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ABSTRACT 

The orientation of crystals in liquid crystalline polymers (LCPs) during the processing method affects the properties of 
these materials. In this paper, the main components of modeling the directionality of LCPs, namely Franks elastic en- 
ergy equation, evolution equation and translation of directors are studied. The complexity of flow channels in polymer 
processing requires a more robust method for modeling directionality that can be applied to varieties of meshes. A 
method for practically simulating the directionality of crystallines on a macroscopic scale is developed. This method 
can be applied to any combination and type of meshes. The results show successful modeling of the directionality for 
each component of the model. Here, a 2D case with structured and unstructured mesh is considered and the rheology is 
simulated using ANSYS® FLUENT®. C++ codes written for user defined functions (UDFs) are used to implement the 
directionality simulation. 
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1. Introduction 

It is known that the rheology of liquid crystalline poly- 
mers shows some unique behaviors which arise from 
complex interaction between crystals and flow. Among 
these behaviors are low viscosity compared to conven- 
tional polymers and very small or no die swell during the 
extrusion. Although most of the theoretical research for 
modeling the rheology and orientation is based on small 
molecule liquid crystals, the results of those studies are 
also applicable to polymeric liquid crystals, especially in 
the case of shear flow. The constitutive equations relating 
the stress and strain for liquid crystals are developed by 
[1,2]. These equations consider the effect of crystals on 
the stresses to be continuous. The equations are very 
complicated and only simplified variations can be solved 
numerically on simple geometries. Since the geometries 
of the extrusion dies are normally complex and cannot 
always be discretized with structured mesh, a simplified 
method for simulating and approximating directionality 
on unstructured mesh is highly desirable. 

2. Modeling Strategy 

The method used in this paper is a hybrid method based 
on the work of [3]. This method is based on the fact that 
the rheology of LCPs is close to conventional polymers 
and their directionality can be approximated by equations 

for liquid crystals. These two parts of the simulation are 
performed independently. As a result, four different cal- 
culations need to be done for the flow to be fully simu- 
lated. These four steps are 

1) Simulating the rheology of the polymer 
2) Simulating the effect of rheology on the directional- 

ity of crystals 
3) Simulating the effect of Franks elastic energy on the 

crystals (effect of crystals on each other) 
4) Applying the macroscopic movement of crystals 

with the bulk of fluid 
The effect of these four steps should be combined in 

order to achieve the complete picture of the rheology and 
orientation in LCPs. The first step is to simulate the 
rheology of the polymer as if it were a conventional po- 
lymer. In this step, the flow domain is meshed. Care 
should be taken when meshing the domain since the 
same cells in the mesh are going to be used later as the 
smallest area with aligned crystals. After simulating the 
rheology, a vector representing the alignment of crystals 
is defined for each cell. These vectors are called direc- 
tors, n, and they are defined such that they have sense but 
no direction, as in crystals. This means n = −n. After ex- 
tracting the results of rheological modeling, in the second 
step these rheological parameters are used to find the 
effect of rheology on directors. The third step is to apply 
the effect of Franks elastic energy [4] on the directors. 
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The last step is to count for the translation of crystals 
with the flow of the polymer. The rest of this section des- 
cribes how each of these steps is calculated during the 
simulation. 

2.1. Rheology 

ANSYS® DesignModeler is used for making the geome- 
try of the flow domain and meshed using the ANSYS® 
Meshing software. Here the rheology of the polymer is 
simulated using ANSYS® FLUENT® Release 13.0.0. 
ANSYS® FLUENT® is a finite volume based flow solver 
that can simulate the flow on a wide variety of meshes and 
their combinations. This ability makes it possible to simu- 
late the flow in complex geometries and allows the use of 
different types of meshes in one simulation. Since the 
same mesh generated for solving the rheology is also 
used to model the directionality, the minimum size of the 
mesh should consider the minimum volume with aligned 
crystals. The cell size in the work of [3] is considered to 
be (100 nm3). At this scale it is possible to ignore the mo- 
lecular entropic term and only consider the elastic torque. 
Previous researchers’ calculations done with this method 
considered mostly a bulk of fluid with structured quadri-
lateral mesh elements. Moreover, the geometry of the 
flow domain was defined to be a cube. As it is de- 
scribed later, the method developed here is able to ac- 
count for complex geometries and is not restricted to one 
type of mesh. As a result, it is possible to use suitable 
shapes of elements with arbitrary orientation in an un- 
structured mesh for simulating the rheology. To demon- 
strate the ability of the code to handle different mesh 
structures, the geometry of the domain is meshed with 
different element types and the results are compared. To 
model the rheology of the polymer, different rheological 
models have been tried. Based on the die swell data and 
existing experimental measurements, the Powerlaw mo- 
del described in [5] is chosen here. Equation (1) describes 
the relationship between stress and strain. 

