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ABSTRACT 

Based on the equation of motion in nonequilibrium Green function formalism, the matching conditions for the distribu-
tion functions of Boltzmann equation at interfaces of metallic multilayers are investigated in the nonequlibrium trans-
port procedure. We also explore the matching conditions when the current-induced spin accumulation is accounted for, 
the contribution of coulomb interaction due to accumulated electrons is included. In order to study the matching condi-
tions in the position space, we generalize the tunneling Hamiltonian to the formalism in position space, the matching 
conditions in this case is then obtained, which is convenient for us to match the usual distribution function of Boltz-
mann equation. 
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1. Introduction 

In the past few years, a number of theoretical studies had 
been carried out in the Boltzmann equation approach on 
the spin-polarized transport of electrons tunneling through 
a magnetic multiplayer [1-5], the spin dependent trans-
port is found to exhibit the interesting giant magnetore-
sistance effect and the current-induced switching of mag- 
netic layers. The usual way in the Boltzmann equation 
approach is to solve the distribution function in each 
layer and connect them between layers by use of the 
matching conditions, which has been well used to inves- 
tigate the transport problem of collinear magnetic multi- 
layers [3,6,7]. The matching conditions in the noncollin- 
ear case are also explored by introducing an artifice to 
account for correlations between states in different layers 
[8,9]. However, these matching conditions for the distri- 
bution functions at the interface of two layers are only 
given out in the equilibrium case or in the steady state, 
how to extend them to the nonequilibrium transport pro- 
cedure is still an open question. Actually, it is worthwhile 
to study the matching conditions out of equilibrium, be- 
cause most of spin-dependent transport procedure occurs 
in the nonequilibrium situation. Also, the current-induced 
spin accumulation will happen in the nonequilibrium 
case, the coulomb interaction among the accumulated 
electrons will have their contributions to the matching 
condition, which had been illustrated in the steady state 
[10]. 

In this paper, we try to obtain the matching conditions 

out of equilibrium in the nonequilibrium Green function 
formalism. The lesser Green functions in different layers 
are related by their equations of motion, which can lead 
to the matching conditions for the distribution function of 
Boltzmann equation after Wigner transformation. Mean- 
while, if we consider the coulomb interaction among 
accumulated electron in the tunneling Hamiltonian, it’s 
contribution to the matching conditions can also be ob- 
tained. Finally, the matching conditions are also ex- 
pressed in the usual position space. 

2. Green’s Functions and Wigner 
Distribution Functions 

Consider a Ferromagnet/Insulator (Semiconductor)/Fer- 
romagnet (FM/I(S)/FM) tunneling structure with the 
Hamiltonian given by [11], 

,C T CenH H H H  

, ,
C k k k

k L R

              (1) 

where the contact (ferromagnet) Hamiltonian is  

 k kc cH c c  
 

 



  ,  
  

is the creation (annihilation) operator of an electron of 
lead   with momentum  and spin k  , k  is the 
single particle energy, 

0CenH d d 

    

is the Hamiltonian of central region,    creates 
(destroys) an electron with spin 

 d d

  in central region, 
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TH  is the tunneling coupling between contacts and the 
central region, 

,
, , , ,

T k
k L R

. .d k .H V c
   
 d h c  


     

It is well known that the Green function in the contact 
is defined as 

     1 2, ik k 2 1 ,kg t t c
 
 

 t c t          (2) 

which satisfies the following equation of motion, 

   

 

1 2

, , 1 2

, ,

, ,k d

t t

V G t t
 

  

   

1 2
2 i

1

i

k
k k

k d

g t t g
t

 
 





  



 


 





    (3) 

where the Green function  

 , 1 2, ik dG t t d
 
 

 2 1 ,kt c t  

which is determined by it’s equation of motion 

 

 

 

2

, 1 2

, 1 2

,

, ,d

t

G t t

t t   

   

, 1
1

,

i
1

i

k d

k
k d

k d

G t
t

V G























 

 




           (4) 

where  1 2, idG t t   
 2 1 ,d t d t  

1 2t t t 

 is the Green  

function of central region. After Fourier transformation 
to the variable  on both sides of Equation (4), 
it will turn to 

 

 

 

, ,

,

, ,

k d

d

G T

G T

T

 


 

 





 



  

,

,

1

2

i
1

i

k
k d

k d

T

V G

 







 



   

 

 




         (5) 

with solution 

 

 

,

,
'

, exp

1
d

i

2
exp 2

i

k d

T
k d d

k

G T

t V

t c

 


 






 




 

 

 

      

      
  

 



2
2

i

,

,

k T

G t







 

     
  


 





       (6) 

where  1 2

1

2
T t t 

c

 is the center of mass variable and  

 is a constant which can be determined by the initial 
condition. Similarly, performing the same Fourier trans- 
formation to Equation (3), then substituting Equation (6) 

into it, we have 

   

 1 1

1

,

,

1
, ,

2 i

21
exp 2

i i

1
d ,

i

2
exp 2 ,

i

k
k k

k
k d

T
k d d

k

g T g T
T

V T

t V G t

t c

 
 

 




  







  









  





 

    
       
  

     
 

        
   







 





      (7) 

This equation relates the Green function of contacts 
with the Green function of central region. 

