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ABSTRACT 

In this work, a mechanism of macroscopic quantum tunneling is studied, which shows this sort of phenomena may exist 
even in the bio-field system. The relevant Davydov solitons fields and the Feynman digraph have been constructed 
based on the nonlinear Green function theory, which allows one to get a synchronous resonance model to explain the 
macroscopic quantum tunneling, such as in double potential wells system. Furthermore, the functional of quantum in-
formation density can also be applied to drive the object into a type of soliton structure of quantum information density, 
which allows the system to possess property of the macroscopic quantum tunneling. 
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1. Introduction 
 Since quantum mechanics established a theory that the 

microscopic particles have certain probability to tunnel 
through a finite or infinity potential this issue has become 
a standard model described in the text book of quantum 
mechanics [1]. However, as development of recent years 
in many experiments for the Bose-Einstein condensation 
(BEC), nano-particle in quantum dots system, and so-
matic science, the phenomena of macroscopic quantum 
tunneling (MQT) have been discovered in many works 
[2-9]. These results motivate a strongly disputed question 
that macroscopic tunneling is possible, so that after many 
years the investigation of mechanism for MQT become 
more and more significant. In this work, we firstly study 
a model of MQT for BEC in double potential wells de-
scribed by the Grosse-Pitaevskii equation, then extend 
the model to a general situation by introducing a nonlin-
ear quantum field considering a sort of nonlinear Green 
functions and a Feynman digraph. This allows a mecha-
nism of MQT for a bio-solitons system interaction with 
the object to be proposed. Moreover, a driven model 
which generalize the above process by quantum informa-
tion density (QID) description is presented. We hope that 
the theory provided is useful to explain the phenomena of 
MQT, especially in the bio-solitons field system [10]. 

2. Macroscopic Quantum Tunneling of BEC 

Let us consider two BEC systems are confined in the 
double potential wells, respectively. The BEC is de-
scribed by the Grosse-Pitaevskii equation as 
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 is a  s  wave scattering length among atoms. Then 
there exist MQT happening as type of Josephson oscilla-
tion for this system [3], so that a distribution of the wave 
functions between two well sides is supposed as 
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 1  and  rwhere  r2  are the wave function of ba-
sic states, and  a t  b t and  are the probability am- 
plitudes in two wells, respectively. Then, by replacing 
this equation into the Grosse-Pitaevskii Equation (1), one 
gets 
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Since the solution for the equation 

d
i
d b vt

 
  

 
2 2

2 2

v
a a

b





 
   

     
 

   , 1,0a b  

           (8) 

at the initial condition , is given by [4] 
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hence a solution for Equation 4 is constructed as form 
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which satisfies 
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f t  in Equation (11) is obtained as so that a solution 
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In the same way, one can get 
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Therefore one has 
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which proves that the solutions for Equation (4) are 
expressed by 
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  From the solution  ,a t b t  we find that the 
nonlinear BEC tunneling oscillation is not like the linear 
Josephson sin oscillation because it contains kind of en-
velop functions  af t  and b  f t

     i ,ˆ , , e ,tt t   rr r

. This shows a soliton 
type of structure in the oscillation which may have self 
confinement phenomena appearance under strongly 
nonlinear situation as support from the experiments pre-
sented in Ref. [4]. 

The above result explains that the system of EBC 
which satisfies the Grosse-Pitaevskii equation described 
micro-particles self confined as local solitons can be as 
the quasiparticles. Thus the symmetry of total system 
automatic broken and energy decrease to low level so 
that the particles together create coherence to condensate 
into the lower momentum state as solitons of BEC. These 
solitons can tunnel as sort of nonlinear oscillation 
through high potentials. 

3. Nonlinear Quantum Field 

The previously studied model can be extended as a gen-
eral frame of biological quantum field to interact with 
object. This biological field assumed to consists of D-P 
solitons, nonlinear excitations, and so on [10] as men-
tioned in the previously works [11,12]. For simplicity, 
here we only call them as “soliton”. One of important 
techniques to study this quantum field needs to be able to 
handle operator series product. Although the Green func-
tion theory to describe quantum field have made plentiful 
progresses [13], however, it currently can only handle the 
linear operator series product, while the handling of the 
nonlinear operator series product remains great chal-
lenges. Actually, using the linear approximation methods 

lead to the relevant calculation procedures which is quit 
complicated and enables some information for new 
nonlinear biological excitation easily to be lost in the 
process. This provides an inspiration to search new 
nonlinear mathematical methods and establish nonlinear 
propagator theory [14,15]. Consequently, the nonlinear 
Green function and the slash product are introduced. For 
this let us second quantize a state of soliton as a nonlin-
ear quantum field operator 
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which satisfies a quantum nonlinear Schrödinger equa-
tion 
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It can be proven that the slash product can keep liner-
arity for the nonlinear operator, this important property 
allows the most calculations in the linear quantum field 
theory can still remain the same forms in the nonlinear 
quantum field. 
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   For example, if a creation operator (annihilation op-
erator) is given by the Fourier transformation of  ˆ , t r  

  i1
ˆ , e d

2π
t   , ,a t r r




r         (25) 

and 

  i1
ˆ , e

2π
t   d , ,a t 

  


rr r      (26) 

then the commutation relations are 

 , , ,a t a t     r r r r          (27) 

and 

       , , , , 0,a t a t a t a t        r r r r    (28) 