nk                    (1) 

In this equation, τ is the stress tensor and   is the 
rate of deformation tensor. k and n are the flow consis- 
tency index and power-law index, respectively. The de- 
tails of this choice are explained in [6]. After simulating 
the rheology of the polymer, a user defined function 
(UDF) is used to extract the rheological data from the so- 
lution and calculate its effect on the orientation of crys- 
tals. 

2.2. Evolution Equation 

Evolution equation describes the effect of the rheology 
on directors. This equation considers the directors as if 
they were pinned on their center of mass and can only 

spin without translation as described in [7] 

  A A        n n n n n n        (2) 

The first term on the right hand side of equation ac- 
counts for the effect of vorticity tensor,   and the sec- 
ond term is to calculate the effect of strain rate tenso , r
A , on the director n    and A are antisymmetric and 

symmetric parts of the velocity gradient tensor. λ is the 
tumbling factor defined in [2] which shows the relative 
importance of the effect of vorticity tensor to the strain 
rate tensor. Three different regions for λ are normally 
considered. λ < 1 is associated with the case that the ef- 
fect of vorticity tensor dominates and tumbling of direc- 
tors occurs. λ > 1 is the case in which the effect of strain 
rate tensor is dominant and results in alignment of direc- 
tors and λ = 1 is the pseudo-affine case. Based on discus- 
sions of [8], the value λ = 1 is considered here for ther- 
motropic liquid crystalline polymers. Solving the vector 
Equation (2) gives the change of the director n with  

time in three principal directions namely
dd
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. By having the time steps of the simulation, t   

changes in the director,  and its three components 
dnx, dny and dnz can be calculated for each cell. 
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2.3. Franks Elastic Energy 

The equation for the curvature distortion energy in liquid 
crystals is developed by [4] and [9]: 

      2

11 22 33

1

2
F k k k      n n n n n (3) 

in which k11, k22 and k33 are material constants known as 
Franks elastic constants for splay, twist and bend re- 
spectively and n is director. In simple geometries [3] 
solved this equation with different values for splay, twist 
and bend constants. Franks elastic constants are in the 
order of 10−10 N and the relation between Franks elastic 
constants and molecular properties of liquid crystals are 
derived by [10,11].  

11

11

33
22

33

7
π

8

a

a

kT L
k

d d

kT
k R

d

kT
k R

d

         
    

   
 
   
 

          (4) 

In Equation (4), L is the contour length, k is the Boltz- 
mann constant, Ra is the ratio of q (persistence length) to 
the diameter d of the chain, Ф is the volume fraction 
which since we are dealing with thermotropic liquid 
crystalline polymers is considered to be one and T is the 
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temperature. For LCPs, Franks elastic constants are not 
equal and it is shown by [12] that more features of LCPs 
can be modeled when larger value of splay constant is 
considered compared to bend and twist. In small mole- 
cule liquid crystals, Franks elastic constants are almost 
equal. 

In this study, it is assumed that inside the polymer the 
average alignment of crystals in each cell can be repre- 
sented by a director. Moreover, for the sake of simplicity 
in numerical calculations Franks elastic constants are 
considered to be equal. In this special case, Equation (3) 
can be approximated by Equation (5) which can be ap- 
plied to a meshed geometry [13].  

