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ABSTRACT 

A hypothetical electric and magnetic induction tensor is considered in an anisotropic medium. The sources are magnetic 
dipoles. In such a medium, constitute parameters can be calculated by combining electric and magnetic field measure- 
ments. Constitutive parameters are not a scalar in this case. They are tensors, so parameters have at least both horizontal 
and vertical components in a uniaxial medium. These calculated parameters from the field measurement are horizontal 
and vertical conductivity, permittivity, and magnetic permeability. Operating frequency range is also quite large. It is up 
to 4 GHz. A hypothetical instrument should measure gradient fields both electric and magnetic types as well. 
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1. Introduction 

Conductivity, permittivity, and permeability of a medium 
are known constitutive parameters [1]. These parameters 
are used to interpret the subsurface with different geo- 
physical methods and well-logging types. Relative mag- 
nitudes of these parameters are quite distinct as very 
well-known properties of rocks [2-5]. Since these para- 
meters seldom vary for most rocks and minerals, most 
scientists generally assume dielectric permittivity and 
magnetic permeability of the medium as free space for 
convenience. In an isotropic medium, constitutive para- 
meters are the same in all directions; thus, they are sca- 
lars in that case. However, in an anisotropic medium 
these parameters depend on their directions, so they must 
at least be a vector. In the present study, an anisotropic 
medium is considered; thus, the determination of this 
kind medium requires five parameters in a vertical well. 
These are horizontal and vertical conductivities, permit- 
tivities, and magnetic permeability. This kind of anisot-
ropy is known as a uniaxial anisotropy. In a Cartesian co- 
ordinate system, constitute parameters are the same in the 
x and y directions, but they are different in the z direction. 
If conductivity values are different in the x, y and z direc- 
tions, this sort of medium is called as a biaxial medium. 

In induction well logging, the electric anisotropy af- 
fects field measurements. Klein et al. [6] realized this ef- 
fect and they stated that the possible reason for high 
reading could be the electrical anisotropy. Obviously, the 

effects of electrical anisotropy make interpretation erro- 
neous. To deal with this effect and eliminate from the 
data, the electric anisotropy is considered. 

In a wellbore, the field is also affected from a relative 
deviation angle. These effects can be included/extracted 
to/from the fields by rotating the Euler’s rotation matrix. 
Zhdanov et al. [7] studied the tensor well logging and 
they generalized Doll’s idea for an anisotropic medium. 
They showed that from the field components one can cal- 
culate not only conductivity values (horizontal and verti- 
cal) but also relative deviation and bearing angles. They 
used imaginary components of magnetic fields. Zhang et 
al. [8] showed that using field measurements one can 
determine relative angles such as relative dip and relative 
bearing as well. In general, there are three independent 
coordinate systems: a well, earth, and instrument coordi- 
nate systems. In this study, I consider a whole space (a 
uniaxial medium) and instrument axis are coincided with 
each other’s for the simplicity. 

Many scientist [9-13] studied uniaxial media due to its 
simplicity. There have been a few authors studied a bi- 
axial anisotropic medium, which can be characterized by 
its conductivity in each different directions in a Cartesian 
coordinate system [14-16]. 

A very few authors have studied electric field, and 
electric and magnetic field measurement together. Gri- 
benko and Zhdanov [17] considered combination of elec- 
tric and magnetic fields. They stated that the combination 
of the electric and magnetic field measurement gives 
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  1ˆ better results with respect to conductivity distribution of 
a well. Here, the idea of combination of electric and mag- 
netic field can be extended to an induction logging prob- 
lem in an anisotropic medium. 

In this study, I combine electric and magnetic fields in 
an anisotropic whole space. This is a hypothetical in- 
strument. I demonstrate that constitutive parameters can 
be calculated by combining electric and magnetic field 
measurement in an anisotropic medium. Parameters are 
vertical and horizontal conductivities, dielectric permitti- 
vities, and magnetic permeability. These parameters cha- 
racterize the field behaviors in a corresponding medium. 
In general, our aim is to measure field components and 
estimate those parameters, which characterize the field 
behaviors. In the present study, neither relative dip nor 
bearing is considered in the medium. In general, this hy- 
pothetical instrument should measure full electric and 
magnetic field components and their gradient in a well. 
Zhdanov [18] gave a definition of a gradient type meas- 
urement in an anisotropic medium for magnetic field. 
The same idea can also be extended to electric field mea- 
surement as well. 