Thus in the Schrödinger picture, Equation (21) is ex-
pressed as 

   i ,St t
t
 






S

 

           (29) 

where  is defined as 
 

         
ˆ ˆ

ˆ ˆ ˆ ˆd .S c
 

   


   
     


r r
r r r r r

r r
                   (30) 

 
Furthermore, if Equation (29) can be written as 
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then a nonlinear propagator  is constructed by 
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where   represents expectation under the interaction 
picture in the statistical ensembles, i.e. in the canonical 
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where H  is a Heisenberg basic state; then a 2-point 
Green function is given by 
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 where 0,0S U  0 H  is introduced in the adia-
batic hypothesis. Moreover, a spectral theorem in the 
form of the slash product is given by 
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4. Nonlinear Synchronous Resonance 

The above formalism of nonlinear quantum field allows 
us to postulate the D-P solitons interact with photons to 
form a nonlinear excitation field (NEF) around object. 
These D-P solitons in the biological system play basic 
role as a carrier of bio-information and bio-energy in the 
issues of organization [10,11]. The object which has sort 
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of solitons by micro-vibration of its atoms or molecules 
is emerged in the nonlinear excitation field. The surround 
NEF can interact with the solitons in the object by ad-
justing its solitons to have almost the same state, energy, 
information and shape as that of the object through 
“breath” virtual Bose (such as phonon). This process is 
shown in Figure 1. When the solitons from NEF propa-
gate to the range of the solitons of object, the solitons of 
NEF emit quanta as imaginary Bose (such as phonon) 
into the solitons of the object, so that the both soliton 
amplitudes and velocities appear to have strong coher-
ence. This virtual phonon exchange constitutes a similar 
“breathing” of the interaction. In this process, the syn-
chronous resonance among them happen. Consider the 
above assumption of model, here we firstly define the 
soliton in the object as O -soliton and the solitons in 
NEF as 

 

Figure 1. The exchange of a virtual quanta q between soli-
ton k and soliton k’. 
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The exchange interaction can be described by the Figure 
1, which shows, in the microscopic level, it is possible by 
adjusting k   represented a wave vector of the soliton from 
NEF emits a , to permit the wave vector of soliton from 
the object to be equal to  after absorption of a , so that 

q
k q

k q k q

F -soliton. Since the surround -solitons are 
highly coherent with 

O
F -soliton in the local position, the 

-soliton can easily absorb quanta from the surround O
F -soliton field, and then emit quanta to return the 
F -soliton field, as “breath”. When the quanta from F - 
soliton field transmit into a -soliton, it allows the 

-soliton to expand and re-excit the weak part with 
O

O
F -soliton. In fact, it is known that the vibration of the 
D-P soliton in local position is as kind of electromagnetic 
wave in the sub-millimeter wave or far-infrared wave 
whose frequency change with the composition change 
of the frequency of partial chain of protein. If the fre-
quency of the quanta is the same as the frequency in 
partial chain of protein, then there is a resonance to ex-
cite the partial chain of solitons in the object. Hence, 
the exchange process of the quanta allows -soliton to 
have the same status with the 

O
F -soliton in NEF. The 

interaction Hamiltonian of the system in the momentum 
(wave vector , or ) space is supposed to be given by k q

                   (42) 

This allows the solitons in the object are strongly cor-
related with NEF and having synchronous resonances 
with NEF, which enable the object possibly to enter a 
kind of status of condensation or coherence as NEF. 
Then a macroscopic quantum tunneling for the object 
becomes possible. 

This can still be described by the above double poten-
tial wells model as the distribution of the wave functions 
appear in two potential wells, e.g. 

         1 2ˆ ˆ ˆ, t a t b t   r r r        (43) 

where  r1  represents a wave function of the soliton 
in NEF, and   r2  represents a wave function of soli-
ton in the object. Then, by using quantum nonlinear 
Schrodinger equation again, one gets the solution being 
similar to Equation (19), thus we obtain 

 

 

2
2 2 2

2 2
2 2

2
2 2 2 2 2 2

1
2 2 3

1 sin
1 2

,
2

sin cos
2 2 2

v t
v

v
a

c v t t t
t v v v

v




  


      
                

2

aa f            (44) 

and 

 
1

2 2 2 2 23
2 2

22 2

2 2 2 2 2 2

1
sin

1 2
,

2
sin cos

2 2 2

t
v v

v
b f b

t t tc
v v v

 


  

      
             
     

 

b                      (45) 

 
which shows it is a complicated anharmonic oscillation 
with many frequencies. One amplitude is 