 2

1
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n
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k
F 



              (5) 

In Equation (5), k = k11 = k22 = k33 and the summation 
is over all the neighboring cells which have a common 
surface with the central cell. i  is the difference be- 
tween the angle of the central cell and its i-th neighbor. 
The torque applied to the central cell can be calculated 
by taking the derivative of the distortion energy with the 
angle i . 
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The torque  , is the result of distortion in the liquid 
crystals. Since for the two dimensional case the direction 
of the torque vector is always perpendicular to the plane 
of flow, it is possible to do the algebraic summation over 
all the neighbors to find the resulting torque applied to 
the central cell. In contrary, in three dimensional cases 
the effect of each neighbor on the central cell should be 
calculated separately and added like vectors. In three 
dimensional geometries the effect of each neighbor on 
the central cell will result in a torque which is normal to 
the plane that passes through the two directors if they had 
the same origin. As a result, the total torque applied to 
the central cell is the vector summation of these individ- 
ual torques. 



After finding the resultant torque applied to the central 
cell, one can find the rate of change of direction of the 
director as 

r
n 

                 (7) 

In Equation (7), r  is the rotational viscosity which 
based on [14] for thermotropic liquid crystalline poly- 
mers (Ф = 1) and can be approximated as 

2
r R

In which   is an empirical constant in the order of 
10−4 [15]. For a specific Vectra—a material with typical 
viscosity of 310  , rotational viscosity is about 

10r   Pa·s [3].  

2.4. Translation of Directors 

Evolution and Franks energy equations assume the di- 
rector to be fixed in place and can only spin around their 
center of mass. However, in real flow, directors will be 
translated with the bulk of material which needs to be 
accounted for in the numerical simulation. Since in this 
study different element types and orientation needs to be 
accounted for, a new method for simulating the transla- 
tion of directors is developed. The translation of directors 
is calculated from one element to the neighboring ones 
based on the direction and velocity of the flow for each 
element. Figure 1 shows a simple case in which quadric- 
lateral central cell, c, is surrounded by four other cells i = 
1 ··· 4. 

The method used here assumes that the velocity V 
transfers bulk of fluid to cell i only if . So for 
the mesh shown in Figure 1, bulk of fluid is transferred 
from central cell to the 1st and 2nd neighbor due to acute 
angle between V and Ai. The important step in this simu- 
lation is that the change needed for all the cells should be 
calculated and added together before applying it to the 
neighboring cell because of the fact that each cell may 
receive crystals from more than one neighbor. It is also 
important to consider the value of the velocity in calcu- 
lating the transfer of fluid. Here the velocity of fluid in 
each cell is compared to the distance between cell centers 
to determine how each cell affects its neighbors. This 
method can be applied to cells regardless of their number 
of faces in 2 and 3 dimensions. 

0 iV A

2.5. Boundary Conditions 

Three types of boundary condition namely planar, ho- 
meotropic and tilted can be applied to the directors on the 
boundaries of the flow in simulating Franks elastic en- 
ergy. These boundary conditions are shown in Figure 2. 
These orientations for directors can be achieved experi- 
mentally by treating the surface of the wall [16]. In this 
 

 

a                  (8) Figure 1. Translation of directors. 
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Figure 2. Boundary conditions on directors. 
 
study, planar and homeotropic boundary conditions are 
applied in different situations. In two dimensions, ho- 
meotropic and planar boundary conditions do not need 
any extra information to be defined. 

In three dimensions, planar boundary condition needs 
one angle,   and tilted boundary condition needs two 
angles   and Ф to be defined. Effect of these boundary 
conditions propagates inside the bulk of fluid and affects 
the orientation of directors inside. 

3. Numerical Method 

3.1. Modeling Rheology 

As mentioned before, modeling rheology is done using 
ANSYS® FLUENT® Release 13.0.0. The geometry of the 
flow is modeled in a 2D channel and meshed with trian-
gular and quadrilateral mesh for comparison. As model-
ing directionality is of prime interest, the accuracy of the 
calculations for modeling rheology is of little im- por-
tance. As a result, first order upwind scheme is used in 
isothermal solver. The more accurate the rheology mod-
eling, the more accurate one can predict the effect of 
rheology on the crystals. For modeling the fluid, capil- 
lary rheometer data using a LCR 6000 capillary melt 
rheometer is used for a LCP material in 350˚C tempera- 
ture. Capillary rheometry data shows close match be- 
tween the stress-strain curve and power-law model and 
as a result, power-law model with flow consistency index 
of k = 1864 Pa·sn and power-law index of n = 0.465 1is 
considered. 

