lowest distance is actually significantly lower
than the other values. If this threshold is not met, then no
match is found and the image is declared to not contain
any traffic signs. Figure 18 shows the test image with all
3 good candidates highlighted. The two highlighted in
magenta are the candidates that found matches according
to the description above. The blue highlighted candidate
did not find an adequate match.

5. Results

5.1. Device U

Table 1 details the usage
mented on the Virtex 5 de
ff1136 and a speed grade of –1.85% of slices have been
used, but very little of the fabric RAM and DSPs have
been used.

5.2. Perform

The key requirement for a traff
is that it should operate in rea
application, real-time may be defined very differently.
The term real time refers to a system that is able to take

Figure 17. Template images.

Figure 18. Test image after template matching.

data and process it sufficiently rapidly to be able to take
the actions required of the system. For a system, whose
purpose is to detect traffic signs while traveling on the
road, a threshold for real time could be calculated as the
time required for detecting a sign in 50 feet of travel at
65 mph. This time is 525 milliseconds. Therefore, a sys-
tem of this nature can be considered real time if it can
reliably detect a traffic sign in approximately half a sec-
ond.

Initially the template images were set to a resolution of
160 × 160 pixels. The candidates would then also be
scaled se it

ver, that the bulk of the time is contributed by the
te

 milliseconds a car could travel at
44

 to this size. This resolution was chosen becau
was large enough to contain a good amount of detail. Ta-
ble 2 shows the timing results of this system. The IP pe-
ripheral includes the all the algorithm steps that were im-
plemented in the reconfigurable hardware namely, Hue
Calculation and Detection, Morphological Filtering, and
Candidate Labeling.

The timing shown here would likely not be adequate
for the use case of the system designed here. It is clear,
howe

mplate matching part of the algorithm. The resolution
of the templates and scaled candidates have a direct im-
pact on this figure. Tables 3 and 4 show the results after
reducing the resolution of these templates to 80 × 80 pix-
els and then 40 × 40 pixels. The performance improve-
ment is dramatic.

With these substantial improvements, results are on
the same order of magnitude of the goal. With an average
detection time of 777

 miles per hour and still detect a traffic sign in 50 feet.

Table 1. FPGA device utilization summary.

Resource Number Used Percent Used

DSP48Es 3 out of 64 4%

RAMB36 EXPs 18 out of 148 12%

Slices 14,764 out of 17,280 85%

Slice Registers 12,023 out of 69,120 17%

Slice LUTS 42,330 out of 69,120 61%

Slice LUT-Flip Flop Pairs 44,712 out of 69,120 64%

Table 2. 0 pixel
template

ithm Step Time (m

 Algorithm performance details with 160 × 16
s.

Algor sec)

IP Peripheral 114

Candidate Scaling (a 114

g (93,9

me (avg) 94,1

vg)

Template Matchin avg) 00

Total Ti 50

Copyright © 2013 SciRes. JTTs

S. WAITE, E. ORUKLU 14

Table 3. Algorithm perform el
templates.

Algorithm Step Time (msec)

ance details with 80 × 80 pix

IP Peripheral 114

Candidate Scaling (avg) 30.8

Tem vg)

T)

plate Matching (a 6500

otal Time (avg 6641

Table 4. Algorithm performance details with
template

40 × 40 pixel
s.

Algorithm Step Time (msec)

IP Peripheral 114

Ca

Temp avg)

ndidate Scaling (avg) 8.3

late Matching (655

Total Time (avg) 777

Given that the f Hue Calculation, Hue
Detection, Filtering, and L g were
one in the IP peripheral in only 114 milliseconds, wher-

in software running on a 100Mhz CPU, could
only be perform illiseconds at best, it is clear
that the par tation significa orms
the serial sof entation.

5.3. Per acy

An important f curacy of the system is the
orientation gns with reference he cam-
ra. When signs are perpendicular to the viewer, the sys-

here the traffic signs
are tilted with respect to the viewer. Table 6 details the

ample images. The stop

 algorithm steps o
Morphological abelin

d
eas the Template Matching step, on the other hand, im-
plemented

ed in 655 m
allel implemen ntly outperf

tware implem

formance: Accur

actor to the ac
of the traffic si to t

e
tem detection performance is very accurate as shown in
Table 5, even with the low resolution template. If the sign
is skewed or tilted, the performance could be affected. To
evaluate how sensitive this system was to these perturba-
tions, images were processed that contained them. Figure
19 shows an image similar to the one used in previous
examples, but with the traffic signs at an angle to the
viewer. Figure 20 is an example w

results of processing these two ex
sign is detected successfully in both of the higher resolu-
tion template versions but not with the lowest resolution.

6. Conclusion

Automotive technologies continue to explore new ways to
keep drivers safe. Recently, technologies have emerged
that monitor more complex parameters. This paper de-
scribes one such system. The implementation of the traf-
fic sign recognition system uses Xilinx’s EDK toolkit to

Figure 19. Test image with skewed signs.

