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ABSTRACT 
In this paper, we consider the planar multi-facility Weber problem with restricted zones and non-Euclidean distances, 
propose an algorithm based on the probability changing method (special kind of genetic algorithms) and prove its effi-
ciency for approximate solving this problem by replacing the continuous coordinate values by discrete ones. Version of 
the algorithm for multiprocessor systems is proposed. Experimental results for a high-performance cluster are given. 
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1. Introduction 
Location problems are a special class of optimization 
problems [1]. A single-facility Weber problem is a prob-
lem of searching for  a point X that the sum of weighted 
distances from X to some existing points A1, A2... ,AN is 
minimum [2]. 
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 Here, wi is a weight of the i'th point, L(A,B) is the 
distance between  A=(a1,b1) and B=(b1,b2). In the Euc-
lidean metrics l2,  
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 But, other types of distances have been exploited. A 
review of exploited metrics is presented in [3]. Distance 
functions based on altered norms are investigated in [4, 
5]. Problems with weighted one-infinity norms are 
solved in [6]. Asymptotic distances [7] and weighted 
sums of order p [8] are also.  

Also, the rectangle [4] (or Manhattan) metrics l1 is 
well investigated. Here, 

 ( ) | | | |.2211 ba+ba=BA,L −−        (3) 
 Manhattan metric can be used for fast approximate 
solution instead of Euclidean metric. 
 Weber (or Fermat-Weber) problem  is a generali-
zation of a simple Fermat problem and has series of ge-
neralized formulations. 
 Multi-facility problem (Multi-Weber problem) is a 
generalization of the single-facility problem [9]: 
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 The problem is searching for M additional places 
for new facilities M.j,X j ≤≤1  
 Or, in other case [9], the objective function is de-
fined as (minsum problem): 
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 Also, the problem can include the restricted areas, 
barriers etc. In case of restricted zones, the optimization 
problem, in general, includes constraints: 

 Zj RX ∉       (6) 
where RZ is a set of restricted coordinates. 
 In case of barriers, the distance between 2 points is, 
in general, non-Euclidean (Fig.1) 

 

 
Figure 1. Distance with a barrier. 
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 Here, the distance between points A and B is the 
sum of distances d1 and d2 (piano movers distance [10]). 
 Continuous (regional) Weber problem deals with 
finding a median for a continuum of demand points. In 
particular, we consider versions of the ''continuous 
k-median (Fermat-Weber) problem'' where the goal is to 
select one or more center points that minimize the 
weighted distance to a set of points in a demand region 
[11]. If the existing facilities are distributed in some 
compact area nRΩ∈ then the single-facility continuous 
Weber problem [12] is to find X so that  

 ( ) ( ) ( ) min.AdμAX,Lw=XF ii
Ω

N

=i
i →∫∑

1
 (7) 

where ( )iAμ is the expectation of the fact that the i'th 
customer is placed in some area. If this expectation is 
equal among some area, i.e., if i'th customer is uniformly 
(equably) distributed in the area iΩ then 
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 In case of continuous (regional) multi-Weber prob-
lem, 
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 In this paper, we propose an algorithm for approx-
imate solving the problem (10) with constraints (6) 
where the distance function L() is an arbitrary monotone 
function. In the example given this function is the well 
known path loss function implemented to calculate the 
radio-propagation features of the area (media). 

2. Related Works, Existing Methods 
The Weber problem locates medians (facilities) at 

continuous set of locations in the Euclidean plane (or 
plane with an arbitrary metrics in generalized case). Ha-
kimi proposed similar problem statement for finding me-
dians on a network or graph [13, 14], proved that an op-
timal absolute median is always located at a vertex of the 
graph, thus providing a discrete representation of a con-
tinuous problem and generalized the absolute median to 
find p medians. Solutions consisting of p vertices are 
called p-medians of the graph.  
 In the case of discrete coordinates, considering all 
cells of discrete rectangular coordinate system as feasible 
points, we have p-median problem. But the dimension of 
such problem is very large if the discretization is precise 
enough. In general, p-median problem is NP-hard, the 

