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Abstract—Two-stage problem of stochastic convex programming with fuzzy probability distribution is studied in this 
paper. Multicut L-shaped algorithm is proposed to solve the problem based on the fuzzy cutting and the minimax rule.
Theorem of the convergence for the algorithm is proved. Finally, a numerical example about two-stage convex recourse 
problem shows the essential character and the efficiency.
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1. Introduction
Stochastic programming is an important class of 

mathematical programming with random parameters, and 
has been widely applied to various fields such as economic 
management and optimization control[1]. Two-stage 
stochastic programming is a kind of mathematical 
programming where the decision variables and the decision 
process can be decomposed into two stages based on 
random parameters are observed before and after the 
specific value. 

Stochastic linear programming as a basic issue has been 
studied widely, and many research results have been 
reported. In [2], two-stage problem of stochastic linear 
programming and the basic algorithm were first proposed 
and applied to the linear optimal control problem. Since 
then, a large variety of algorithms including Benders
decomposition[2][3], stochastic decomposition[4], subgradient 
decomposition[5][6], nested decomposition[7], and disjunctive 
decomposition[8] for the two-stage stochastic linear 
programming had been developed. Among these methods, 
Benders decomposition also called the L-shaped method 
has become the main approach to deal with stochastic 
programming problems.  

The theories and algorithms obtained before on
stochastic linear programming all are based on a hypothesis 
that the probability distributions of random parameters have 
completely information. However, in many situations, due 
to lack of the date, the probability of a random event is not 
fully known, and need to get an approximate range with the 
help of experts’ experience. Recently, model of the
stochastic linear program with fuzzy probability distribution 
was proposed in [9], and the modified L-shaped algorithm
was presented to solve the model. 

Stochastic convex programming is an important class of 
stochastic nonlinear program and has more widely 
application than stochastic linear programming[10]. As a 
result, stochastic convex programming with fuzzy 
probability distribution will have more useful in many 
practical situations. In this paper, two-stage stochastic 
convex programming with fuzzy probability distribution 
and the solving method are studied, a numerical example 
shows the essential character and the efficiency.

2. Two-stage stochastic convex 
programming under fuzzy probability 
distribution 
Let = >, , P6 ! be a probability space, sample space 

� �1, , N� �6 	 � is a finite set, and ! = 26 is the " -algebra 

composed by power set of 6 , � �.i ip P � �	 	 The two-
stage stochastic convex programming problem is
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(2) 
1nx�i and 2ny�i are decision vectors, ( )f x is convex 

function, A is 1 1m n� matrix, 1mb�i is known vector, 
W is 2 2m n� recourse matrix, for each i� �6 , ( , )ig y � is 
convex function on y , 2( ) m

ih � �i is vector, and = >iT � is 
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2 1m n� matrix. Where x and y are the first stage decision 
variable and the second stage decision variable respectively. 
The mathematical expected value 
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When the random variable obeys fuzzy probability 
distribution, the scope of ip is as follows[9]
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(3) 
where = >1 2, , , T N

NP p p p	 �i� consisted of probabilities, 

= >1, , T
Nl l l	 � denotes the vagueness level, and the level 

value (0 1)i� �� � expresses the DM credibility degree of 
the partial information on probability distribution. The fuzzy 
probability distributions results in that mathematical 
expectation [ ( , )]E Q x � is uncertain, here, [ ( , )]pP

max E Q x
�-

�
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=
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� 	
! will be used to instead of [ ( , )]E Q x � , and 

then (1) can be expressed as follows
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where ( , )iQ x � is confirmed by(2).
Obviously, for a given x , there 

exists 1 2( , , , )T
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I. MULTICUT L-SHAPED ALGORITHM

The problem (4)  is equivalent to:
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and 
��1 , 0 ,K x Ax b x	 	 �

��2   ,  0, . . ( ) ( ) .i i i i iK x for all y s t Wy h T x� � �	 �6 \ � 	 �

The standard L-shaped algorithm for solving above 
problem can be designed under outer linearization (see e.g.
[9]). Suppose that 1 2( , , , )T

NP p p p	 � is solution of 
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because of each constrain in (5) corresponds to 
N constraints in (7).

The multicut L-shaped algorithm is defined as follows:
S0. Set 0,s k	 	 0it 	 for all 1,2, ,i N	 � , and 0x is 

given. 
S1. Set 1k k	  , solve the following master problem: 
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Let = >1, , ,k k k
Nx � �� be an optimal solution of 

problem(8). Note that if no constraint  (a4) is present for 
some i , k

i� is set equal to �� , k
i� and ip are not 

considered in the calculation of kx . Go to S2.
S2. For 1, ,i N	 � , solve the following linear 

programming problems
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where = >1, ,1Te 	 � , until, for some i , if the optimal 

value 0iz � , let k" be optimal dual variables value, and 
define 
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set 1s s	  , add the constraint 1 1
k

s sD x d � to the set
(a3) and return to S1. If for all , 0ii z 	 , then go to S3.

