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ABSTRACT 

A large number of criteria has been developed to predict material instabilities, but their choice is limited by the lack of 
existing comparison of their theoretical basis and application domains. To overcome this limitation, a theoretical and 
numerical comparison of two major models used to predict diffuse necking is present in this paper. Limit Point Bifurca- 
tion criterion is first introduced. An original formulation of the Maximum Force Criterion (MFC), taking into account 
the effects of damage and isotropic and kinematic hardenings, is then proposed. Strong connections are shown between 
them by comparing their theoretical basis. Numerical Forming Limit Diagrams at diffuse necking obtained with these 
criteria for different metallic materials are given. They illustrate the theoretical link and similar predictions are shown 
for both models. 
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1. Introduction 

Environmental constraints lead major mechanical Indus- 
tries to reduce the weight of the structures. This objective 
can be achieved by using new materials and advanced 
dimensioning methods, but new unexpected diffuse and 
localized necking modes may then occur during sheet 
metal forming operations. Prediction of material instabil- 
ity becomes a major industrial challenge. Forming Limit 
Diagrams (FLD) can be determined by costly experi- 
mental means [1,2] or by numerical simulation. A review 
of four theoretical principle commonly used to predict 
the occurrence of necking lighten their ability to take into 
account the physics of necking or their limits to be cou- 
pled with advanced material modeling [3].  

A first approach to determine the formability limits is 
based on the existence of multiple heterogeneous areas in 
the sheet [4-6]. According to Marciniak-Kuczynski [4], a 
band of reduced thickness in which necking is expected 
is arbitrarily introduced in a safe media. The comparison 
of the evolution of the mechanical properties inside and 
outside the defect area allows the prediction of localiza- 
tion. M-K model is applicable to a wide range of mate- 
rials. Limitations of this criterion come from the re- 
quirement of user defined parameters, as for example the 
initial defect size or the threshold value. Another ana- 
lytical method, the Maximum Force Principle, is based  
on an empirical observation according to which diffuse 

necking occurs when the load reaches its maximum dur- 
ing a uniaxial tensile test [7]. Extensions to this criterion 
have been proposed to predict diffuse necking [8] and 
latter localized necking [9-15] of metal sheets submitted 
to biaxial loadings. Although some interesting trends are 
found by comparing experimental and numerical results 
obtained with these criteria [16], their theoretical founda- 
tions still have to be reinforced or revisited to take into 
account more advanced material modeling. To overcome 
these limitations, bifurcation analysis criteria can be in- 
vestigated. According to this approach, a necessary con- 
dition for diffuse necking is given by the loss of positive- 
ity of the second order work [17,18]. For localized modes, 
the loss of ellipticity criterion was established to predict 
necking or shear banding [19-21]. This criterion is how-
ever restricted to both rate independent materials and 
softening behavior. The first restriction can lead to unre-
alistic and too restrictive formability predictions for rate 
dependant materials. In such case, stability analysis by a 
linear perturbation method may be used to improve the 
forming limit diagram predictions. Necking and localiza- 
tion are seen as instability of the global or local mechani- 
cal equilibrium [22-25]. 

To choose the most adapted criterion for a specific ap- 
plication, one has to be conscious of the advantages, the 
limits of each criterion and the relations that exist be- 
tween criteria based on different approaches. The first 
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aim of this paper is to compare the bases of diffuse 
necking criteria based on bifurcation analysis and on the 
maximum force principle to show theoretical and nu- 
merical links between them. The second one is to pro- 
pose a development of MFC to take into account effects 
of damage and different isotropic and kinematic harden- 
ings. 

After a presentation of the General Bifurcation and Li- 
mit Point Bifurcation criteria an extension of the Maxi- 
mum Force Criterion to damage and different strain har- 
denings is proposed. Some theoretical investigations on 
the connections that could exist between them are lead 
and then illustrated in a last part by numerical simulation 
of FLD. 