polynomial time algorithm is available on trees only [15] 
In [16], authors utilized a network flow procedure (an 
algorithm for p-median problem) to solve the mul-
ti-facility location problem with rectilinear distances . In 
case of the Weber problem (except one with Manhattan 
or similar metric) [17], the sum of the edges weights is 
not equal to distance in the problem with the discrete 
coordinate grid. 
 Drezner and Wesolowsky [18] researched the con-
tinuous problem under an arbitrary lp distance metric.; 
and, in [6], authors formulated the well-known 
“block-norm” for the distances involved.  
 The unconstrained problem with the mixed coordi-
nates (discrete and continuous) is considered in [17]. 
 For generalized multi-Weber problem with re-
stricted zones and barriers, only some special cases are 
considered. Bischoff et al. [18] provided two heuristics 
for the multi-Weber problem with barriers, and reported 
that their algorithms can attain solutions of reasonably 
sized multifacility location problems with barriers, both 
with regard to computation time and solution quality.  
 Having transformed our continuous Weber problem 
into problem with discrete coordinate grid, we have a 
combinatorial discrete optimization problem.  
 Most exact solution approaches to the problem of 
discrete (combinatorial) optimization are based on 
branch-and-bound method (tree search) [19, 20, 21], 
most them are in the complexity class NP-hard and re-
quire searching a tree of the exponential size and even 
parallelized versions of such algorithms do not allow us 
to solve some large-scale pseudo-Boolean optimization 
problems in acceptable time. 
 The heuristic random search methods do not guar-
antee any exact solution but they statistically optimal. I.e. 
the percent of the problems solved “almost optimal” 
grows with the increase of the problem dimension [19].  
 Being initially designed to solve the unconstrained 
pseudo-Boolean optimization problems, the probability 
changing method (MIVER) is a random search method 
organized by the following common scheme [19, 20, 22]. 
Algorithm 1
1. k=0, the starting values of the probabilities Pk={pk1, 
pk2, ... , pkN} are assigned where pkj=P{xj=1}. Correct 
setting of the the starting probabilities is a very signifi-
cant question for the constrained optimization problems.  

.  

2. With probability distributions defined by the vector 
Pk, we generate a set of the random Boolean vectors Xk. 
3. The function values are calculated: F(Xki). 
4. Some function values from the set F(Xk) and cor-
responding points Xki are picked out (for example, point 
with maximum and minimum values). 
5. On the basis of results in item 4, vector Pk is mod-
ified. 
6. k=k+1, if k<R then go to 2. This stop condition may 
differ. 
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7. Otherwise, stop. 
 The modified version of the variant probability 
method, offered in [22, 23] allows us to solve problems 
with dimensions up to millions of Boolean variables. 

3. Discrete Problem Statement 
Let's consider the problem (10) with constraints (6) in 
case when the coordinate grid is discrete. For most prac-
tically important problems, the solution of such approx-
imated (discretized) problem is enough. Moreover, the 
distance measurement is always finite.  

The transformation of the continuous coordinates into 
discrete coordinate grid is shown in Figure 2. The area is 
divided into Nx columns and Ny rows and the whole area 
forms a set of cells. In this case, the integral in formula 
(10) of the regional Weber problem is transformed back 
into a sum (5) of a Multi-Weber problem. The problem is 
to select p cells where the new facilities will be placed so 
that  
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Figure 2. Problem Transformation 
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 Here, X is a matrix of Boolean variables, Rz is a set  
of cells restricted for facility placement, L() is a distance 
function, in general, arbitrary but monotone. If we have a 
problem with barriers, this function is calculated as 
shown in Fig.1. wij is the weight of the cell (i,j), NF is 
quantity of facilities to be placed. 
 Also, the problem may have additional constraints. 
 As an example of the problem (11-13), we will 
consider a problem of antennas placement. 
 Here, we have a map with discrete coordinates, 
each cell has its weight which is a measurement of its 
importance to be covered with stable RF signal from any 
of antennas. The cells can contain different kinds of ob-
stacles (walls, trees etc). As the distance function, we can 
use the well-known path loss function [24] calculated as 

( )( )( ) ( ) ( ) ( ) ( )( ).20log lk,,ji,L+lk,,ji,=lk,ji,L OBST   (14) 

Here, LOBST is the obstacle path loss which is calcu-
lated algorithmically as loss at all the obstacles (depend-
ing on their material and thickness) along the path be-
tween the cells (i,j) and (k,l). The RF absorbing proper-
ties of the environment elements are available from the 
information tables [25]. In our distance function, we do 
not take into consideration the antenna gain since this 
parameter does not depend on antennas placement. 

