
J. Software Engineering & Applications, 2010, 3, 894-900
doi:10.4236/jsea.2010.39105 Published Online September 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

Introduction to a Requirements Engineering
Framework for Aeronautics

Robert Abo

Cedric Laboratory, Conservatoire National des Arts et Métiers, Paris, France.
Email: robert.abo@cnam.fr

ABSTRACT

This paper introduces a framework to produce and to manage quality requirements of embedded aeronautical systems,
called the ‘Requirements Engineering Framework’ (REF). It aims at making the management of the requirement lifecy-
cle easier, from the specification of the purchaser’s needs, to their implementation in the final products, and also their
verification, while controlling costs. REF is based on the main standards of aeronautics, in particular RTCA DO-254,
and RTCA DO-178B standards. An implementation of REF, using the IBM Rational DOORS and IBM Rational Change
tools, is also presented in this paper.

Keywords: Aeronautics, Requirements Engineering, RTCA DO-254 and RTCA DO-178B Standards, V-Model

1. Introduction

To ensure the safety and the reliability of the aircraft’s
embedded systems, airworthiness authorities (e.g. US
Federal Aviation Administration [1], European Aviation
Safety Agency [2], UK Civil Aviation Authority [3], etc.)
require that they are built under control of processes
based on international standards. Among these standards,
the main two used in the civilian domain are the
well-known RTCA DO-254 ‘Design Assurance Guid-
ance for Airborne Electronic Hardware’ standard (aka
EUROCAE ED-80) [4] for hardware components and the
RTCA DO-178 ed. B ‘Software Considerations in Air-
borne Systems and Equipment Certification’ standard
(aka EUROCAE ED-12) [5] for software components.
They are referred to as the ‘DO standards’ throughout
this paper.

In this article, we introduce the ‘Requirements Engi-
neering Framework’ (REF for short), which aims at
producing and managing quality requirements, in order
to produce safe and secure embedded aeronautical sys-
tems, that must adhere to the rigorous constraints of in-
ternational standards, while controlling costs. This is
achieved by using formalized and mature processes as
presented in the following sections. The REF described
in this article, does not refer to the practices of a particu-
lar supplier or a particular firm in aeronautics.

The rest of this paper is organized as follows. In Sec-
tion 2, we present the basic notions of requirements
management, which form REF foundations. Section 3

presents an implementation of REF, which uses the IBM
Rational DOORS tool [6] to manage requirements and to
carry out requirement traceability, and IBM Rational
Change tool [7] to manage changes between work teams.
Section 4 is dedicated to the safety activities, while Sec-
tion 5 concludes this paper.

2. Requirements Management

2.1. System Lifecycle Model

DO-254 does not prescribe a preferred lifecycle model,
nor imply a structure for the performing organization. In
the same manner, DO-178B does not designate a pre-
ferred software lifecycle, but describes the separate
processes that comprise most lifecycles and the interac-
tion between them. The lifecycle for each project should
be based on selection, and arrangement of processes and
activities determined by the attributes of the project.

Several system lifecycle models exist in system engi-
neering, with different approaches on the manner of
leading a project to develop a system: waterfall, V-model,
iterative, spiral, agile, and so on. Each one has its pros
and cons, and it is up to the chief technical officer and
project leaders to determine the most suitable model to
lead the projects of their company.

REF is based on V-model [8] (aka “Vee model”),
which is a variation of the waterfall model. This choice is
explained by its advantages. First, it is simple, well or-
ganized, and easy to use and to implement. In particular,
it highlights the correspondences between the develop-

Introduction to a Requirements Engineering Framework for Aeronautics

Copyright © 2010 SciRes. JSEA

895

ment phases (i.e. the descending stages, from the early
specification to the implementation) and the verification
phases (i.e. the ascending stages, from the implementa-
tion to the product delivery). Thus, it facilitates not only
requirement traceability, but also the production of the
certification documents required by DO standards, as we
will explain in the following sections. Another great ad-
vantage of V-model is it can be tailored into a specific
project-oriented V-model, because it is independent from
any organization and any project. It also provides assis-
tance on the way to implement an activity, and it sup-
ports a wide range of development methodologies, in
particular formal methods [9-11] often use to develop
critical parts of systems.

