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ABSTRACT 
The Integrate and Fire (IF) neuron model wasusedto simulate ultra-slow oscillations that were observed in cortical cultures. Simula-
tion of a network with 2 sub-networks is conducted in this study. We introduced an additional equation that governs the generation 
and dissipation of an inhibitory property to each of the sub-network.Sub-networks that fire at different rate are generated from the 
simulation. The network activity from the simulation oscillates at frequencies that are comparable to ultra-slow oscillations observed 
in cortical cultures. 
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1. Introduction 
Oscillations play a crucial role in numerous processes of the 
nervous system. Oscillations in the form of electroencephalogram 
(EEG) are present in different brain structures, with frequencies 
ranging from 0.5 Hz (δ rhythm) to 40-80 Hz (γ rhythm), and 
even up to 200 Hz [1]. Slow oscillations with frequency less 
than 1Hz were detected in various in vivo experiments [2-4]. 
Ultra-slow oscillations with frequencies less than 0.01Hz were 
reported in other experiments [5-8]. A recent study by Mok et 
al. [5] reported on ultra-slow oscillations in MEA cultures of rat 
cortical neurons. The ultra-slow oscillations were characterized 
by large synchronized bursts at the peaks and smaller bursts at 
the troughs. These activity patterns emerged in cultures after 
the fourth week in vitro. 

In computational studies, it is possible to generate global os-
cillations in a network of inhibitory neurons [9]. Inhibitory 
coupling in the network can act to synchronize the oscillatory 
activity in the network [10]. Heterogeneous networks consisting 
of inhibitory and excitatory neurons can exhibit a wide range of 
behavior depending on the parameters and inputs given to the 
network [11,12]. Activity patterns such as steady firing and 
bursting can be simulated by varying the network connectivity 
and fractions of endogenously active neurons [13,14]. Bursting 
activity can be observed by having a balance between the exci-
tation and inhibition in the network [15]. Synaptic characteris-
tics such as connection strength and synaptic depression be-
tween neurons in the model can influence the burst activity 
pattern of a network [16]. For some large networks, the syn-
chronized bursting events might be classified into several dis-
tinct types based on their spatiotemporal substructures [17]. 

2. Simulation 
In this study, numerical simulations of a network of IF neurons 

were conducted in an attempt to simulateultra-slow oscillations 
observed by Mok et al. [5]. All equations in this simulation 
were solved using the Runge-Kutta 4th order method [18]. 

2.1. Neuron Model 

The single neuron model introduced by Lathamet al. [13] was 
used in this simulation. The time evolution equation for the 
membrane potential of neuron ( )iv t is, 

( ) ( )( ) ( )( ) ( ),αi
m i r i t a i AHP SYN

dv t
T v t v v t v I t I I

dt
= − − + − −  (1) 

where mT  is the membrane time constant, α determines the 
rate of change for the membrane, rv  is the resting potential, 

tv  is the threshold potential, ( ),a iI t  controls the fraction of 
endogenously active cells, AHPI  the afterhyperpolarization 
(AHP) current and SYNI  the synaptic current. 

The AHP current is a combination of the fast AHP current 
which is responsible for the refractory period and slow AHP 
current which is responsible for spike frequency adaptation. 

AHPI  is given as, 

( ) ( )( ), ,AHP k i k ca i i kI g g v t ε−= + −         (2) 

where kε  is the potassium reversal potential. ,k ig and ,k ca ig − , 
the potassium conductance is governed by the time evolution 
equation, 
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where ,K iτ and ,k Ca iτ −  are the time constant, ,k iδ  and ,k Ca iδ −  
are the increase in conductance and u

it  is the time spike occur 
on neuron i. The synaptic current SYNI  is given as 
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( )( ),SYN i i iI v t I Iε= −                 (5) 

where ( )iv t  is the membrane potential. iI  and ,iIε  are given 
as 
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where sτ  is the decay constant for number of open channel, 
sr  is the number of closed channel open during spike, ijw  the 

strength of connection and jε  the reversal potential. 

2.2. Network Model 

Network connections are formed randomly between neurons. 
Connectivity bias [13] are introduced in the network through 
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where 
jETP  and 

jITP  are the connection probability for exci-
tatory and inhibitory neurons, 

jTK  is the number of postsy-
naptic neuron, IN  is the number of inhibitory neurons, EN  
is the number of excitatory neurons, 

jTB  is the connection 
bias and jT  is the type of postsynaptic neuron. The connec-
tion probability with inhibitory neuron will be higher if 

jTB  > 
1 whereas connection probability with excitatory neuron will be 
higher if 

jTB  < 1. Neurons in the network are allowed to con-
nect to all other neurons. 