In continuous coordinates, the objective function is 
monotone. We have a pseudo-Boolean optimization 
problem (11-14). The total quantity of variables of our 
problem is NxxNy. Thus, even in case of 100x100 coor-
dinate grid, we have a problem with 10000 variables. 

Since the objective function is given algorithmical-
ly, the distribution of the computational tasks between 
the parallel processors or cluster nodes is important.  

 In this paper, we do not consider greedy search al-
gorithms [26]) though they can be used to improve the 
results of the random search methods. 

4. Serial and Parallel Realization 
Our algorithm is based on the Algorithm1 Here, instead 
of the probability vector P, we have matrix P. Also, we 
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have matrix of Boolean variables X instead of a vector. It 
does not change the general scheme of our algorithm but 
simplifies the further description. 

 At the step of initialization (Step 1 of the Algorithm 
1), all the variables p (components of the probability 
matrix P) are set to their initial values (0<pi<1 ∀ 

Ppi ∈ ). Then (Step 2), we generate the matrices X of 
optimized boolean variables. In our case of constrained 
problem, the large values of matrix P components gener-
ate the values of X which are out of the feasible solutions 
area due to the constraints (13). Due to the constraints 
(13), the optimal initial values of the matrix P compo-
nents do not exceed NF/(Nx Ny) [30].  

 Instead of maximum number of steps R (Step 6), we 
can use the maximum run time as the stop condition. In 
some cases, it is reasonable to use the maximum number 
of steps which do not improve the result achieved.  

 In the cycle (i=1,N), we generate the set of N ma-
trices Xki in accordance with the probability matrix P. 
Then, the objective function is calculated for each Xki.  

To take into consideration the constraints (13), we 
modify the step of X exemplars generation.  

 
Algorithm 2

∑ =

YN

j iji p=S
1

.  
1. XSET  =Ø; n=0; 
2. while n<NF do 

2.1.  for each i in (1,Nx): ; 

2.2.  rx=Random(); 
2.3. ∑ = i

N
ixx Sr=S Y

1 ; 

2.4. select minimum i so that xi
i
k SS ≥∑ =1 ; 

2.5. ry=Random(); 
2.6. iyy Sr=S : 

2.7. select minimum j so that yil
j
l Sp ≥∑ =1 ; 

2.8. if ZRji ∈),(  then goto 2.2 

2.9. else, ( )ji,X=X SETSET ∪ ; n=n+1; goto 2; 
Here, XSET is a set of coordinates (numbers of col-

umns and rows) of the resulting matrix X which are equal 
to 1, NF is quantity of the facilities placed, Random() is a 
function with random value in range [0, 1). 

The solution of different practical problems [22] 
shows the best result if we use the multiplicative adapta-
tion of elements of matrix P with rollback procedure [27]. 
In this case, the components of the matrix P are never set 
to the value of 0 or 1 which may cause that all the further 
generations of the X matrix very similar. 

In Algorithm1, all Boolean variables are considered 
as independent and the value of an element pij of the ma-
trix P at the k'th step can be calculated as 
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Here, dk,i,j is the adaptation coefficient, max
kj,i,x and 

min
kj,i,x are the exemplars of the matrix X giving the max-

imum and the minimum values of the objective function 
(11). In case of multiplicative adaptation, dk,i,j does not 
depend on the step number k. In this case, the absolute 
value of adaptation step depends on the corresponding 
value of  pkj. 

In case of Weber problem, we consider the va-
riables xij as dependent from each other. As follows from 
the common sense (and proved experimentally), if the 
objective function has maximum value with Xworst so that 

1=xmin
kj,i,  then, with some probability, the results at the 

next steps will be better if 1=xmin
kj,i,  or in some sur-

rounding area: 
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where NS is the width and height of the surrounding area. 
The value of the coefficient d must be bigger for the 
points close to (i,j) for farther points, it must tend to 0. 
 We used the following formulas: 

 w* / ji,k,ji,k,ji,k, dd=d ;    (17) 
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 Here, (i*,j*) and (iw,jw) are the closest points so that 

1min
,**

=x
kj,i

 and 1
,ww

=x worst
kj,i

 correspondingly, Xworst is 

an exemplar of the X matrix with minimum objective 
function among the generated set. 
 After several steps, the values of P matrix elements 
are close to 0 or 1 and X generated are close to some lo-
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cal minimum. The rollback procedure helps to avoid that 
situation. It resets the values of P. The rollback is per-
formed after several steps which do not improve the best 
objective function value. 