Among disadvantages of V-model, it is project-oriented
instead of addressing the development of systems within
a whole organization. Another V-model disadvantage is
it fails at covering the maintenance of systems. But, these
disadvantages do not impact REF.

2.2. Basics

The concept of requirement is in the middle of systems
engineering, as the abundant literature on the subject
attests it [12-15]. We define a ‘requirement’ as a cus-
tomer’s elementary need that is to be implemented in the
product or service that he receives1. In systems engineer-
ing, we can refine this rough definition by distinguishing
the characteristics of the system to be built, known as the
functional requirements, from the ways the system
achieves its functions, known as the non-functional re-
quirements (e.g. performance, quality, interface require-
ments, etc.). We can also differentiate the customer’s
needs, from which the supplier’s distributed requirements
are issued, among three hierarchical levels, which are the
system, the high-level and the low-level requirements
sets. From now on, by “customer”, we mean not only the
purchaser of the building system, but also the supplier’s
teams who require services from other ones along an
enterprise workflow dedicated to requirements manage-
ment. Thus, we distinguish four main requirement levels
according to their refinement level, plus a requirement
implementation level as shown in Figure 1:

1) The ‘purchaser’s level’ corresponds to the pur-
chaser’s specifications seen as a set of rough
needs developed in the ‘Purchaser Specification’
(PuS) document.

2) The ‘system level’: the purchaser’s needs are re-
fined and reformulated, by using technical terms
understandable for the development teams. The

system requirements are collected in the ‘System
Specification’ (SyS) document. It is possible to
refine this level, by considering a sub-level dedi-
cated to the embedded equipment.

3) The ‘high-level requirements (HLR) level’. The
notion of sub-system appears, and hardware re-
quirements are distinguished from software ones
at this level. High-level requirements are devel-
oped from the analysis and refinement of system
requirements, system architecture, safety-related
needs and derived requirements. The latter cor-
respond to requirements that are the result of the
sub-system development process, and may not be
directly traceable to high-level requirements. The
HLR are collected in the ‘Hardware Requirement
Specification’ (HRS) and the ‘Software Re-
quirement Specification’ (SRS) documents.

4) The ‘low-level requirements (LLR) level’.
Low-level requirements are developed from the
high-level requirements, sub-system architecture,
and design constraints, by refinement and refor-
mulation. The hardware and software subsystems
are directly developed from the LLR. The LLR
are collected in the ‘Hardware Design Document’
(HDD) and the ‘Software Design Document’
(SDD).

5) The ‘implementation level’ is the last level and
marks the end of the descending phase of the
V-model. It corresponds to the hardware compo-
nents and the source code. The implementation of
a requirement consists in giving this requirement
an existence from its specification as it appears in
the HDD (for hardware components) or in the
SDD (for software components).

Requirements are fundamental. Firstly, the supplier’s
requirements formalize the customer’s needs. The sup-
plier ensures the comprehension of the customer’s needs,
that he has translated this into a form he can use without
any misunderstanding. Secondly, requirements allow the
identification of the characteristics of the customer’s
needs. Finally, requirements simplify the taking into ac-
count of customer’s needs along V-model by formalizing
them. They show the customer that the final product an-
swers the needs he has expressed.

2.3. Requirements Specification

It consists of specifying the requirements. In particular,
engineers have to define the bi-directional and vertical
traceability between the upper and lower requirements.
The main objective of the requirement traceability is to
show that the purchaser’s needs are satisfied by system
requirements, high-level requirements, and low-level
requirements; and then implemented into the hardware

1DO-254 defines a requirement as “an identifiable element of a speci-
fication that is verifiable” [4]. DO-178B defines a software require-
ment as “a description of what is to be produced by the software given
the inputs and constraints” [5].

