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ABSTRACT 
One fundamental problem in computer vision and image processing is modeling the image formation of a camera, i.e., 
mapping a point in three-dimensional space to its projected position on the camera’s image plane. If the relationship 
between the space and the image plane is assumed to be linear, the relationship can be expressed in terms of a transfor-
mation matrix and the matrix is often identified by regression. In this paper, we show that the space-to-image relation-
ship in a camera can be modeled by a simple neural network. Unlike most other cases employing neural networks, the 
structure of the network is optimized so as for each link between neurons to have a physical meaning. This makes it 
possible to effectively initialize link weights and quickly train the network. 
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1. Introduction 
A camera can be considered as a device that records ob-
jects in three-dimensional (3D) space in the form of their 
two-dimensional (2D) images. In some technical fields 
where the use of a camera is required, such as computer 
vision and image processing, accurate and efficient mod-
eling of the camera’s image formation process is a basic 
problem that must be solved.  

For a camera installed in a certain task, the image for-
mation in the camera is characterized with the internal 
and external parameters of the camera [1]. The internal 
parameters include focal length, optical image center, 
and lens distortion coefficients, whereas the external pa-
rameters are those for specifying the geometric position 
and orientation of the camera. The camera model para-
meter determination process is called camera calibration 
[2]. Once a camera is calibrated, it is possible to compu-
tationally relate objects in 3D world and their projections 
on the camera’s image plane.  

Camera modeling and calibration have received great 
attention in photogrammetry, computer vision, machine 
vision, and image processing communities particularly 
since 1980s as cameras and computers became smaller, 
cheaper, more powerful, and easier to use than before 
thanks to the rapid technical advances in electronics. The 
most widely used method is mathematically estimating 
the parameters of a camera model that best relate control 
points in 3D world and their corresponding 2D image 

points in the model [3-5]. To increase the accuracy of 
camera calibration, control points must be collected 
evenly from the space viewed by the camera. However, it 
is difficult to make accurate position measurements of 
the 3D points. Methods of automatic calibration [6, 7] 
and using planar points [7, 8] have been proposed to 
overcome this difficulty. Existing camera modeling and 
calibration techniques are well reviewed in [9, 10].    

The relationship between the coordinates of a 3D point 
and the coordinates of its corresponding 2D image point 
is expressed in terms of a 3×4 matrix when the relation-
ship in a camera is assumed linear. The elements of this 
transformation matrix can be determined by a regression 
technique using six or more control points and their im-
age points.  

In this paper, we show that the relationship between 
3D points and their 2D images can be expressed by a 
neural network (NN). The model parameter can then be 
learned by training the NN. The proposed method is 
quite different from most existing NN-based methods for 
camera calibration, where NNs are usually used for iden-
tifying unknown parts which are not accommodated in a 
camera model. For example, in [11], an NN is used for 
learning camera’s nonlinearity after linear parameter 
estimation. The nonlinearity is mostly due to lens distor-
tion [12]. If the linear NN model of this paper is com-
bined with an existing NN for learning nonlinearity, a 
complete camera model can be constructed with only 
NNs. 
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2. Image Formation Model 
2.1. Pin-hole Model 
Pin-hole camera model is widely used to relate the image 
coordinates of an object point visible by a camera and the 
coordinates of the point in the world coordinate system 
by distortion-free linear mapping [1, 2]. All rays of sight 
from 3D points in a scene are assumed to pass one par-
ticular spatial point, pin-hole, in the model. Figure 1 
shows the pin-hole camera model, where the following 
relationships are assumed  
 

Ou i i= + , Ov j j= + ,          (1) 

 
CP RP T= +                 (2) 

 
for a 3D point P =[x y z]T in the world coordinate system 
{W}, its corresponding representation PC =[xC yC zC]T in 
the 3D camera coordinate system {C}, the projected 
point at [u, v]T on the 2D image plane, and the optical 
image center at [iO jO]T in the row-column image frame 
{U}. A 3D point in {W} can be transformed to the re-
presentation in {C} by a 3×3 rotation matrix R and a 
translation vector T.   

 
 Figure 1. Pin-hole camera model.  