The best results are demonstrated with methods of 
partial rollback procedure which change some part of P  
matrix components or change all the components so that 
their new values depend on previous results. We can use 
the following rollback formula: 

 pkij = (pk-1 i j  +qk p0 )/(1+qk), if pk-1 i j <p0. (20) 
Here, p0  is the initial value of the probability, we 

assume that it is equal to the average value of the ele-
ments of the matrix P. The coefficient qk may be constant 
or vary depending on the results of previous steps. For 
example, it may depend on the quantity of the steps 
which do not improve the minimum result (sm). 

  qk = w / sm.     (21) 
The coefficient w must be chosen experimentally. 

 The adaptation of our algorithm for multiprocessor 
systems with shared memory can be performed by the 
parallel generation of the exemplars of the X matrix  
and their estimation.  If our system has NP processors, 
the cycle of generation of N exemplars of the matrix X 
can be divided between the processors. Each processor 
has to generate N/Np exemplars of the matrix X and cal-
culate the value of the objective function, left parts of the 
constraint conditions and calculate the modified objec-
tive function values. Realization of such parallelization 
with OpenMP library with the appropriate compiler is 
very simple, actually, in Fortran or C, only a line with 
“parallel do” pragma before the cycle realizing the Step 2 
of Algorithm1 is needed. 

 Organizing of the parallel thread takes significant 
computational expenses. In [27], authors estimate that 
expenses as 1000 operations of real number division. The 
experiments [23] at 4-processor system with linear 
100-dimension problem show that the parallel version 
runs 2.8 times faster than the serial one. For large-scale 
problems with millions of variables, the parallel effi-
ciency is almost ideal (0.95-0.97 for 1000 variables). 

5. Numerical Results 
For testing purposes, we used a planar problem (11-14) 
with Nx=200, Ny=400. The map of our problem is shown 
in Fig.4, part A. Dark areas correspond to the cells with 
the higher weight (important points), white with zero 
weight (points where RF-coverage is not important). The 
scheme has 3 obstacles (barriers). 

Since our algorithm with the rollback procedure is a 
special case of the multistart algorithm, parallel multis-
tart performed by different nodes of a cluster is allowed. 
In case of the problem (14), a cluster of 8 independent 
nodes (no message passing) achieve the same result as a 
single node spending approximately twice faster (47% - 
59% of single node time). So, parallel efficiency coeffi-

cient is 0.21-0.27 for such cluster. The experiments were 
performed in the Argo cluster [28] (ICTP, Trieste, Italy). 

For the parallel version for multiprocesor systems 
with OpenMP, the parallel efficiency coefficient is 
0.92-0.95 for the problems of dimension 100x100 and 
grows with the dimension of the problem. For our testing 
example, the paralel efficiency is 0.94-0.95. The average 
efficiency is calculated after 10 runs for 5 different test-
ing problems with different schemes similar to that 
shown in Fig.3, part A.  

The parallel efficiency was calculated with the fol-
lowing scheme. First, the serial version of the algorithm 
was implemented. The stop condition was its running for 
5 min. The objective function value achieved was fixed 
as F*.Then the parallel version ran for the same problem 
with the stop condition F(X)≥F*. 

The comparison of the efficiency of the algorithm 
with the existing methods is subject of the further re-
search. 

The algorithm is an anytime-algorithm. The deci-
sion maker can stop the process of solving if the results 
seem to be appropriate. The results can be easily visua-
lized (Fig.4, part B). Here, the dark areas are the areas 
with inappropriate signal level (customer regions situated 
too far from the facilities placed). The probability matrix 
can also be easily visualized (Fig.3, part C) and show the 
regions of most intensive search. 

 

    
 

 
(A) problem scheme      (B) Result 

 
C) probability matrix visualization 

Figure 3. Problem visualization. 
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6. Conclusion 
Modified random search algorithm based on probability 
changing method can be used for approximate solving 
planar generalized multi-Weber problem with non- Euc-
lidean monotone distance function. Modern computing 
facilities (multiprocessor systems, low-cost clusters) al-
low solving problems with appropriate precision. In the 
case of the MPI cluster for random search problems, ex-
pensive high-performance network is not needed because 
of absence of any data traffic. 
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