Usually, the Wigner distribution function of quantum 
Boltzmann equation in contact and central region are 
defined as 

   , i ,k I kT g T 
    f            (8) 

and 

   , i , ,dII dT G T        f          (9) 

respectively. Then from Equation (7), the distribution 
function  ,k I T

   of contact and the distribution  f

 ,dIIffunction T     of central region can be connected 

together, it is 

 

 1

1

,

,

1
,

2 i

21
exp 2

i i

1
d ,

i

2
exp 2 ,

i

k
k I

k
k d

T
k d dII

k

f T
T

V T

t V f T

t c




 




  






 













 

    
         

     
 

           







 





T

      (10) 

which is exactly the matching condition between contact 
and central region in the nonequilibrium case. This com- 
plicated integro-differential condition about time  is 
in essence the equation of motion for the lesser Green 
function, so far we have arrived one of our results. 

3. Matching Conditions 

The above matching conditions (10) and the Hamiltonian 
(1) are given in the second quantization formalism. 
However, the usual matching conditions we use to con- 
nect the distribution function of Boltzmann equation in 
different layers is expressed in the position formalism. It 
is necessary to explore the matching conditions out of 
equilibrium in position space. For this purpose, we in-
troduce the Hamiltonian of tunneling structure as 
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 ,p
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
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x x
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 
  

 
 

   



   




   2 3

     
2 3
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,

, ,

x x x x   

S
S

 

T x x x x  

 
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

 

where 1  is the interface between the left contact and 
central region, 2  is the interface between the central 
region and the right contact, 1U x ,  U x


2  and 

 are the potentials in the left contact, in the cen- 
tral region and in the right contact, the single particle 
energy corresponding to them are denoted as 1

 3U x

 , 2  
and 3 , respectively. 1 1 2 x,T x  and 2 2 3  are the 
coupling coefficient between the contacts and the central 
region. In this case, we can define the lesser Green func- 
tion in the contact as 

 , x 

   

T x

 1 2, ig x x  2 1 ,x x              (19) 

which satisfies the following equation of motion 

   

 2

1

1
1 2

2

2 1 2 2

, ,
i

1
d ,

i
S
S

g x x g x
t

x T x x

  


  




 

1 2

2 2, ,hop

x

G x x  

 2 2,hop x



       (20) 

where the Green function G x  is defined as  

    2 2 2 1 . From this definition, we 
can get it’s equation of motion by use of the Hamiltonian 
in position space, it is 

, ihopG x x  x x  

   

   

2 2

22

, ,

, ,

hop

S d

G x x

G x x

 

  
2

1

1
2 2

1

1 12 2

i

1
d ,

i

hop

S

G x x
t

x T x x





  


  





      (21) 

where  2,G x x
2d  is the lesser Green function in the 

central region, 

     22 , idG x x   2 2x x             (22) 

Usually, the Wigner distribution function in the Boltz- 
mann equation is defined as the Fourier transformation of 
the lesser Green function [12-14]. 

 ,

i1 d exp2π

f p X

p
x x G










     
   

, ,
2 2

x x
X X   



,

   (23) 

where     denote the spin indices,  p is the 
four dimensional momentum,   is the energy, 

 ,X R T  where  1 2

1

2
R r r  ,  1 2

1

2
T t t   is 

 ,xthe center of mass variable, the variable r t

r r r

, 
which represents the differences between two position 
and time variables entering these functions, 1 2 

t t t
 

and 1 2  . Performing the above Fourier transfor-
mation to both sides of Equation (20), we have 

 

     
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



   

  

 
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  (23) 

   , i ,Ifwhere p X g p X 
 ,

 is the distribution func- 
tion in the contact, and hopf p X  is defined as 

   , i ,hop hopf p X G p X  . We have adopted the gradi- 
ent approximation in the Fourier transformation of the 
second term in the above equation [12-14]. In order to 
express  ,hopf p X  in terms of the distribution function 
of contact region  ,dIIf p X

 ,hopG p X
, we write out the equation 

of motion for the Green function  as 
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    (24) 

where 1 2

2

x x
X


. The above equation is just the Fou-  

rier transformation of Equation (21). The variable X  
has relation with the variable X  as  