2. Diffuse Necking Criteria 

2.1. General Bifurcation Criterion 

Following this approach, diffuse necking is seen as the 
change from a quasi-homogeneous mechanical state to a 
heterogeneous one. General Bifurcation Criterion (GBC) 
has been introduced by Drucker [17] and then Hill [18] 
as a sufficient condition for uniqueness of the solution of 
the equilibrium problem for time independent materials. 
Let consider two different stress fields ΠA and ΠB asso- 
ciated with two kinematically admissible velocity fields 
VA and VB respectively. Application of virtual power 
principle leads to: 
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where Π denotes the first Piola-Kirchhoff stress tensor 
and fv and fs the body force per unit volume and the trac- 
tion applied on the solid. This set of equations is particu- 
larly verified for the virtual field: 

 * A B  V V V V . 

The condition for loss of uniqueness may then be ob- 
tained from writing the difference between the previous 
equations for this particular choice of virtual velocity 
field: 

0: dV


       
V

Π
X

 0

For material bifurcation studies, the criterion is applied 

           (2) 

It is shown that this functional is always superior to 
Hill’s functional in the case of rigid-plastic or elastic- 
plastic materials [18]. Sufficient condition for uniqueness 
is then related to positivity of Hill’s functional. This ex- 
pression of GBC depends on boundary conditions and 
can be considered as a structural or geometric criterion. 

on a local level, under the following more restrictive 
form: 

: : 0
 


 
V V

X X
L               (3) 

A sufficient condition for uniqueness of the solution of 
th

2.2. Limit Point Bifurcation 

furcation, diffuse neck- 

e boundary problem is the positive-definiteness of the 
quadratic form (3), that can also be seen as the singula- 
rity of the symmetric part of tangent modulus L relating 
the first Piola-Kirchhoff tensor and the velocity gradi- 
ent. One has then to verify that all eigenvalues of the 
symmetric part of this tensor remain positive. GBC can 
be seen as a lower bound for diffuse necking exclusion. 

As a particular case of general bi
ing is associated with a stationary state of the nominal 
stress [26,27]: 

Π 0                    (4) 

Combining this condition w
tio

                 (5) 

Limit Point Bifurcation (LP
si

2.3. Maximum Force Criterion 

aximum Force prin- 

ith material behavior equa-
ns, one may obtain: 

: F 0L  

B) is associated with the 
ngularity of the tangent modulus and is reached for the 

first nil eigenvalue of the tangent modulus L. 

Necking criteria derived from the M
ciple are based on experimental observations according 
to which plastic instability occurs when the force reaches 
its maximum during a tensile test [7]. This onedimen- 
sional criterion has later been extended to bi-dimensional 
loadings by Swift for the prediction of diffuse necking in 
metal sheets, leading to the formulation of the Maximum 
Force Criterion (MFC) [8]. According to Swift’s hypo- 
thesis, necking is related to the maximum of both major 
and minor applied forces. It can be expressed as: 

0 and 0F F
1 2
                (6) 

where indices 1 and 2 denote respect

2.3.1. Swift Classical Formulation 
 criterion is derived 

ively the major and 
minor directions of the applied load F. It can be noticed 
that the third component of the load is null under the 
chosen hypothesis of bi-axial loading. It has been shown 
that elasticity plays a negligible role [28] and will then 
not be considered in the following developments, without 
any loss of generality.  

In this section, Swift Maximum Force
under the most commonly used hypothesis. From Equa- 
tion (6), a relation can be established between stress and 
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strain rate components, for example [29]: 

1 2
1

1 2
20   and   0D D

  
 

           (7) 

Derivation of the equivalent stress leads to: 
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By combining relations (7) and (8) and by using the 
pl

 

astic flow law, a relation between equivalent stress and 
strain rates is obtained: 
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On another hand, plastic work is defined as: 

 
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Swift necking condition is obtaine
rat

d by computing the 
io of Equations (9) and (10): 
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This general formulation of MFC can be developed for 
di

2.3.2. Simplified Rigid-Plastic Case 
ained for a 

fferent class of materials. In the following sub-sections, 
an expression of Swift criterion is obtained for a simpli- 
fied rigid-plastic modeling as well as for more advanced 
plastic behaviors, including the effects of kinematic har- 
dening and damage. 

