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ABSTRACT 

We propose a new approach in dealing with image recognition. We suggest that recognizing an image is related to the 
knowledge of a pure quantum state. Since most images are screened through incoherent photons, we introduce a method 
base on non-linear mapping iterations to regenerate coherence between the image photons. 
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1. Introduction 

An image can possess a large amount of data. However, 
recognizing an image corresponds only with a single 
output. For example, face recognition describes a process 
for which all the face details are eventually integrated to 
form the single output, namely the face identification. 
The very fact that the face can have a single recognizing 
name indicates that indeed all the face details are now 
gathered under the same single identification. 

There are mainly two physical versions for screening 
the same image: The frequent, for which the image emits 
mainly incoherent photons with a recognizable order. 
The photons data is then processed and integrated to 
form the single item recognition such as a known face. 
The second alternative is realized when the image is rep-
resented by a coherent light, meaning an interference 
pattern. In that case, all the image information is stored 
in a single state that according to quantum mechanics is a 
measurable quantity. Practically speaking, both the co-
herent and the incoherent photons can represent the same 
image although physically the representative photons’ 
structures are entirely different.  

A coherent system is defined as being composed of 
coordinated parts such that the whole system can be con-
sidered and analyzed as a single entity. A face, for exam-
ple, is composed of many details, yet, once it is recog-
nized it can be treated as a single person face. 

Let us assume that the image is represented by a co-
herent-photons-state. In this paper we suggest that recog-
nizing an image is identified with revealing the appropri-
ate state. Thus, an image which is already presented by 
coherent photons is easier to analyze. Moreover, in an 
ideal coherent light representation, revealing the state by 
a single measurement is sufficient to complete the whole 
recognition. Unfortunately, most observed images are 

realized by incoherent photons and therefore this direct 
measurement approach seems to be unpractical. Conse-
quently, regardless of the image representation, coherent 
or incoherent, the recognition process should yield a co-
herent state, we introduce a re-coherence formalism 
which is associated with some recognition device (like-
wise the human brain). We show in that proposed for-
malism that coherence or incoherence photons that arrive 
to the device, always terminate as a coherent state, that is 
a recognized image. 

Roughly speaking perception is the way reality is in-
terpreted by the individual. Image recognition falls under 
this category since we identify image recognition as one 
of the perception skills. Since perception is only an in-
terpretation of reality, there is no necessity for the recog-
nized state to be identical with the original state that was 
emitted by the image photons. For recognition purpose it 
is sufficient if each photon state will be constantly 
mapped into a same associated state. This target state 
will be considered as the recognition and it will be con-
sidered as the way the image is precept by the recogni-
tion device. If all recognition tools (including the human 
brain) act similarly, they will all agree of the same rec-
ognition even though the final result can be different 
from the original state. If we borrow the psychological 
concept to experience, we can say that when seeing an 
image, all individuals will experience the same vision. 
Surly, they might be situations for which different im-
ages will be mapped into the same state. This will be 
considered as the recognition limitation. To conclude, we 
identify the recognized state with the state mapping tar-
get rather than identifying the original state.  

In this paper we propose a nonlinear mode based upon 
the analysis of recursive maps as is often presented in 
chaos theory [1]. In our approach the measuring device 
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defines an external surrounding that influences the de-
tected photons. The surrounding is represented by the 
recursive maps that determine the system time evolution 
toward coherence and consequently to the recognition. 
We will show the possibility of describing recursive 
maps with Fock space where the map time evolution can 
be described by means of unitary operators. 

Small physical systems which are subject to the influ-
ence of the surrounding tend to become dissipative [2,3]. 
However, in the regular regime for which the maps con-
verge only into few numeric values (in our model two 
values), we show the re-coherence effect that is needed 
for the recognition process as presented previously. 

2. The States Basis 

We start with the definition of the image pure state and 
we present the target state that is considered as the image 
recognition state. Later we will show how a mixed state 
becomes coherent under the maps iteration. 

The image is is divided into an  small squares 
matrix (pixels). A pixel location is represented by the 
states 

N N

,i j , where  describes a pixel location. With 
a tensor product we compose the photon states 

,i j
0 ,i j  

and 1 ,i j
,i j

 as the absent and existent of a photon in 
the  pixel location, respectively. 

An image coherent photon is described by the follow- 
ing superposition 

,
1 1

0 . ,
1 1

1 .
N N N N

i j i j
i j i j

i j i j 
   

   

,i j

.      (1) 

with   and ,i j  being the superposition coefficients 
for the  pixel.  ,i j

In a column representation we obtain:   
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where for a single photon we obtain, 
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3. The Recognition Operator 

Sharp (or definite) recognition is associated with distin-
guish ability between the images where the representa-
tive states are distinguishable only when they are or-
thogonal. The maximum number of orthogonal states 
forms the space basis of states. Clearly, sharp recognition 
can be implemented only for a specific spanning set basis 
of states where the selection between the various set pos-
sibilities is subject to the observer determination [4,5]. 
However, unlike the measurement collapse phenomena 
for which the measurement output corresponds with the 

collapse linearity breaking [6-11], in our device an initial 
state experiences discrete rotations until it reaches a rec-
ognized state. This rotation will be related to the recogni-
tion mapping. 