2. Maxwell’s Equations in an Anisotropic 
Medium 

Moran and Gianzero [11] studied induction well logging 
in a uniaxial anisotropic medium. Maxwell’s equations 
are given in such a medium as: 

ˆ  H Eσ

0 0E H Mi i

,               (1) 

   

0 0
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v vi



,          (2) 

where E is the electric field (V/m), H is the magnetic 
field (A/m). M is a magnetic dipole moment (Am2). The 
conductivity tensor in a transversely isotropic (TI) me- 
dium is: 
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where h  is the horizontal component and v  is the 
vertical component of conductivity tensor. h  and v  
are the horizontal and vertical permittivity of the medium, 
respectively. The free space dielectric permittivity is 

0  F/m. The free space magnetic permea- 
bility is 0  H/m. The transverse isotropic me- 
dium is excited through an electromagnetic field generated 
by magnetic dipoles with unit moments. The time depen- 
dence is 

128.854 10 
74π 10μ  

e .i t



  f is the frequency of a source in Hertz. 
Moran and Gianzero [11] solved Equations (1) and (2) 

by using the Hertz potential. In this paper, I assume that 
the dielectric permittivity and magnetic permeability of 
the medium are not free space. In this situation, electric 
and magnetic field components can be written: 

  E πn
m h hi i   σ

ˆ

,          (4) 

  H πn
m iσ

π 

0
r

,               (5) 

where  is a Hertz vector and  is a scalar potential. 
The medium dielectric permittivity and magnetic per- 
meability are h h  r, 0v v   and 0r     , 
respectively. h

r  and v
r  stand for the relative dielec- 

tric permittivity, r  represents a relative magnetic per- 
meability. Super and subscripts depict a magnetic mo- 
ment and receiver direction along the corresponding axis; 
thus, n and m can be x, y, and z, in Equations (4) and (5). 

In this paper, I use as the following notation: Bold face 
symbols or characters with a hat stand for tensors, while 
bold face symbols or characters without a hat illustrate 
vectors. Any characters with italic are a scalar. Therefore, 
calculations involve some dyad algebra such as dyadic- 
vector dot product in Equations (4) and (5). Next two 
sections investigate electric and magnetic field compo- 
nents. 

3. Electric Induction Tensor 

Electric induction tensor has 9 components in a general 
case. Three orthogonal receivers and transmitters are 
elongated with their corresponding axis in a Cartesian 
coordinate system. The sources are magnetic dipoles and 
receivers are electromagnetic sensor or coils. To derive 
the electric field components is a straightforward calcu- 
lation that will not be repeated here. Reader can find all 
electric components from [19-21]. 

The electric induction tensor can be represented in a 
matrix form as: 


ˆ

x y z
x x x
x y z
y y y
x y z
z z z

E E E

E E E

E E E


   
 
 

E ,              (6) 

where superscripts are magnetic dipole orientations and 
subscripts are receiver orientations. Bear in mind that the 
sources are magnetic dipoles. Figure 1 displays a hypo- 
thetical electric and magnetic induction tensor. Figure 2 
shows the behavior of electric field components in a x-y 
plane. For field simulation, the horizontal and vertical 
conductivities are 0.1 and 0.025 S/m, respectively. The 
operating frequency is 20 kHz. The field computation is 
conducted with free space dielectric permeability and 
magnetic permeability. M is a magnetic dipole with a 
unit. One can realize that the symmetrical fields have the 
same amplitude, but different sings. 

4. Magnetic Induction Tensor 

In this section, a magnetic induction tensor is investi- 
gated. As the electric induction tensor, the magnetic in-  
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Figure 1. A sketch of a triaxial induction logging instrument 
is in a well. The physical medium properties are conductiv- 
ity, dielectric permittivity, and magnetic permeability. The 
sources are magnetic dipoles. Receives are both magnetic 
and electric field sensors. Super and subscripts indicate the 
direction of transmitter and receiver, respectively (n and m 
can be x, y and z). Conductivity and dielectric permittivity 
are tensors, since they have principal values at least two va- 
lues. The magnetic permeability is assumed a scalar. 
 
duction tensor has also 9 components. It can be shown in 
a matrix form as: 

ˆ H

 
 
 
 
 

x y z
x x x
x y z
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H H H
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,             (7) 

where the notation is the same as the electric induction 
tensor. Three transmitter and receiver coils are oriented 
along the x, y, and z-axes in a Cartesian coordinate sys- 
tem. Derivation of magnetic field components is a 
straightforward calculation that will not be repeated here. 
Magnetic field of analytic components can be found from 

[7,22]. 
The magnetic induction tensor is symmetric. Behavior 

of magnetic field components is displayed in Figure 3. 
The uniaxial model parameters are the same as the pre- 
vious electric field calculation. Thanks to commercially 
available 3DEX and Rt Scanner induction well logging 
instruments reads a lot of data at different frequencies for 
various field components. That means considerable amount 
of data are available. From 3DEX and Rt Scanner data, 
conductivities, relative dip and bearing angles can be 
estimated [8]. 