Analytical expression of MFC may be obt
simplified rigid-plastic material modeling based on Hol- 
lomon isotropic hardening law and von Mises isotropic 
yield surface, which can be written as [29]: 

2 2
1 2 1

3
:

2 2        σ σ       (12) 

For proportional loadings, Cauchy stress ratio α is con- 
stant and verifies:  
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On one hand, partial derivatives of von Mises equiva- 
lent stress and then MFC may be expressed as functions 
of this ratio, such that after calculations: 
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One the other hand, a relation between the yield stress 
and the equivalent plastic strain is derived from Hollo- 

mon isotropic hardening law during plastic loading. This 
relation is written as: 
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  



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where n is the exponent of Hollomon law. From Equa- 
tions (14) and (15), the critical equivalent strain at the 
initiation of necking can be written under the following 
analytical expression: 
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and then the major and minor critical strains may be de- 
duced from this relation and the expression of the plastic 
flow law: 
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Forming Limit Diagrams (FLD) may be plotted from 
Eq

2.3.3. Coupling of Different Isotropic Hardening,  
 

After ulation of MFC in the case of a simplified 

uation (17) and illustrations of this simplified case are 
given in the last section of the paper. It is worth noting 
that the major critical strain obtained with MFC equals 
the hardening coefficient n for uniaxial tension, for plane 
tension and for equibiaxial expansion. With new materi- 
als, this formulation is no more sufficient to predict ac- 
curately necking and the criterion has to be enhanced to 
take into account the effects of advanced modeling. This 
development is proposed in the following section. 

Kinematic Hardening or Damage Laws with 
MFC 
the form

rigid-plastic modeling, it is proposed in this section to re- 
write the necking criterion to take into account the ef- 
fects of induced anisotropy or of softening by coupling 
the criterion with kinematic hardening and ductile dam- 
age. The same approach as in the simplified case is fol- 
lowed. Equations (6) and (7) remain valid, but additional 
terms appear in the expression of the equivalent stress 
rate: 
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where σ eff denotes a principal component of the effective i

stress tensor and X the kinematic hardening tensor. Time 
derivative of the effective stress reads: 
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eff effi
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d
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At necking initiation, material behav
condition lead to: 

ior and Swift’s 
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Furthermore, plastic equivalent work expression be- 
comes after coupling with damage and kinematic hard- 
ening: 
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From the ratio of Equations (20) and 
pression of MFC is obtained:  

(21), a new ex- 

 

2

1

: d

i

H  
  

    
     
3

1

1

 eff
i i

i
i i

i i

d

X
 


  




XH

X



   (22) 

This expression of the MFC allows the predic
necking for a larger class of elastic-plastic materials. One 
can 

tively on strong theoretical considerations and on an em- 

al stresses N: 

fied in a solid, General 
Bifurcation condition is always
seen as a s

tion of 

verify that in absence of damage and kinematic 
hardening, Equation (22) becomes equivalent to Equa- 
tion (11) corresponding to the uncoupled model. FLD 
obtained with this formulation will be compared with 
those plotted with GBC and LPB in the last section of 
this paper. 

2.4. Theoretical Relation between GBC, LPB and 
MFC 

Bifurcation analysis criteria and MFC are based respect- 

pirical observation. They may seem really different, but 
some relations between them are investigated in this sec- 
tion. Summarizing previous hypotheses presented during 
the formulation of MFC, this criterion is based on the 
stationariness of the applied loads at the initiation of dif- 
fuse necking, on in plane loading and additionally on 
loading in the direction of the anisotropy axes, then at 
necking initiation: 

F 0                  (23) 

or in term of nomin

.                 (24) N 0

When these conditions are veri
 verified. MFC can be 

ufficient condition for general bifurcation and 
GBC is more conservative than MFC. Furthermore, in- 
troducing the relation between nominal stress tensor and 
velocity gradient, one can write: 

: N G 0 L              (25) 

For non trivial solution, MFC is then related to the 
singularity of the tangent modulus L, a condition that is 
equivalent to the LPB condition whe
ar

e sub- 
ode- 

acterize elastoplastic be- 

n Swift’s conditions 
e applied. LPB can be interpreted as a generalization of 

MFC to three dimensional and non proportional loads for 
elastic-plastic materials. The hypotheses of neglecting 
elasticity effects and in plane linear loading in the direc- 
tion of anisotropy axes are not necessary. They seem 
being used only to simplify analytical formulation of the 
necking criterion. Swift’s hypotheses may be revised. 
Swift maximum loads hypothesis has mainly be criti- 
cized because it is verified only for a very restrictive set 
of loading paths [30]. The comparison between the theo- 
retical bases of LPB and MFC offers a new interpretation 
of this criterion, diffuse necking being related to the loss 
of uniqueness of the solution of the equilibrium problem. 
MFC can be seen as a particular case of LPB for plane 
stress loading. 