We define each pixel with a unitary operator  that 

rotates the coefficient vector . Applying the  

operator ,i j  several times generates a recursive rela-
tion as indicated by the extra superscript n
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. This op-
erator generate each pixel vector with a recursive rela-
tion, 

             (4) 

The unitary operator ,i ju  conserve the coefficients 
vector norm, that is for a single photon, 
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, , 1.n n
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The global unitary operator  is: 
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Applying the operator   on the image state  n


 
(Equation (2) with an addition superscript n
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Using Equation (4) we obtain, 
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Defining  
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It is easy to see that the transformation conserve the state 

norm that is for a single photon,  , 1
nnn   
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.  

4. A Simple Demonstration of a Recursive 
Maps 

Let us demonstrate our recognition algorithm with the 
following unitary maps: 

          (10) 

We define the relations 
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to obtain 
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These equations describes recursive maps of the form 
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To simplify further this model we assume that   
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and that 
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There are unlimited types of recursive maps that can 
be derived from Equations (12)-(14). We constrict our 
model to maps with a double period bifurcation behavior 
[12]. To be more specific we assume that at each pixel 

 the maps converge into the following values: 








                  (15) 

with the complementary values 

lim

lim
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            (16) 

Although the maps do not converge into a single out-
put (single values for x  and ) it is possible to rede-
fine a map ,i j

y
g  which retrieves a single stable result if 

we define as follows, 
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                (18) 

where the composed map ,i jg  corresponds with a time 
interval which is twice the original f ,i j -time. 

Under the ,i jg -map we obtain two types of sets; the 
firsts converge into the  ,,i j i j,x y   values and the others 
reach the output  ,, ,i j i jy x   

It is easy to identify each set as follows: Suppose that 
we start with initial condition namely the final states 

,i j
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x 0,1,2,3,n. Now for  
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 the maps split 
into two types: 

         (19) 

         (20) 

where the even and odd series converge into the values 
 , , ,i j i jx y    and  , , ,i j i jx y   , respectively. 

Since the two maps operate separately, we associate 
them with independent states o  and e

,

 types, re-
spectively. 

gWhen applying the g  maps (the maps with the 
double steps iterations) on the initial state, that is, the 
initial photons state that hit the recognition machine, it 
iterates according to the g’s maps until it reaches the fi-
nal values.  , ,, i j i jx y    , ,, i j i j or x y  

,
,
i ja

i j

 If we denote  
,

,
i jb

i j and   as the final values of the iteration. 
The state 

, ,
, ,

, ,

0 . 1 .i j i ja b
i j i j

i j i j

i j i j          (21) 

is the image recognition.  

5. The Recognition Algorithm 

The following diagram summarizes the complete recog-
nition procedure: 
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 The coherent photons beam hits the recognition de

pixels. The incoming beam associated coefficients 

vice surface of 

,i j  and ,i j

generate the initial conditions  0

,i jx  and  0

,i jy  for each pixel ,i j . 

The recursive maps ,i jg  and ,i jg  iterates the in
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 is the image recognition. We recall that in our appr

state is considered as the recognition rather than the or

.

oach the target 

iginal state. 

 

6. The Lyapunov Exponent with Respect to 
the Complementary Maps 

Earlier we mentioned that practically most images are 
screened by incoherent photons. Yet, in our analysis we 
considered only pure states. In this section we present a 
formalism that is responsible for a re-coherence process, 
that is, a formalism that generate coherence between the 
incoherent states. Suppose that we have the following 
initial conditions 
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where the terms x  and  are correlated such   0
,i jy

x y that i j i j  while    0 0
, , 1  0

,i jx  and ,i j  represent 
the incoherent part of the pixels arriving photons. 
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According to Lyapunov theorem [13] for large  we 
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where , ,x i j n  and , ,y i jn  are the Lyapunov exponents 
for the x ,  maps, obtained as: y
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We recall that 
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7. Re-Coherence and Recognition 

The Lyapunov theorem predicts a negative exponent for 
non-chaotic maps [13]. In particular as in our model, a 
negative exponent is obtained for the double period bi-
furcation maps type. Thus, Equation (25) yields that  

 , , 1lim
n n

i j i j
n

x y


  

 nthat is, the incoherent terms ,i jx  ny, ,i j  vanishes dur- 
ing the iterations. Consequently, under the proper map-
ping the non-coherent photons, eventually become co-
herent to form the single final state. This state is now 
considered to stand for the image recognition state. 

8. The Recognition Efficiency 

In this paper we demonstrated that what seems to be a 
collapse drawback may turn into an advantage if the col-
lapse represents the observer interpretation. The tradi-
tional approach for figuring images is by dividing them 
into pixels and using sophisticated algorithms in order to 
figure the image significance [14-17]. This corresponds 
to a situation with multi-pixel states. In our approach if 
we have a coherent image, the observer can define a 
quantum basis of states (which are defined as a superpo-
sition of the pixel states) rather than using the pixel basis. 
In quantum mechanics any quantum basis of states can 
be associated with a measuring device. Thus, the ob-
server possesses the ability of building a device that 
measures directly the desired image. Selecting the figure 
basis depends on the observer determination. Conse-
quently, the collapse can be regarded as the observer in-
terpretation of the original coherent image. Thus, working 
within the image basis allows us to measure and interpret 
the image multi-pixel state directly in a single measure-
ment and the result of any coherent image’s multi-data 
state will be an interpretation into one of the device fig-
ure states. 

Thus, for a coherent image, our approach is very efficient. 
For an incoherent image we consider the single measure-
ment time as a very low time relative to all other recognition 
methods. From Equation (25) we see that the incoherent 
image approaches the coherent state exponentially 
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with typical time of the order of 
,

1

i j

. 
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