 2 2

1

2
X x x  X , 

2x  is the position of electron before jumping from con-
tact to central region, it is in the contact. 2x  is the posi-
tion after jumping, which is in the central region. As we 
know, the jumping usually occurs as the electrons are 
near the interface, so 2 2xx  , then we can approximate 
X X . In this approximation, Equation (24) has solu-

tion 

Copyright © 2013 SciRes.                                                                                 JMP 



Z. C. WANG 

Copyright © 2013 SciRes.                                                                                 JMP 

22 

 

   

   

   



*1
1

1

1

1
1

,

2
exp 2 ,

i i

, ,i

2

, ,

exp 2 d
i

hop

T

d

d

G p X

T T

T p X G p X

X p

G p X T p X

X p

T T c











            
  

   
 

   
         

    

 






,dp X G p X

c

 (25) 

where 1  is a constant which can be determined by the 
initial condition. Substituting expression (25) into Equa- 
tion (23), we finally obtain the matching condition out of 
equilibrium in the position space, which connects the dis-
tribution function If  in the contact with the distribution 
function II d  i ,f G p X   in the central region. Cer-
tainly, this matching condition is very complicated, it has 
simple expression in the steady state or in the equilibrium 
case. 

4. Conclusion 

In summary, we have obtained the matching condition 
out of equilibrium for the distribution function of Boltz- 
mann equation in different layers, which is based on the 
equation of motion method within the framework of 
nonequilibrium Green function formalism. The contri- 
bution of coulomb interaction among the accumulated 
electrons to the matching condition is also discussed, we 
compare it with the results in Reference [10]. Our 
research is in fact a microscopic model to illuminate the 
results in Reference [10]. The usual matching condition 
in position space formalism are finally expressed by 
means of a Hamiltonian chosen in the position forma- 
lism. 
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Appendix 

Current Driven Accumulation 

As we know, the current-induced spin accumulation will 
happen in the nonequilibrium case, it is necessary to con- 
sider the coulomb interaction among accumulated elec- 
trons in the Hamiltonian if we want to account for the 
spin accumulation in the matching conditions. The Ham- 
iltonian in this case is similar to Exp. (1) but with the 

CenH  replaced by [11] 

0Cen ,H d d Un n   
 


            (11) 

where     and n d d    is the occupation 
number of the spin-state 


 ,  describe the cou-

lomb interaction among accumulated electrons. In the 
Hartree-Fock approximation, the distribution function 

dII

U

 ,f T     of the central region in Equation (10) satis- 
fies the following equation of motion 
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where  ,d ka b  is the Fourier transformation of 
Green function      , , id ka b ka bG t t c  t d t   

 a b
   at 

contact . The last term in the right hand side of 
Equation (12) indicates the contribution of coulomb in- 
teraction of accumulated electrons to the matching con- 
dition (10) when we include the interaction in the Ham- 
iltonian (11). In order to demonstrate this clearly, we 
concentrate on the study of a steady state, in which  
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ing condition (10) will reduce to 
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which is similar to the matching conditions of steady 
state in previous work. Suppose the distribution function 
in equilibrium case is 0f , because of the coulomb inter- 
action due to the accumulated electrons, the distribution 
function f  in the steady state will deviate 0f , that is 

   0, ,  , ,f T f  T f T            (14) 

where f  is the deviation away from the equilibrium 
distribution function 0f . According to Equation (13), 

the deviation in the steady state satisfy the following 
equation 

 

 

2

2

,

,

1
2

2
i i

,

k I

k k

k d dII

f T

V f T




 

 




 

  

 



 






      
  




 

          (15) 

where the deviation of the distribution function in the 
central region  ,dIIf T   can be obtained from the 
equation of motion (12) when we adopt the steady condi- 
tion, it is 
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where 
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and 

f G T          . 

Substituting the above expression into Equation (15), 
we have 
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This equation is helpful for us to compare with the re- 
sults shown in Reference [10]. In Reference [10], the 
contribution of coulomb interaction due to accumulated 
electrons to the matching conditions was investigated in 
the steady state, the deviation of distribution function is 
given by 
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I II IIf 0t f tf   

t

           (18) 

where  is the scattering matrix which relate the distri- 
bution function of the contact If  and the distribution 
function of the central region IIf  in the equilibrium 
case, 0f 0I IItf , Equation (18) indicates that the devia- 
tion of If  in the contact contain two parts, the first part 
is contributed by the deviation of IIf  in the central re- 
gion, the second is by the change of scattering matrix 
which is induced by the coulomb interaction among ac- 

cumulated electrons. Comparing Equation (18) with Equa- 
tion (17), we can find that the first part corresponds to 
the first term in Equation (17) which is involved with the 
deviation of distribution functions, while the second part 
corresponds to the second term in Equation (17), the 
coulomb interaction among the accumulated electrons 
plays a important role in it. In fact, a microscopic model 
had been proposed to illuminate the results in Reference 
[10]. 
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