Figure 20. Test image with tilted signs.

Table 5. Algorithm accuracy.

Sample Image Res. 1602 Res. 802 Res. 402

Do-Not-Enter Det. Det. Not Det.

Prohibition Det. Det. Det.

Wrong Way 1 Det. Det. Det.

Wrong Way 2 Det. Det. Det.

Yield Det. Det. Det.

Sample Image Res. 1602 Res. 802 Res. 402

Table 6. Algorithm robustness.

Stop Sign (skewed) Det. Det. Not Det.

Stop Sign (tilted) Det. Det. Not Det.

create ow that is partitioned across
hardware and software. An embedded processor is used to
receive RGB pixel data from a PC and to forward it to a
hard pheral. peripheral in responsible for
extracting red pixels, cleaning up the resulting binary im-

ossible candidates for matching to traf-
c sign templ

the embedded
ated ay of im e i n-
tation describe ngs within 50

 an image processing fl

ware IP peri This

age, and labeling p
fi ates. These candidates are passed back to

 processor where they are scaled and evalu-
against an arr

d here is able to
template

 detect the si
ages. Th mpleme

Copyright © 2013 SciRes. JTTs

S. WAITE, E. ORUKLU 15

feet of distance at a travel velocity of 44 miles per hour or
less.

CES

REFEREN
[1] J. Urry, “The ‘System’ of Automobility,” Theory, Culture

& Society, Vol. 21, No. 4-5, 2004, pp. 25-39.
doi:10.1177/0263276404046059

[2] E. Eckermann, “World History of the Automobile,” Soci-
ety of Automotive Engineers, Warrendale, 2001.
doi:10.4271/R-272

[3] “Transportation: Motor Vehicle Accidents and Fatalities,”
The 2012 Statistical Abstract, US Census Bureau, Suitland,
2011.

[4] “Population,” The 2012 Statistical Abstract, US Census
Bureau, Suitland, 2011.

[5] “EuroFOT Study Demonstrates How Driver Assistance
Systems Can Increase Safety and Fuel Efficiency,”
FOT, 2012.
http://www.eu events/eurofot_stu
dy_demonstra e_systems_can_in

Schneiders
 Fusion and Reasoning

 Euro-

rofot-ip.eu/en/news_and_
tes_how_driver_assistanc

crease_safety_and_fuel_efficiency_acr.htm

[6] M. Meuter, C. Nunn, S. M. Gormer, S. Muller-
and A. A. Kummert, “A Decision
Module for a Traffic Sign Recognition System,” IEEE
Transactions on Intelligent Transportation Systems, Vol.
12, No. 4, 2011, pp. 1126-1134.
doi:10.1109/TITS.2011.2157497

[7] C. Lai, “An Efficient Real-Time Traffic Sign Recognition
System for Intelligent Vehicles with Smart Phones,” Pro-
ceedings of 2010 International Conference on Technolo-
gies and Applications of Artificial Intelligence, Hsinchu,
18-20 November 2010, pp. 195-202.
doi:10.1109/TAAI.2010.41

[8] V. Andrey, “Automatic Detection and Recognition of
Traffic Signs Using Geometric Structure Analysis,” Pro-
ceedings of SICE-ICASE International Joint Conference,
Busan, 18-21 October 2006, pp. 1451-1456.
doi:10.1109/SICE.2006.315823

[9] D. Soendoro and I. Supriana, “Traffic Sign Recognition
with Color-Based Method Shape-Arc Estimation and
SVM,” Proceedings of 2011 International Conference on
Electrical Engineering and Informatics, Bandung, 17-19
July 2011, pp. 1-6. doi:10.1109/ICEEI.2011.6021584

[10] ao, “Real-Time Speed
Limit Sign Detection and Recognition from Image Se-
quences,” Proceedings of 2010 International Conference
on Artificial Intelligence and Computational Intelligence,
Shenyang, 23-24 October 2010, pp. 262-267.

 Y. Liu, H. Yu, H. Yuan and H. Zh

doi:10.1109/AICI.2010.62

 R. Kastner, T. Michalke, T[11] . Burbach, J. Fritsch and C.
Goerick, “Attention-Based Traffic Sign Recognition with
an Array of Weak Classifiers,” Proceedings of 2010 IEEE
Intelligent Vehicles Symposium, San Diego, 21-24 June
2010, pp. 333-339. doi:10.1109/IVS.2010.5548143

 an

 System on
dle East Technical University,

docid

en/contin

[12]
System for Real-Time Traffic Sign Recognizing,” 3rd In-
ternational Design and Test Workshop, IDT 2008,

Monastir, 20-22 December 2008, pp. 273-276.