Figure 3 shows the structured and unstructured mesh 
used for this study. 
 

 
(a) 

 
(b) 

Figure 3. (a) Structured and (b) unstructured mesh used for 
simulations. 

3.2. Modeling Directionality 

As described above, the directionality simulation used in 
this study has been implemented with user defined func- 
tions (UDFs) in Fluent. UDFs are powerful tools avai- 
lable in ANSYS® FLUENT® to increase the capabilities 
of ANSYS® FLUENT®. Since all the code written for 
UDFs are in C++ language, it is possible to utilize all the 
capabilities of C++ programming and functions for the 
calculations. There is no readily available tool in  
ANSYS® FLUENT® to simulate the directionality of 
fluid in the shear flow; as a result, UDFs are used for this 
simulation. Here three independent functions are used to 
show the effect of Franks elastic equation, evolution equ- 
ation and translation of directors. Vorticity tensor,   
and strain rate tensor, A should be built by extracting 
the velocity gradients in different directions from the 
solver. Six user defined memories (UDMs) are needed in 
2D to complete the calculation. UDMs are defined to 
store a variable for each cell in ANSYS® FLUENT®. It is 
possible to store the components of a director for each 
cell using UDMs. 

4. Results 

The result of applying the Franks elastic energy function 
to randomly generated directors is shown in Figure 4. 
Two of the disclinations existed in the structured mesh  

are shown with the strength of 
1 1

 and 
2 2

s    . The  

disclinations are less obvious on unstructured mesh be- 
cause of the random placement of directors in the domain. 
In this figure, the final minimum elastic energy of the 
system (Equation (5)) in structured and unstructured 
cases are calculated to be the same. 

The result of applying the effect of shear to a ran- 
domly generated director field on (a) structured and (b) 
unstructured mesh is shown in Figure 5. As can be seen, 
the effect of shear penetrated inside the fluid. The flow 
entering the channel from left has a uniform velocity 
profile and as it moves through the channel, the boundary 
layer develops and makes the directors aligned to the 
direction of flow. In both cases of structured and ustruc- 
tured meshes, the initial random directors remain undis-
turbed in the middle of the channel where there is mini-
mum shear. 

Figures 6 and 7 show how the described method for 
translating the directors affects the director field. The me- 
shes considered for this calculation are the same meshes 
used in previous calculations and the initial condition is such  

that 
1

3
 of the directors are positioned vertically and in 

the rest of the domain directors are positioned horizon- 
tally. The mass flow rate is lowered in this calculation so 
that all the stages of translation of directors can be visu-  

Copyright © 2013 SciRes.                                                                              MNSMS 



A. AHMADZADEGAN  ET  AL. 5

 
(a) 

 
(b) 

Figure 4. Effect of Franks elastic energy on directors on (a) 
structured mesh and (b) unstructured mesh. 
 

 
(a) 

 
(b) 

Figure 5. Effect of shear on directors in (a) structured mesh 
and (b) unstructured mesh. 
 

 
(a) 

 
(b) 

Figure 6. Effect of translation of directors with bulk of fluid 
on directors. (a) Initial condition; (b) Final condition. 

 
(a) 

 
(b) 

Figure 7. Effect of translation of directors with bulk of fluid 
on unstructured mesh: (a) Initial condition; (b) Final condi- 
tion. 
 
alized. As can be seen, the lower velocity of fluid in the 
boundary layer is preventing the flow to transfer the di- 
rectors to the nearby cells. On the other hand, higher ve- 
locity of the bulk of fluid in the center of the channel 
transfers the directors to the downstream cells comple- 
tely. 

5. Conclusion 

A novel method of applying the main components of 
modeling directionality is developed and effects of each 
component on the directors is presented on different me- 
shes. It is shown that this method can be applied to dif- 
ferent grid types and their combinations which makes it 
suitable for practical applications with complex geome- 
tries. In this study different time constants are considered 
for different components of flow simulation to visualize 
their effects on directors. 
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