3. Application to Form Limit Diagrams 

3.1. Constitutive Modeling 

During deep-drawing operations, metallic sheets ar
 large number of mjected to large transformations. A

ling has been developed to char
haviors, based on physical observations or on phenome- 
nological approaches. For simplicity reasons, a pheno- 
menological modeling is considered here, allowing rep- 
resenting the effects of elasticity, initial and induced ani- 
sotropy, hardening and softening [31,32]. Use of more 
advanced models could improve the accuracy of the pre- 
dicted formability limits, but they are not considered here 
as the aim of this paper is the comparison of theoretical 
basis of diffuse necking criteria. This modeling is based 
on a hypo-elastic law: 

 : p σ C D D              (26) 

where C is the elastic modulus, relating the rate of the 
Cauchy stress tensor σ to the elastic strain rate tensor e

defined as the difference between th
D  

e total strain rate D 
and the plastic strain rate Dp. This tensor can be com-
puted from the associated plastic flow law: 

p f 



D

σ
                 (27) 

with   the plastic multiplier and f a potential that can 
the Kuhn-Tuckebe written under r form: 

 , 0      0       0f fY     σ X       (28) 

where  , Y and X denote respectively the equivalent 
stress, the size of the loading surface and kinematic 
hardening variable. In the applications proposed in the 
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last part of this paper, von Mises isotropic and Hill’s 48 
anisotropic functions are used to write the equivalent 
stress. Hill’s 48 function is defined with a combination of 
Lankford’s coefficients r0, r45 and r90. More details about 
their formulations are present in [3]. The chosen evolu- 
tion of the kinematic hardening is represented by Arm- 
strong-Frederick non linear law: 

 satXC X    X XX n X H         (29) 

The material constants CX and Xsat are related to the 
saturation rate and the saturation value of t
hardening and nX the saturation direction defined as: 

he kinematic 


 

X

σ X
n                (30) 

The current size of the loading surface is related to the 
initial size of the elastic domain 
variable R: 

laws may be used to describe the evolution 
of the isotropic hardening variable
to materials exhibiting a saturating evolution 
in

Y0 and to the isotropic 

0Y Y R                 (31) 

Different 
. A first law is adapted 

of harden- 
g: 

 satR RR C R R H              (32) 

with CR and Rsat two material parameters used to rep- 
resent the saturation rate and the saturati
isotropic hardening variable. Without dam

on value of the 
age coupling, 

the plastic multiplier is equal to the equivalent strain rate. 
For non saturating materials, Swift power law is more 
adapted and is commonly used: 

 0 0

n
Y k Y R               (33) 

Equation (33) can be rewritten as: 

0R Y nR nk H
k

1

R

n

 


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where Y0 is the initial size of the elastic area and can be 
defined as a function of the three material p
and ε0: 

   
 
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arameters n, k 

0 0
nY k . 

This law is equivalent to Hollomon power law when ε0 
is nil. On another way, consistency condition is defined 
as: 

0f Y                  (35) 

Combining the previous equations, one can write the 
expression of the plastic multiplier
relation between the stress and strai

 and then establish the 
n tensors: 
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ep
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or: 

:σ L D                 (37) 

re L is the tangent modulus and αep a plastic load 
cator that is nil during elastic loading or unloading or 

equals to the unity during plastic

whe
indi

 loading. This method is 
applicable to a wide range of material modeling and can 
be used to introduce other behavior, as for example sof- 
tening.  