 
The coordinates of an image point are computed in the 

model from the 3D coordinates in {C} by  
   

/C Ci f x z= − , /C Cj f y z= − ,        (3) 
 

where f is the focal length. Combining above equations 
leads us to the following equation  
  

  
 
 
                                           (4) 
 
 
        

2.2. Neural Network Implementation  
A feedforward neural network is capable of computing 
output values from given input values by propagating 
weighted values through links between neurons. We 
want to design an NN as shown in Figure 2 that can 
represent the image formation process described in Sec-
tion 2.1. However, it is not possible to build a network in 
this structure directly from Equation (4) due to the scale 
factor s, which is the coordinate zC of a 3D point. Instead, 
Equation (4) leads us to a structure shown in Figure 3. 
Figure 4 is a practical network implementation of Fig-
ure 3. 
 
 
 
      
 
 
 
Figure 2. Image formation model by a neural network. 
 

 
 
 
 
 
 

 
Figure 3. NN built from pinhole camera model. 

 
 
 
 
 
 
 
 

  
 
 
 
 
  
 

Figure 4. Implementation of the NN of Figure 3. 
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Like most other NNs and their applications, the key 
issue of the NN implementation presented in Figure 4 is 
determining the weight of each link between neurons. 
From Equation (4), the physical meaning of wnm, a link 
weight from neuron m to neuron n, can be specified as 

 
 
 
 
                                         ( 5 ) 
 
  

 
    
where rpq are elements of rotation matrix R, and tp are 
elements of translation vector T; 1≤ p, q ≤3. 

The network shown in Figure 4 has a quite simple 
structure. However, it is not simple to train the NN be-
cause we do not know the scale factor s for a given 3D 
point P. We know only the projected image coordinates u 
and v for a control point P. If the desired output is not 
available, it is not possible to train the network using a 
supervised learning algorithm, such as gradient descent 
optimization [13]. We thus need to develop a method to 
train the network in the structure of Figure 4.  

An error function is defined as 
 
                                         (6) 
                     

where e1=o1/o3−u,  e2=o2/o3−v,  e3=((o1o2)/(uv))1/2−o3 
for three computed output neuron values, o1, o2, and o3. 
Note that the error term of the 3rd output neuron, e3, is 
derived from 
 
                                           (7) 
           
Then, the weights are trained by gradient descent. For a 
weight wnm, n=1 or 2, as shown in Figure 5, a chain rule 
is applied to the given error E as 
  
  
                                           (8) 
    
          
where, assuming a linear activation function for output 
neurons, 

n n
E e e∂ ∂ = , 

3
1 /

n n
e o o∂ ∂ = , 1

n n
o g∂ ∂ = , 

n nm n
g w o∂ ∂ = . 

 For the case of n=3, on the other hand, the following 
equation can be obtained by gradient descent,  

  

                            .            (9) 
             

 
 

  
  
     

 
 
        
Figure 5. Connection between an input neuron m and an 
output neuron n. 

3. Numerical Example  
A camera is assumed to be located at x=−200, y=500, 
z=2000 and oriented by Z-Y-X Euler angles of θz=45°, 
θy=−30° and θx=120° in the world coordinate system {W}. 
It is also assumed that the focal length is f=25, the coor-
dinates of the optical image center is (258, 204), and the 
dimension of a pixel is 0.023×0.023. This camera setup is 
drawn in Figure 6. An NN can then be built to express 
the image formation process of the camera as presented in 
Figure 7. 
 
 
 
 
 
 
 
 
 
 
    

Figure 6. Camera setup assumed as an example. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Neural network resulted from the camera setup. 
 

4. Concluding Remarks 
We have shown that a feedforward neural network can be 
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constructed to express the image formation process of a 
camera. The network constructed in this paper is in a 
quite simple structure with four input neurons and three 
output neurons of linear activation functions. Although 
most existing applications of NNs to camera modeling 
have focused on nonlinear lens distortion problem, the 
network of this paper models the linear perspective 
transformation. A method to learn the link weights be-
tween neurons of the proposed network is also described. 
The entire image formation of a camera may be modeled 
accurately if the proposed network is combined with an 
existing NN-based method developed for correcting lens 
distortion.   
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