2.3. Sub-networks 

Single-unit activity from the experiment showed that some 
neurons fire continuously while others fire only at the peaks. 
Similar burst motifs were observed in experiment conducted by 
Mok et al. [5] and Volman et al. [17]. Based on the activity 
pattern of the single-unit activity and the burst motifs [5], we 
postulate that there are two or more distinct sub-networks in the 
cortical culture. 

For the purpose of the present simulations, the neurons are 
divided into 2 sub-networks.Neurons are assigned randomly to 
the sub-networks through the Bernoulli processwith 

1sNp
N

=                   (10) 

where p  is the probability of success, 1sN  is the number of 
neurons in sub-network 1, N is the total number of neurons. A 
success in the trial will place the neuron in sub-network 1 whe-
reas a fail in the trial will place the neuron in sub-network 2.  

An equation describing the generation and dissipation of an 
inhibition property, 
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is assigned to each of the sub-network. ϕ  increaseswhen 
neuron spikes in the sub-network and decays with a time con-
stant, ϕτ . The increase in inhibition property is given by ϕδ . 
When ϕ  reaches anupper threshold ( )uT , the neurons within 
the sub-network stop firing. The neurons start to fire again 
when the inhibitory property has dissipated to alower threshold 
( )lT . In this manner we will have neurons in each sub-network 
firing at a different rate. 

3. Results and Discussion 
The parameters in Table 1 are used in the simulation to repro-
duce the bursting activity seen in the experiments. Figure 1 
show simulated activities with frequencies similar to those ob-
served in the experiments. For the simulation, a slow ϕτ  is 
assigned to sub-network 1 to simulate a neuron group that ac-
tive only at the peaks whereas a fast ϕτ  is assigned to sub- 
network 2 to simulate a neuron group that is active all the time. 
Figure 2 shows simulated activities compared to another set of 
experiment. With a different number of neuron in the 
sub-networks, peak activity width of around 100s can be ob-
tained from the simulation. Upper threshold, 3.8uT =  an-
dlower threshold, 0.1lT =  are used for the simulations. 

If the properties of the 2 sub-networks are different, it is 
possible to simulate one sub-network that fires continuously 
while another sub-network fires periodically.The time period of 
the ultra-slow oscillations in experiments by Mok et al. [5] is 
much larger than previously reported and cannot be generated 
by the standard IF model. The current simulations of the ul-
tra-slow oscillations are the results of 2 sub-networks firing at 
different rates. 
 

Table 1. Parameters used for simulation of neuron activity. 

Parameter Value 

mT  10ms 

rv  -65mV 

tv  -50mV 

α  1/15 

kε  -80mV 

sτ  3ms 

sr  0.1mS 

Kτ  30ms 

kδ  1mS 

k Caδ −
 0.2mS 

Number of Neuron 10000 

Connection per Neuron 2000 

Excitatory Neuron 2000 

Inhibitory Neuron 8000 

VEPSP 1mV 

VIPSP -1.5mV 

Bi 0.8 

Be 1.2 

Imax 3.8-5 
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Figure 1. Simulation of activity generated with parameters: ϕδ  = 

0.07, upper threshold, uT  = 3.8, lower threshold, lT  = 0.1, sub- 

network 1: number of neuron = 2000, φτ  = 30000, sub-network 2: 

number of neurons = 8000, φτ  = 1000 compared with experimen-
tal results. The time bin for spikes is 10ms. 

 

 

Figure 2. Simulation of activity generated with parameters: ϕδ  = 

0.07, upper threshold, uT  = 3.8, lower threshold, lT  = 0.1, sub- 

network 1: number of neuron = 3000, φτ = 30000, sub-network 2: 

number of neurons = 7000, φτ  = 1000 compared with experimen-
tal results. The time bin for spikes is 10ms. 

 
It is likely that these ultra-slow oscillations are controlled by 

biochemical processes and/or network structures in the cortical 
culture. Further experiments are needed to better understand the 
underlying biochemical processes that cause theseultra-slow 
oscillations. 
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