Different approaches have been developed these last 
decades to represent the effects of damage. In the con- 
tinuous damage mechanic framework, damage is related 
to the surface density of micro-defects present in an ele- 
mentary volume element. Following Lemaitre’s approach 
[33], damage variable is defined as the ratio between the 
surface of the micro-defects and the total surface of the 
elementary volume. The effective stress is related to the 
usual stress by: 

eff 1 d



σ

σ                 (38) 

where d represents the isotropic damage variable. The 
evolution of this variable is given by: 

 
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1
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0                                   otherwise

ds



with Sd, sd and βd three materials parameters, Ye th
tic energy release rate and Yei an activation threshold. 
Adopting the strain equivalence principle, strain rate and 

e elas- 

Cauchy stress rate are related by the following incre- 
mental law: 

   1 :
1

p d
d

d
   



where D  is defined in the associative flow rule (27). 
After coupling with damage, the loading 
comes: 

σ C D D σ


       (40) 

p

surface be- 

 eff , 0      0      0  f Y f     σ X      (41) 

The evolution law of isotropic hardening remains valid, 
but the normal to the saturation direction of the ki
hardening is affected and becomes: 

nematic 

 
eff

eff ,d 
 


X

X

σ
n

σ

X
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Combining these new relations in the same way as in 
the case of uncoupled model, one can obtain the relation 

Copyright © 2013 SciRes.                                                                              MNSMS 



G. ALTMEYER 44 

between the Cauchy stress rate and the strai

    

w

n rate tensors: 

           (43) :σ L D
here L is the coupled tangent operator defined as: 
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(44) 

When damage is nil, Equations (36) and (43) defining 
this tensor become equivalent. A detailed development of 
these models is given in [31]. 

3.2. Numerical FLD 

r different materials and 
strate these relations.  
ing is modeled with a Swift ex- 

GBC cri- 
te

load is 
 

1 d L C

:
f

H


 
 
 σ C

applied in the anisotropy di  Under these condi- 
tio t 
a n eigen alue of ge odulus and 
respectively its metric part are investigated with LPB 
an C, b riter d exa y to th me predict- 

ation is that the choice of the hardening 
la

ajor diffuse necking criteria. The second 
co

 illustrate 
th

 is given in Fig- 
ur

These kind of loading path are 
frequently encountered during deep-drawing of real struc- 

Some theoretical links have been enlightened between 
MFC, LPB and GBC in the second part. Numerical FLD 
obtained are now proposed fo
material behaviors to illu

First isotropic harden
ponential law on an Aluminium alloy [34]. Data corre- 
sponding to this application are given in Table 1. 

From this set of material parameters, FLD are com- 
puted with an internal code for MFC, LPB and 

ria and plotted in Figure 1. 
For these examples, material behavior is modeled in 

the framework of associated plasticity and the 

 

Figure 1. FLD of an aluminium alloy. 
 

Table 1. Materials parameters for an aluminium alloy. 

n (MPa) k (MPa) ε0 r0 r45 r90 

0.20 2 580 0.04 1 1.5 

rections.
ns, tangent modulus remains symmetric. As the firs

nnulatio s of an 
 sym

v the tan nt m

d GB oth c ia lea ctl e sa
tion. This observation has been verified for the different 
forming limit diagrams presented in this section. The 
prediction obtained with GBC will not be represented in 
the next Figures for readability reasons. When a Hollo- 
mon power law is used, a theoretical result states that the 
critical minor strain is equal to the hardening exponent n 
for uniaxial tension, for plane tension and for equibiaxial 
expansion. One may verify that this theoretical result is 
well verified by the numerical simulation. Anisotropy 
and ε0 parameter are neglected in the theory, their use in 
the simulation may explain the small differences between 
theoretical and numerical results obtained in Figure 1. 
The same critical deformations at diffuse necking are 
predicted with the three criteria, the small relative dif- 
ferences (less than 1%) may come from numerical ap- 
proximations. 

A second simulation is lead for a Dual-Phase steel 
sheet exhibiting a saturation of isotropic hardening. Sa- 
turating law is then used to model the behavior of this 
alloy and material parameters are the following: 

First observ
w has a great impact on the shape of the curve. The 

classical “S shape” obtained with Hollomon and Swift 
exponential laws is no more observed in Figure 2 with 
saturating law. 

The second observation is the really good accordance 
of the FLD obtained with MFC and LPB, which verifies 
the theoretical link mentioned in Section 2.4.  