In Figure 4, each components of magnetic induction 
tensor are displayed in volumetric 3-D at 20 kHz. In all 
panels, imaginary parts of the magnetic field are normal- 
ized by absolute value of the corresponding components. 
The medium conductivities are: h  1/40 S/m and 

h  1/80 S/m. To able to see all panels, 0.1 value used 
for off diagonal components. As for diagonal compo- 
nents, I use 0.0045 value. Red and blue colors show sign. 
Blue used for negative, while red used for positive values. 
The behaviors of components are quite different from 
each other’s. 

5. Estimation of Earth Parameters: 
Conductivity, Dielectric Permittivity, and 
Magnetic Permeability 

I consider a hypothetical multi-component induction well 
logging instrument. As mentioned previously, the instru- 
ment has magnetic dipoles as a source in the x, y and z 
directions. Receivers should measure magnetic and elec- 
tric field components. It is a combination of electric and 
magnetic induction tensor components. It requires some 
tensor-gradient measurements. From this hypothetical 
electric and magnetic induction tensor-gradient measure- 
ment, one can estimate earth (or formation) parameters. 
There are many different formulas are given in Table 1. 
In the first column of the table is a magnetic moment 
direction, while the first row depicts earth parameters. A 
simple derivation is given in Appendix A. From Table 1, 
it is easy to see that there are many different formulas for 
estimating the earth parameters. One can calculate con- 
ductivities and dielectric permitivities in the horizontal 
and vertical directions. These formulas can be useful 
when one of these components is very noise, the other 
one can be used for calculating the corresponding earth 
parameters in a practical situation. They may be useful 
for checking parameters against each other using differ- 
ent field measurements. This method will obviously in- 
crease the quality of the formation evaluation. Table 1 
has formulas for conductivities and dielectric permittivi- 
ties. Appendix B derives formulas for magnetic perme- 
ability. These formulas are given in Table 2. In both ta- 
bles,   and   stand for real and imaginary compo- 
nents of the corresponding field, respectively. 
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Figure 2. Real parts of the magnetic field components are calculated in an anisotropic medium with 20 kHz operating fre-
quencies at z = 1 m. The horizontal and vertical conductivities are 1/40 and 1/80 S/m, respectively. It is a top view of a whole 
space. 
 

 

Figure 3. Imaginary parts of the magnetic field components are calculated in an anisotropic medium with 20 kHz operating 
frequencies at z = 1 m. The horizontal and vertical conductivities are 1/40 and 1/80 S/m, respectively. It is a top view of the 
medium. 
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Figure 4. Volumetric 3-D representation of the magnetic tensor components at value 0.1 (off diagonal) and 0.0045 (diagonal). 
The medium is conducted with σh = 1/40 S/m and σh = 1/80 S/m. Blue colors display negative, while red ones depict positive 
values of imaginary part of the magnetic field. 
 
Table 1. Magnetic moments are in the first column. The superscripts show the direction of the magnetic moments. The rest of 
the formulas are apparent conductivities and dielectric permittivities.   and   depict for real and imaginary components 
of the corresponding field. 
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Numerical Example 

In a uniaxial medium, I consider as the following pa- 
rameters for numerical calculation: 

The model response in a whole space is calculated by a 
magnetic dipole oriented in the y direction. Electric and 
magnetic field components and their space derivatives 
are calculated by using analytic formulas. For constitute 
parameter calculation, a group of the formulas given in 
Table 1 are used, which are on the second rows. All pa- 
rameters are related to a uniaxial medium estimated, cor-
rectly. Figure 5 displays the result. Note that these are  

0.1h 
0.025

 and 

v  S/m; r  and r ; r27h 7v 255  . The 
frequency range for calculation begins at 10 kHz and it 
expands up to 4 GHz. The distance between transmitter 
and receivers is 1.6 m as a typical induction T-R distance.  
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Table 2. Magnetic moments are in the first column. The superscripts show the direction of the magnetic moments. All for-
mulas in the table can be used for calculating apparent magnetic permeability. 
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Figure 5. Constitutive parameters are horizontal and vertical conductivity, relative dielectric permittivity and magnetic per-
meability of the medium. The magnetic moment direction is in the y direction. On each panel, solid, dotted, and dashed lines 
show the result. The calculation done with the formulas are given on the second row in Table 1. Solid lines illustrate horizon-
tal values of both conductivity and dielectric, while dotted and dashed lines display vertical values of those parameters. The 
frequency range is quite large between at 10 kHz and 4 GHz. The medium has conductivity values with σh = 0.1 and σv = 0.025 
S/m; relative dielectric values with  and h

r 27 v
r 7 ; and relative magnetic permeability μr = 255. The distance trans-

mitter and receivers is 1.6 m as a typical induction T-R distance. 
 
only some simple formulas in Tables 1 and 2. I do not 
use any kind of optimization techniques. However, the 
formulas require some gradient type measurement not 
only for magnetic, but also electric field. 