Introduction to a Requirements Engineering Framework for Aeronautics

Copyright © 2010 SciRes. JSEA

896

Figure 1. The documents of a project, issued at the different
stages of V-model with (1): System level requirement vali-
dation matrix; (2): Specification Analysis Matrix (DO); (3):
Design Analysis Matrix (DO); (4): Hardware/Code Analysis
Matrix (DO). The requirements are produced by successive
refinements along the descending phases of V-model. In the
figure, ‘TP’ stands for Test Plans, and ‘Q’ for Quality.

components or the source code.

2.4. Requirements Justification

All the supplier’s requirements at any level have to be
justified. A justification records the reasons for a re-
quirement’s existence, and its compliance with a cus-
tomer’s need. It also records the reasons for the imple-
mentation choices; and it keeps the analysis for the future
designs and the modification assessments. Finally, it jus-
tifies the activities link to requirements, in particular the
safety ones. Requirement justifications make the re-
quirement analysis phase easier.

2.5. Requirements Review and Analysis

This phase is also referred to as “requirements valida-
tion”. Its purpose is to ensure that all the customer’s
needs are specified (i.e. there is no under-specification of
the customer’s needs) and nothing more than these needs
is specified (i.e. there is no over-specification of the cus-
tomer’s needs). Moreover, this analysis consists in en-
suring that the requirements at each level are good and
well-specified requirements, i.e. they are sufficiently
correct, complete, unambiguous, consistent, self-contained,
achievable, verifiable, etc., so the delivered product will
meet all the customer’s needs and airworthiness authori-
ties’ constraints including DO requirements.

We must notice that whether the writers and the re-
viewers are the same engineers, they cannot perform the
validation of the requirements they specified, in particu-
lar for the requirements of the most critical software re-

ferred to as Level A or Level B by the DO-178B stan-
dard2. Project managers and team leaders must organize
the work of the engineers taking this into account. A spe-
cific team performs the safety activities as described in
Section 4.

2.6. Requirements Verification

This activity deals with the rise of V-model. It consists in
evaluating the implementation of the supplier’s require-
ments to determine, whether or not, they have been met.
There are several means of verification: tests, code
analysis, model checking, simulation, etc. For aeronau-
tics real-time embedded software, the low-level require-
ments are often implemented by using the Esterel Tech-
nologies’ SCADE Suite [16]. This tool complies with
DO-178B, and allows for generation of a certified source
code from low-level requirements without any unit tests.

3. Implementing REF

The REF processes are implemented through two main
tools namely: IBM Rational DOORS [6] for the man-
agement of requirements, and IBM Rational Change [7]
for the management of changes impacting requirements.
This choice and the use of these tools are not mandatory,
and other ones with similar functionalities can be used,
according to the final customer’s choices. Reviewing all
of them is out of the scope of this paper, but we can
quote Geensoft's Reqtify [17] or IBM Rational Requi-
sitePro [18] as other examples of requirements manage-
ment tools. IBM Rational ClearQuest [19] and Serena
TeamTrack [20] are other examples of change manage-
ment tool.

3.1. Requirements Management

DOORS is a requirements management tool that provides
an easily collaborative environment, to make the
achievement of processes linked to the specification, the
analysis, the verification and the traceability of require-
ments easier.

3.1.1. Data Organization
Data is stored in DOORS databases, each of which are
organized as folders, projects and modules. Projects are
specific folders that contain data related to a particular
project. They can contain folders and sub-folders, both
contain modules. We define a module as a collection of
objects with attributes, each of which relate to a particu-
lar topic. Each module has its own attributes as name,
type, description, date of creation and so on. Different
2Software level is based upon the contribution of software to potential
failure conditions as determined by the system safety assessment proc-
ess. Their effects on the aircraft, the crew and the passengers categorize
the failure conditions. They spread out from ‘A’ (catastrophic effects),
to ‘E’ (no effects) [5].