2
2 2 3

1

2c v 

c

                (46) 

showing ,  , and  increase with the amplitude 
decrease. Where notice here 

v

j  and  may be not 
related to , 

v

extV

  21
d , 1,2,

2j j j
m

    r r        (47) 
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   1 22 d r r r,

c

1

2
v

m
           (48) 

and  reflects a nonlinear coupling. This means an ob-
ject with small mass finally will be easier to confine in 
another well (or tunneling out of its original well) by a 
strong nonlinear interaction (from NEF) under the condi-
tion of the double potential wells distribution of the soli-
tons plus NEF. This is supposed by the phenomena of the 
self-trapping in BEC experiments as mentioned before. 
While here we want to emphasize that this model is also 
supported by many phenomena from experiments of the 
somatic science, such as Refs. [7,8,16]. 

5. QID Driving 

Generally, the above model can be extended by using of 
the concept of quantum information density described by 
the Liouville equation [12]. Indeed, the Liouville equa-
tion for quantum information can be derived by directly 
starting from quantum Liouville equation: by using 
power series of expansion of the density operator  , 
one gets a Liouville equation for the general functional of 
 , such as   lnI     constructed by 

   , .H Ii
I

t







   



           (49) 

The physical meaning of the above equation can be 
explained as “a QID representation of Liouville equa- 
tion”, where I   corresponding to a sort of general 
QID, especially   lnI    [17]. In this sense   can 
be considered as a minimum unit of the quantum infor-
mation density. Besides, the classical situation can also 
be proved by using the same way. 

The above derived QID representation of Liouville 
equation coincides with the traditional Liouville equation, 
therefore it can not describe an irreversible process since 
its time evolution is symmetric by inheriting from the 
Liouville equation [13], however, from the point of view 
of thermodynamical second law we can introduce a dif-
ference (or gradient) of QID to allow 

 d ln ln
i ,

d
H

t t

     
 


 ln 0,V  

 V

  (50) 

where   is assumed to be introduced by a differ-
ence (or gradient) of QID. 

Because QID is just the negative entropy density, the 
above expression is like a microscopic representation of 
thermodynamical second law: when the QID in the two 
coupled systems are not equal to each other, then there 
exists a difference (or gradient) of QID will spontane-
ously drive the higher QID to transmit to the lower QID 
until the both arriving at equilibrium. Moreover, if 
 V   is a functional of   of the object, (such as) 

through a mechanism of synchronous resonance pro-

posed above, then it can drive the object to enter kind of 
soliton status so that MQT is possible. In fact for a quan-
tum system, if one supposes a non-equilibrium Liouville 
equation is expressed as 

   0

d
i , ,

d
H R

t t

     


e

        (51) 

Fwhere the density operator given by   , then using 
the Baker-Hausdorf formula and applying the Magnus 
lemma [13] gives 

 d ln ln
, ,

d 1
R

t

  



   

   
times

, , , , ,

n

n

          (52) 

where 

x y x y y y    



 



         (53) 

This allows one to gain 

     d ln
ln ln , ,

d 1
R R V

t

     


 
    

  (54) 

 R   is chosen to satisfy where 

  ln 0,R   

 

               (55) 

ln
, 0.
1

R



 
  

 

Then a nonlinear Liouville equation is obtained as 

   0i , ,H R
t

  
 


           (56) 

    lnV R     sin lnV, such as, if where     , 
then 

 0i sin .L
t

   


            (57) 

This sort of nonlinear Liouville equation may have 
soliton type of solution. In this sense, the influence of 
NEF to the object can be realized through an information 
density driving  R  . This arises a possibility: using 
functional of  R  as nonlinear driving,  , from cer-
tain natural or artificial source of NEF, then an object 
will enter sort of macroscopic quantum status to have 
possible MQT. This even can be realized by a series of 
nonlinear pules of  . For instance, if a series of multi-
plied pulses series can be transmitted from a source of 
NEF [18,19], 

   
 

2 2
1 2

3 3
3

sin ,sin ,

sin , ,

t t

t

     

  

 

 
         (58) 

 R   expressed by which allows a driving 

   

 

sin

exp sin ,

n n
n n

n

R A t

t

   
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 

 


         (59) 

  
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where 
1

!n
n

nnA  ,   is adjusted by NEF. This  

makes a complicated nonlinear oscillation of the QID to 
drive the original object probably to have soliton type of 
structure, hence the MQT is possible. 

6. Conclusion 

In conclusions, the macroscopic quantum tunneling (MQT) 
for the BEC system or solitons system are possible. One 
possible mechanism of MQT orientates from the syn-
chronous resonance between the NEF and the object as 
the two potential wells system. This MQT shows com-
plicated anharmonic oscillations and to have many dif-
ferent frequencies. Moreover, the model can be extended 
as QID representation. The functional of nonlinear QID 
can be applied to drive the object into a type of soliton 
structure of QID, so that the MQT is possible. 
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