A first aim of this paper was to show the link existing 
between three m

ntribution of this paper is to propose a version of MFC 
that take into account the effects of kinematic hardening 
and damage. Two applications are proposed to

eir influence on FLD: one using kinematic hardening 
and the other coupling damage and isotropic hardening. 
Different steels are considered. New material parameters 
sets are summarized in Tables 3 and 4. 

It is worth noting the similarity between the values of 
hardening parameters presented in Table 2 and in Table 
3, leading to the same saturation limit, but physical mean- 
ing of the variables used in these applications remain 
really different. The corresponding FLD

e 3. 
Similar results are still obtained with MFC and LPB. 

Use of kinematical hardening or to a combination of iso- 
tropic and kinematic hardenings may be chosen to im- 
prove numerical simulations in case of non linear or non 
direct applied strain path. 
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tu

tions. In this case, the coupled for- 
m

 

res. This coupling is now available with the proposed 
formulation of MFC. 

Due to the simplicity of the classical formulation of 
MFC, CPU time consumption is lower with this criterion 
than with LPB. This advantage tends however to be re- 
duced with the coupled version of the MFC. 

In this last application, damage is taken into account in 
the formability predic

ulation of MFC is used during the simulation. The da- 
mage law evolution is based on an improvement of Le- 
maitre’s model and the parameters are presented in Ta- 
ble 4. 

 

Figure 2. FLD of a dual-phase steel: isotropic hardening 
case. 
 
Table 2. Hardening parameters for a Dual-Phase steel: iso- 
tropic hardening case [32]. 

CR Rsat (MPa) Y0 (MPa) 

9.3 551.4 356.1 

 
Table 3. Hardening parameters for a steel: kinematic 
hardening case. 

CX sat 0X  (MPa) Y  (MPa) 

14 751 452 

 
Table 4. Hardening and damage parameters for a mild steel 
[32]. 

CR Rsat (MPa) Sd sd Pa)Y0 (MPa) βd Yei (M

5.1 303.75 1 20 0.01 20 0.38 61.7 

 

Figure 3. FLD of a steel: kinematic hardening case. 
 

Associated FLD at diffuse necking obtained with LPB 
and MFC are given in Figure 4. 

It is worth noting that once again the results obtained 
with MFC or LPB are exactly the same, which is in ac-
cord ute
n e ou- 
l

imit Point Bifur- 
rcation analysis. 
sis of these criteria are developed in a 

 
 ance with the theory. This statement could constit

lement toward the validation of the proposed ca
p ing between damage and MFC. Damage tends to re- 
duce the formability, as it can be seen by comparing the 
curves with and without damage. The choice of these pa- 
rameters enlightens the phenomenon. The identification 
in [32] corresponds to an early bifurcation level. They 
may be too conservative and lead to an exaggerated ef- 
fect of damage on diffuse necking initiation. This set of 
material parameters is however chosen here to enlighten 
the influence of damage on formability. 

4. Conclusions 

In summary, different diffuse necking criteria can be 
used to predict formability limits, including the Maxi- 
mum Force Criterion based on an empirical observation 
and General Bifurcation Criterion and L
cation based on bifu

1) Theoretical ba
common framework, enabling a comparison of their theo- 
retical bases. It is shown that GBC is a necessary condi- 
tion for LPB and MFC. On another hand, MFC can be 
seen as a particular writing of LPB in the case of plane 
stress conditions or LPB can be interpreted as a genera- 
lization of MFC. 

2) Classical formulation of MFC is restricted to sim- 
plified material modeling and loading conditions. To over- 
come these limitations, another formulation of the crite- 
rion is proposed. Isotropic and kinematic hardenings are 
introduced as well as isotropic damage. 

Copyright © 2013 SciRes.                                                                              MNSMS 



G. ALTMEYER 46 

 

Figure 4. FLD of a mild steel: coupling with damage. 
 

3) Numerical FLD are obtained to illustrate previous 
theoretical considerations. When large deformation fra
work is used, results obtained with GBC, LPB and MFC
coincide with very good accuracy for different material 
modeling, including isotropic or kinematic hardenings
and
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