Introduction to a Requirements Engineering Framework for Aeronautics

Copyright © 2010 SciRes. JSEA

897

kinds of modules can be defined.
Each project should contain at least:
1) Modules for customer specification;
2) Modules for system, high-level and low-level re-

quirements;
3) Modules for applicable standards, documents,

and plans;
4) Modules for requirement verification (test cases,

test procedures, results, and analysis);
5) Modules for requirement justification;
6) Modules for requirement validation.
Within a module, objects can be organized in a hier-

archical manner. Information is displayed through views
that can filter attributes according to user choice. Objects
can be linked together, in particular hierarchical objects,
which is very important to define objects traceability. It
is possible to define several kinds of objects:

1) Requirements collected in the specification mod-
ules;

2) Validation objects collected in the validation
modules;

3) Justification objects collected in the justification
modules;

4) Verification objects collected in the verification
modules;

5) Other objects in particular texts, that can contains
titles, notes, remarks or any other textual expla-
nations that are not requirements but are useful to
understand the specifications. Indeed, we must
keep in mind that these modules can be published
as official documents for the purchaser and the
end users.

DOORS administrators can regularly create module
baselines, which are frozen modules that cannot be
modified. They record the history of the module since its
last baseline, including information about objects, their
attributes, and also module sessions.

3.1.2. Documents Issues
DOORS allows exporting a module into several formats,
that can be Microsoft Office, HTML, FrameMaker, etc.
This functionality is particularly interesting to deliver
definitive documents to purchasers. It is possible to
choose the attributes to be printed on documents ex-
tracted from DOORS modules. In that case, the text of
the requirement is automatically put between the identi-
fication of the requirement and the ‘End of Requirement’
tag. The attributes to be printed should be, at least:

1) The requirement identifier;
2) The requirement text;
3) The upper requirement(s) covered by this re-

quirement;
4) The delivery version of the product where this

requirement appears.

3.2. Change Management

3.2.1. Basics
The configuration management process is interfaced with
IBM Rational Change [7]. Specifications, test cases, test
procedures and any documents are managed with
DOORS. Change is a web-based tool for change man-
agement solutions, allowing teams involved in the sys-
tem development to get together. Across the enterprise, it
tracks change requirement requests.

3.2.2. Process Description
Updates of requirements, justification, and validation
objects are decided by a committee. They are only au-
thorized through a change management process de-
scribed in the following text. Each modification or evo-
lution need is recorded through a Specification Change
Request (SCR) that details the origin of the evolution, the
standard of applications and the evolution need. This
SCR can lead to several Requirement Change Requests
(RCR), each of them impacting one or several require-
ments of a specific module. The Change tool traces the
links between an SCR and its RCRs. Each RCR is real-
ized in DOORS. Thus, each requirement modification
must be traced with the relevant RCR. Once the SCR is
approved in commission, the requirement or procedure is
then proposed for the validation process. An SCR or an
RCR can be reworked, if conflicts are detected. The SCR
manager can close an open SCR after having checked it:

1) All impacted requirements have been validated;
2) All modifications are well traced in DOORS;
3) All verification modules have been updated;
4) All impacts on lower and upper requirements

have been taken into account;
5) All justifications have been updated;
6) All impacts on previous standard specification

have been taken into account;
7) The standard of applicability has been clearly

identified.
Figure 2 shows the SCR and its associated RCRs life-

cycles, with the corresponding processes enabling to pass
from a stage to another.