In Figure 5, dotted and dashed lines show horizontal 
parameters on the first and in the middle panels. There 
are two formulas in Table 1 in the middle panel. When 
one use the upper formula, the result is negative. This is 
illustrated with dashed lines. The lower formula gives 
positive values. This is showed with dotted lines. As for 
the horizontal parameters, they are depicted with a solid  

line in Figure 5. As seen from Table 1, the real parts of 
the formulas give conductivity values. Dielectric values 
can be calculated from the imaginary parts of the for- 
mulas. 

6. Conclusion 

I have considered a hypothetical induction instrument in 
a uniaxial medium. In such a medium, one can calculate 
constitutive parameters such as conductivity, dielectric 
permittivity, and magnetic permeability. Nowadays, 3DEX 
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and Rt Scanner technology is quit mature, but considered 
a suggested hypothetical instrument may be useful for 
formation evaluation since conductivity, dielectric per- 
mittivity and magnetic permeability values are important 
with respect to petrophysical parameters, because they 
are related to water saturation, porosity, and permeability. 
The formulas developed the present study are exact, since 
they have derived from Maxwell’s equations. I have not 
used any kind of approximation in order to derive these 
parameters. Application of this method requires some 
gradient type field measurement, which might be the 
most difficult part of this application. 
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Appendix A 

Equation (1) can explicitly be written 
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, (A.1) 

where ax, ay and az are the unit vectors in a Cartesian 
coordinate system. H and E are the components of cor- 
responding fields either magnetic or electric. Superscripts 
stand for the magnetic moment direction, while sub- 
scripts stand for the field directions. The first, the electric 
and magnetic field components will be considered gener-
ated by an x-directed magnetic dipole. For this purpose, I 
rewrite Equation (A.1) and I have  
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and 
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Equations (A.2), (A.3) and (A.4) allow us to estimate 
horizontal and vertical conductivities from electric and 
magnetic fields. Continuing derivation yields  
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The real part of Equations (A.5), (A.6) and (A.7) gives 

conductivity and the imaginary part of the same equation 
yields to permittivity. Continuing setting up Table 1, elec- 
tric-magnetic field components generated by a y-directed 
magnetic dipole gives three more formulas. Let us look 
at Equation (1) again, 
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and from Equation (A.8) I can write as the following 
equations, 
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Then parameters can be estimated as the following ex- 
pressions 
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Conductivities can be calculated from the real part of 
Equations (A.12), (A.13) and (A.14) and the imaginary 
part of the same equation may be used for estimating 
dielectric constant. 

Further derivation using a z-directed magnetic dipole 
gives three more formulas. Let continue the derivation 
from Equation (1),  
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Proceeding with some very simple algebra allows us to 
have other parameters. From Equation (A.15) it is very 
easy to have  
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Again, having conductivities and dielectric permittivites 
are easy. From the last three equations I can derive as the 
following expressions: 
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From Equations (A.5), (A.6), (A.7), (A.8), (A.9), 
(A.10), (A.12), (A.13), and (A.14) apparent conductivity 
and permittivity can be calculated. For this purpose, the 
real part of the Equations (A.19) and (A.20) are used. 
Horizontal and vertical conductivities may be estimated 
with 

.         (A.23) 

Similar to previous two formulas, apparent dielectric 
permittivities can be  

zz
yz

h z
x

HH

y z

i E




  
        
 
 
 

,         (A.24) 

and 

z z
y x

v z
z

H H

x y

i E




   
        
 
 
 

r

.         (A.25) 

Further, consider relative permittivity as 0h h  
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and    and rewrite the last two equations, I have  
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Appendix B 

The formulas for the magnetic permeability estimation 
can be derived by using Equation (2). Rewrite Equation (2) 
explicitly with x directed a magnetic dipole. Bear in mind 
that the magnetic permeability is scalar. I can write it as 
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     

The first component of Equation (A.28) with x-di- 
rected magnetic dipole with M a unit moment, from the 
previous step I can proceed with  
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and keep on derivation, which yields 
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From Equation (A.30), it is easy to have magnetic 
permeability: 
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          (A.31) 

It can be derived some formulas for the magnetic per- 
meability by using the same procedure as on the previous 
component derivation. 
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From the last component of the corresponding vector, 
one can get 
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Then, carry on the derivation 
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yields one more formula for the magnetic permeability of 
the medium, which is 
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Considering the y component of the vector, then keep 
on 
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which yields  
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then it is easy to have  
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When I apply similar procedure, the rest of the mag- 
netic formulas may be derived: 
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