[13] M. Muller, A. Braun, J. Gerlach, W. Rosenstiel, D. Nien-
huser, J. M. Zollner and O. Bringmann, “Design of

 M. A. Souki, L. Boussaid and M. Abid, “An Embedded

Automotive Traffic Sign Recognition System Targeting a
Multi-Core SoC Implementation,” Design, Automation &
Test in Europe Conference and Exhibition (DATE), Dres-
den, 8-12 March 2010, pp. 532-537.

[14] H. Irmak, “Real Time Traffic Sign Recognition
FPGAs,” M.S. Thesis, Mid
Ankara, 2010.

[15] Frost & Sullivan, “Development of Low-cost DAS Tech-
nologies to Help Reach European Union’s Target to In-
crease Road and Driver Safety,” 2011.
http://www.frost.com/prod/servlet/press-release.pag?
=251082001

[16] Continental AG, “MFC 2 Multi-Function Camera,” Data-
sheet, 2009.
http://www.conti-online.com/generator/www/de/
ental/industrial_sensors/themes/mfc_2/mfc_2_en.html

[17] Continental AG, “Traffic Sign Recognition,” 2012.
http://www.conti-online.com/generator/www/de/en/contin
ental/automotive/general/chassis/safety/hidden/verkehrszei
chenerkennung_en.html

[18] J. Markoff, “Smarter than You Think: Google Car Drives
Itself,” The New York Times, October 2010.
http://www.nytimes.com/2010/10/10/science/10google.ht
ml?_r=1

[19] A. C. Clark and E. N. Wiebe, “Color Principles—Hue,
Saturation and Value,” North Carolina State University,
Raleigh, 2002.
http://www.ncsu.edu/scivis/lessons/colormodels/color_mo
dels2.html

[20] D. M. Rouse and S. S. Hemami, “Quantifying the Use of
Structure in Cognitive Tasks,” Proceedings of SPIE, Vol.
6492, Human Vision and Electronic Imaging XII, 649210,
San Jose, 12 February 2007. doi:10.1117/12.707539

[21] J. P. Serra, “Image Analysis and Mathematical Morphol-
ogy,” Academic Press, Inc., Orlando, 1983.

[22] D. G. Bailey, “Design for Embedded Image Processing on
FPGAs,” Wiley-IEEE Press, Singapore, 2011.
doi:10.1002/9780470828519

[23] S. Mignot, “A Hardware-Oriented Connected-Componen
Labeling A

t
lgorithm,” Technical Report, GEPI—Obser-

vatoire de Paris, Paris, 2006.

[24] J. Chen, M. K. Leung and Y. Gao, “Noisy Logo Recogni-
tion Using Line Segment Hausdorff Distance,” Pattern
Recognition, Vol. 36, No. 4, 2003, pp. 943-955.
doi:10.1016/S0031-3203(02)00128-0

[25] E. Baudrier, F. Nicolier, G. Millon and S. Ruan, “Binary-
Image Comparison with Local-Dissimilarity Quantifica-
tion,” Pattern Recognition, Vol. 41, No. 5, 2008, pp. 1461-
1478. doi:10.1016/j.patcog.2007.07.011

[26] C. Y. Fang, S. W. Chen and C. S. Fuh, “Road-Sign Detec-
tion and Tracking,” IEEE Transactions on Vehicular Te-
chnology, Vol. 52, No. 5, 2003, pp. 1329-1341.
doi:10.1109/TVT.2003.810999

[27] M. F. Hashim, P. Saad, M. R. M. Juhari and S. N. Yaakob,

Copyright © 2013 SciRes. JTTs

http://dx.doi.org/10.1109/TITS.2011.2157497
http://dx.doi.org/10.1109/TITS.2011.2157497
http://dx.doi.org/10.1109/TAAI.2010.41
http://dx.doi.org/10.1109/TAAI.2010.41
http://dx.doi.org/10.1109/SICE.2006.315823
http://dx.doi.org/10.1109/SICE.2006.315823
http://dx.doi.org/10.1117/12.707539
http://dx.doi.org/10.1002/9780470828519
http://dx.doi.org/10.1002/9780470828519

S. WAITE, E. ORUKLU

Copyright © 2013 SciRes. JTTs

16

rtificial Life and Ro

d Image

2008, pp. 346-359. “A Face Recognition System Using Template Matching
And Neural Network Classifier,” Proceedings of 1st In-
ternational Workshop on A botics,

Kangar, May 2005, pp. 1-6.

[28] H. Bay, A. Ess, T. Tuytelaars and L. Van Gool, “Speeded-
Up Robust Features (SURF),” Computer Vision an

Understanding, Vol. 110, No. 3,
doi:10.1016/j.cviu.2007.09.014

[29] “Embedded System Tools Reference Manual EDK (v
13.2),” Xilinx, 2011.
http://www.xilinx.com/support/documentation/sw_manual
s/xilinx13_2/est_rm.pdf