3.3. Requirements Documentation

Some attributes are generic and DOORS automatically
manages them. These usually are the object identifier, its
date of creation, its date of last modification, the name or
the user identification, etc. The object identifier is unique,
and must contain the identification of the module that the
requirement belongs to, and a number. The module iden-
tifiers should be, at least: SYS for ‘System’, HW for
‘Hardware’, SW for ‘Software’, SAF for ‘Safety’, VAL

Introduction to a Requirements Engineering Framework for Aeronautics

Copyright © 2010 SciRes. JSEA

898

Figure 2. the SCR and RCRs lifecycles for REF. In general, several RCRs are associated to one SCR. RCRs permit to trace
requirements updates.

for ‘Validation’, JUS for ‘Justification’, and others nec-
essary identifiers as, for example, QLY for ‘Quality’,
PRG for ‘Programs’, etc. For requirements, there must be
the following major attributes. They have an impact on
the validation status.

1) A main description to describe the requirement. It
may contain drawings, tables, figures or mathe-
matical formulas.

2) An assumption or a set of assumptions for the
requirement, if any. Assumptions must be identi-
fied, justified, and validated.

3) The domain of activity, for example, SYS for
‘system’ level, HW for ‘hardware’, or SW for
‘software’ level.

4) The type of requirement: ‘derived’ requirements,
which are the results of the sub-system develop-
ment process and may not be directly traceable to
high-level requirements. A ‘terminal’ require-
ment cannot be traced to lower levels. A ‘normal’
requirement is neither derived nor terminal.

5) The delivery version of the system in which the
requirement appears (for example V0, V1.0, V1.1,
etc.). It is possible to qualify a version as ‘partial’
to indicate requirements are partially imple-
mented in it.

6) Links to requirements not under the DOORS con-
trol.

Even if it is obsolete, a requirement must never be de-
leted. This basic rule is necessary to avoid losing trace-
ability and to keep a trace of its existence. Besides, this

deletion must be justified in the justification object
linked to the deleted requirement.

Low-level requirements have specific attributes as the
identification of the function that calls it, the description
of its input and output parameters, etc., plus a data dic-
tionary in which all data, types, variables, constants, and
definitions of applications are defined.

3.4. Requirements Justification

The DOORS justification module embeds three catego-
ries of justification objects expected for certification is-
sues:

1) Justification of all the requirements (normal, de-
rived, and terminal).

2) Justification of the validation of requirements.
3) Justification of safety assessment of derived re-

quirements.
As far as possible, the requirement justification proc-

ess must be complete before entering the requirement
validation phase as the latter contains a checklist of crite-
ria to ensure completeness and correctness of this activ-
ity.

3.5. Requirements Review and Analysis

We perform two kinds of requirement analysis: the
transversal and the unitary analysis.

3.5.1. Unitary Analysis
It is requirement-oriented. The requirement conformity
with the DO standard criteria applicable to requirements

Introduction to a Requirements Engineering Framework for Aeronautics

Copyright © 2010 SciRes. JSEA

899

is checked using DOORS. All requirements are analyzed
one by one: the system requirements; the hardware
high-level and low-level requirements (DO-254 Subsec-
tions 6.1.2.2, 6.1.2.4 and 6.1.2.5) and also the software
high-level and low-level requirements (DO-178B, Sub-
sections 5.3.2 and 6.3.1). We check the quality of each
requirement i.e.:

1) Its adaptability for its level of specification, e.g.
no detailed requirement at system or high level,
or no rough and non refined requirement at low
level (requires by DO-178B Subsection 5.1.2 g
for SW);

2) Its completeness with no missing information, in
particular, concerning the acceptance criteria
(requires by DO-254 Subsection 6.1.2.4 for HW
and DO-178B Subsections 6.3.1a, b, d and 5.1.2 f
for SW);

3) Its correctness by expressing a need and not a
solution for that need; if possible, the contrary
must be rigorously justified (requires by DO-254
Subsection 6.1.2.5 for HW and DO-178B Sub-
section 5.1.2 g for SW);