S3. For 1, ,i N	 � , and a fixed kx , solve the 
following convex programming problems
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Let ( , )i
kQ x � be the optimal value, and k

iy the optimal 

solution. Solve the problem
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suppose 1 2( , , , )k k k T
Np p p� is the optimal solution, then

update the objective function of the master problem. 
Let k

iv and k
iu be the optimal dual variables associated

with constrain (a6) and (a7) respectively. Compute 
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If 1 1i i

k k
i t te E x�  � � does not hold for any 1, ,i N	 � ,

stop, then 1( , , , )k k k
Nx � �� is an optimal solution. 

Otherwise, set 1i it t	  , add the constraint 

1 1i i

k k
i t te E x�  � � to the set (a4) , return to S1. 

3. Theorem of convergence for the 
algorithm 
Proposition 1. In the algorithm, constraint set (a3) is 

finite.
Proof The proof of this proposition is the same to the 

standard L-shaped algorithm (see e.g. [2]).
Proposition 2. For any i� �6 and on all

i
x K�� ,

( , )iQ x � is either a finite convex function or is 
identically �� ,
where � �,  0, . . ( ) ( )

i i i i i iK x y s t Wy h T x� � � �	 �6 \ � 	 � . 
Proof (see e.g. [10]) 
Proposition 3. If ( , )iQ x � is a finite convex function

for each i� �6 , then the function 1 1i it te E x � is linear 

supporting hyper planes of ( , )iQ x � . 
Proof By the duality theory (see e.g. [11]), it holds

that
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Theorem. Suppose that the algorithm generates an 

infinite sequence of 1( , , , )k k k
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optimal solution of problem(4). 

Proof Since the number of the constraints of 
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large. We also know K is closed convex set, 
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for all 1, ,i N	 � . Thus, 1( , , , )Nx � �� is a feasible solution 
of problem(7). 

On the other hand, if xM is optimal solution to the 
minimax problem(4), but not necessarily an optimal solution 
in iteration jk , then 
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By continuity of the convex function we have that 
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Hence, 1( , , , )Nx � �� is an optimal solution to problem(7),
and x is an optimal solution to problem(4).

4. Numerical example
Consider the following two-stage stochastic convex

programming 
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where 1k takes the three values 3.5, 3.8 and 4.0 with 
probability 1/3, that 2k takes the values 0.5, 1.0 and 1.5 with 
probability 1/3, and that 1k and 2k are independent of each 
other, then 1 2( , )Tk k k	 can take the each vector in the set

1 2{( , ) |Tk ko 	

1 23.5,3.8, 4.0, 0.5,1.0,1.5}k k	 	 with probability 1/9. 
Under fuzzy probability distribution, assume that k

takes the each values in o with probability around 1/9, i.e. 
ip q 1/9 ( 1,2, ,9)i 	 � it can be confirmed by(3),

where 1/12id 	 , 
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1/12il 	 , 1 / 2i� 	 ( 1, 2, ,9)i 	 � then we get two-stage 
stochastic convex programming with fuzzy probability
distribution. We solve problem (11) by the proposed 
algorithm and take the initial value = >0 1,1 Tx 	 . Iterations 
procedure and outputs are as follows.

TABLE I. ITERATIONS PROCEDURE AND OUTPUTS OF MULTICUT                  
L-SHAPED ALGORITHM

k .obj val kx P

1 -20.167 (3.000,0.000) (0.153,0.111,0.069,0.153,0.111,
0.069,0.153,0.111,0.069)

2 -15.947 (2.356,0.644) (0.111,0.111,0.111,0.111,0.111,
0.111,0.111,0.111,0.111)

3 -14.454 (2.566,0.434) (0.153,0.111,0.069,0.153,0.111,
0.069,0.153,0.111,0.069)

4 -14.020 (2.501,0.499) (0.153,0.090,0.090,0.153,0.090,
0.090,0.153,0.090,0.090) 

5 -14.007 (2.499,0.501) (0.153,0.090,0.090,0.153,0.090,
0.090,0.153,0.090,0.090) 

6 -14.005 (2.500,0.500) (0.153,0.111,0.069,0.153,0.111,
0.069,0.153,0.111,0.069)

7 -14.005 (2.500,0.500) (0.153,0.090,0.090,0.153,0.090,
0.090,0.153,0.090,0.090) 

8 -14.005 (2.500,0.500) (0.153,0.111,0.069,0.153,0.111,
0.069,0.153,0.111,0.069)

t (8,8,7,7,8,5,6,8,5)

Where obj.val refers to the objective value, 1 9( , , )t t t	 �
is the vector on the number of  iterations of each scenario. 

5. Conclusion
Two-stage stochastic convex programming with fuzzy 

probability distribution is proposed in this paper. The 
multicut L-shaped algorithm for solving the problem is
presented, and the theorem of convergence is given. Finally, 
a numerical test example demonstrates the essential 
character and the efficiency of the algorithm.
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