4) Its consistency by not being contradictory with
other requirements of the same level (requires by
DO-178B Subsection 6.3.1 b);

5) Its feasibility by checking it can be implemented
on the target architecture (requires by DO-254
Subsection 6.1.2.5 for HW, and DO-178B Sub-
section 6.3.1 b, c, d for SW);

6) Its unambiguity and precision by checking that
nobody can interpret it (requires by DO-254
Subsection 6.1.2.5 for HW, and DO-178B Sub-
section 6.3.1 b and d);

7) Its verifiability by checking that its verification is
possible (requires by DO-254 Subsection 6.1.2.5,
and DO-178B Subsection 6.3.1 b, d for SW);

8) Its traceability by checking links with upper and
lower requirements (requires by DO-254 Subsec-
tion 6.1.2.4 and DO-178B Subsection 6.3.1 a);

9) Its conformance to standards (requires by DO-
178B Subsection 6.3.1 e);

10) Its algorithms (if any) must be accurate and cor-
rect (requires by DO-178B Subsection 6.3.1 g);

11) Its topicality by checking it does not refer to an
obsolete part of the system.

NB. Software scripts can be used to check general
rules automatically, that major attribute fields are not
empty, editing requirement rules are complied with, etc.
For this, each attribute must be correctly filled in.

3.5.2. Transversal Analysis
It is document-oriented. The DO standard criteria appli-
cable to a document are used to validate the whole

document from a quality point of view. It consists in
checking several points among which:

1) Its availability and its consistency;
2) Its compliance with the purchaser and airworthi-

ness standards;
3) The completeness of its references;
4) Its readability;
5) Its compliance and traceability with upper docu-

ments if any;
6) Its correctness, completeness and accuracy;
7) Its compliance with development standards;
8) Its maintainability.

3.6. Requirements Verification

Each requirement is associated to one or more test cases,
with each of them specifying the test objective with a
description. If the test case defines a test of the product
(laboratory, vehicle, flight, environment, etc.) then a
script or detailed procedure and the associated test results
shall be written. If the test case is defined by analysis, a
detailed procedure is used to reach the test result. Test
cases shall only specify the objective of the analysis. Test
results shall contain the full analysis and the result status
for each standard. Then three levels of verification mod-
ules are provided:

1) The test case level aiming at containing test
case(s) covering requirements. A tests case de-
scribes test sequences, objectives, input/output
conditions, required environment and accepted
criteria from a general point of view: no imple-
mentation details linked to test benching or par-
ticular tools need to be described, unless there are
particular constraints.

2) A detailed test procedure or script level that is the
implementation of test cases with regards to test
bench facilities, software capacities, specific
tools to be used, or other precise implementation
details required to ease test runs and avoid mis-
takes in test procedure execution. Test scripts are
dedicated to automated procedures and detailed
procedures to manual tests. Both can be used for
tests requiring manual sequences. For test cases
by analysis, the detailed procedure is used to
reach the test result.

3) A test result level containing all the verification
results.

4. Safety Analysis

The safety activities are exclusively related to the needs
impacting the safety of the system to be built. They affect
the documentation, the justification, and the validation of
safety-related requirements. An independent team of en-

Introduction to a Requirements Engineering Framework for Aeronautics

Copyright © 2010 SciRes. JSEA

900

gineers, referred to as the “safety team”, performs the
safety activities, that are based on the analysis of all the
safety-related requirements (normal, terminal, and de-
rived) that contribute to reach the customer’s safety
needs. A set of safety-oriented attributes is defined for
each requirement.

4.1. Safety Activities in Specification Modules

A special attribute should be used to mark any
safety-related requirement. It must adhere to the lower
requirements in order to identify requirement trees that
need a safety analysis precisely. If a requirement is not
safety-related, its attribute shall be set to ‘NO’. Safety
teams shall be specially warned of every evolution of this
attribute for each requirement. All updates of this attrib-
ute for any requirements must imply a new safety valida-
tion phase. When it is set to ‘YES’, this attribute must be
visible in the published version of specifications.

4.2. Safety Activities in Justification Modules

Different attributes should be used to justify the safety
aspect of a requirement. The first attribute should state
whether a requirement has an impact on the safety analy-
sis and must require special attention. The second should
detail the reasons why the previous attribute was filled as
‘YES’. Another one should detail the analysis performed
by the safety team in order to comply with the safety
objectives. Some other justification attributes should be
added.

4.3. Safety Activities in Validation Modules

Only the safety team fills out the attributes of these ob-
jects. They should record at least, the accepting of the
requirement in accordance with the safety criteria, the
reasons of the acceptance or the rejection, the name of
the engineer who performed the validation, and the date
of the validation in order to ensure it is still current.

5. Conclusion

This paper presents a general framework, which we have
called the “Requirements Engineering Framework” or
REF for short, dedicated to the management of require-
ments of aeronautical systems, during their whole lifecy-
cle. It aims at producing quality, secure and safe systems
in accordance with the rigorous DO constraints, while
controlling manufacturing costs. This framework can be
implemented in several ways according to the specific
needs of suppliers. In this paper, we have outlined the
interests of using DOORS [6] and Change [7] tools to
implement REF.

In a future paper, we envisage to describe the possible

implementations of REF in greater detail.

6. Acknowledgements

I would like to acknowledge the discussions and sugges-
tions from different persons including my work col-
leagues and my friends. I would like to acknowledge
especially Prof. Kamel Barkaoui of the Conservatoire
National des Arts et Métiers in Paris, France, who en-
couraged me to write this paper.

REFERENCES

[1] “US Federal Aviation Administration”. http://www.faa.gov/

[2] “European Aviation Safety Agency”. http://www.easa.eu.int

[3] “UK Civil Aviation Authority”. http://www.caa.co.uk

[4] RTCA DO-254 (EUROCAE ED-80), “Design Assurance
Guidance for Airborne Electronic Hardware,” 2000.

[5] RTCA DO-178B (EUROCAE ED-12B), “Software Con-
siderations in Airborne Systems and Equipment Certifica-
tion,” 2nd Edition, 1992.

[6] “IBM Rational DOORS”. http://www-01.ibm.com/software/
awdtools/doors/

[7] “IBM Rational Change”. http://www-01.ibm.com/software/
awdtools/change/

[8] “Das V-Modell”. http://v-modell.iabg.de/ (some pages
about the fundamentals of V-model are in English).

[9] C. M. Holloway, “Why Engineers Should Consider For-
mal Methods,” Proceedings of the 16th Digital Avionics
Systems Conference, Irvine, California, October 1997.

[10] N. A. S. A. Langley, “Formal Methods web site”. http://
shemesh.larc.nasa.gov/fm/

[11] “Formal Methods in System Design Journal,” Springer.
http://www.springer.com

[12] R. R. Young, “Effective Requirements Practices,” Addison
Wesley, Boston, 2001.

[13] K. E. Wiegers, “Software Requirements,” 2nd Edition,
Microsoft Press, 2003.

[14] K. E. Wiegers, “More About Software Requirements,”
Thorny Issues and Practical Advice, Microsoft Press,
2006.

[15] V. I. Fort Belvoir, “Systems Engineering Fundamentals,”
Defense Acquisition University Press, USA, 2001.

[16] “Esterel Technologies SCADE Suite”. http://www.esterel-
technologies.com/products/scade-suite

[17] “Geensoft Reqtify”. http://www.reqtify.com

[18] “IBM Rational RequisitePro”. http://www-01.ibm.com/
software/awdtools/reqpro/

[19] “IBM Rational ClearQuest”. http://www-01.ibm.com/
software/awdtools/clearquest/

[20] “Serena TeamTrack”. http://www.serena.com/products/
teamtrack/change-request-management.html

