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Abstract—In this paper, we study a space-fractional anomalous diffusion in a variable area. The moving boundary 
is assumed moving with constant speed. The numerical scheme was present by changing the moving boundary to a 
fixed one. The steady-state approximation was also given to show the properties of the diffusion process.  
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1. Introduction 
Recently, the fractional differential equations [1,2] 
has been used to model physical and engineering 
processes. The fractional anomalous diffusion 
equation is perhaps the most frequently studied 
complex problem. Classical partial differential 
equation of diffusion and wave equation has been 
extended to the equation with fractional time or space 
by means of fractional operators. In a normal 
diffusion process, the flux can be written as  
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where ( , )c x t  is the concentration of the solute and 
K  is the diffusion coefficient. A generalization of the 
flux is changing it to a fractional one as [3,4] 
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where 
x
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 is a space fractional derivative in the 

Riemman -Liouville sense, Caputo sense, Riesz-Feller 
sense or others. 
In this study, we will use the Caputo type fractional 
derivative as the space derivative operator. The � -th 
order fractional derivative of  ( )f x  is defined as 
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where n  is an integer such that [ ] 1n �	 
 . Using 
the constitutive equation, the fractional diffusion 
equation can be written as 
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Several analytical methods have been used to solve 
fractional differential equations, such as the integral 
transform methods, Adomian decomposition method 
and other methods. To solve many science and 
engineering problems, the numerical solutions of 
fractional differential equations also attract many 
attentions [5]. The research on the numerical methods 
of fractional equations is by far less developed and 
understood than its non-fractional counterpart. The 
first numerical algorithm is the Gr nwald-Letnikov 
one which is often used to numerically approximate 
the Riemman-Liouville fractional derivative. For the 
initial value problems, by using the Volterra integral 
equations equal to the original fractional equations, 
Diethelm et al. [6,7] presented a numerical 
approximation using Adams type predictor corrector 
approach and gave the corresponding detailed error 
analysis. To reduce the computational cost, Ford and 
Simpson [8] presented the nested memory concept 
which can lead to 1 1( ( ))O h log h� �  complexity. 
Deng [9] apprehended the short memory principle and 
extended the range from (0,1)� �  to (0, 2)� � . 
More recently, Li [10] generalized the B-spline 
collection method to fractional differential equations. 
Most studies on the fractional anomalous diffusion 
equation are in fixed areas. In 2007, Liu and Xu [11] 
firstly presented an analytical solution to the moving 
boundary problem of anomalous diffusion arisen in 
controlled drug release system. Li et al. [12] studied a 
space-time fractional moving boundary problem in 
which the space fractional derivative was in the 
Riesz-Feller sense. In another paper [13], they gave 
the similarity solutions to the time-space fractional 
moving boundary problem when the space fractional 
derivatives are in the Caputo sense or the Riemman-
Liouville sense. 
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In this paper, we will consider a moving boundary 
problem in which one of the boundaries is moving 
with constant speed. The paper is organized as 
follows. In section 2, the mathematic model is 
presented and some analysis is given. In section 3 and 
section 4, the numerical solution of the model and 
some discussions are given. Finally in section 5, the 
conclusions are presented. 

2. Mathematical model and analysis 

 
Figure 1. Illustration of the concentration at time t. 

The concentration at time t  is illustrated in Fig. 1. 
Assume that the diffusion area is 0 ( )x L t� � , 
where ( )L t  is a function of t , i.e., one of the 
boundary is moving as t  progressing. Using the 
fractional diffusion equation (4) as the governing 
equation, i.e.,  
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A constant source and a perfect sink are placed at 

0x 	  and ( )x L t	 . If we use the assumption that 
the moving boundary moving with a constant speed, 
the boundary condition can be written as 

                         0(0, ) , 0,c t C t	 �                               
(6) 

                       ( ( ), ) 0, 0,c L t t t	 �                             
(7) 

                       (0) 0, ( ( ) ).L L t mt	 	                         
(8) 

If the governing equation is of integer order, this 
problem can be handled by many methods because 
there are kinds of variable transforms can be used. 
However, it is not the case for the fractional diffusion 
equation for the reason that many useful properties of 
the ordinary derivative are not known to carry over 
analogously for the case of fractional derivatives, 
such as a clear geometric mean, the product rules, 
chain rules and so on. For example, the Leibniz rule 

for evaluating the n -th derivative of the product 
( ) ( )t f tD  is 
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(9) 
but the Leibniz rule for the fractional derivative takes 
the form 
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It is a infinite series and difficult to use. 
From the mathematical point of view, the moving 
boundary problems are difficult to obtain their 
analytical solutions. We will firstly give a numerical 
scheme of the calculation of the model. 

3. Numerical solution
Though the governing equation and the boundary 
conditions seem to be simple, due to the moving 
boundary, its numerical scheme is also difficult to 
given. In order to simplify the problem, we change 
the variable area to a fixed one using the following 
transforms 
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The reduced problem is 
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                             (0, ) 1, 0,C t t	 �                          
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If we use k
jC  denote the concentration at the position 

z kh	  and the time t k t	 & , the forward difference 
scheme of the first order derivatives are 
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In order to compute the Caputo fractional derivative, 
we give the following algorithm [14]. For interval 
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using the quadrature weights 
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I. DISCUSSIONS 
Using the properties 
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we can obtain the steady state approximation of the 
problem 
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The steady state solution is 
                               ( , ) 1 / ( ).c x t x L t	 �                           

(25) 
In Fig. 2, the concentration ( , )C z t  versus z  with 
different time t  is given and in Fig. 3, the 
concentration ( , )C x t  versus x  at different time t  
is given. The straight lines in Fig.3 are the steady state 
approximation. If the area is fixed, we know that the 
long time behavior of the solution is similar to the 
steady state solution. However, due to the moving 
boundary, we can see from Fig. 3 that the early time 
solution is similar to the steady state approximation. 

 
Figure 2. The profile of the concentration C(z,t) at time 

0.1t 	 , 1t 	 , 10t 	  and 100t 	 . 

 
Figure 3. The solution of the concentration C(x,t) at time 1t 	 , 

10t 	  and 100t 	 .. The straight lines are the steady state 
approximation of the problem. 

5. Conclusions
In this paper, the diffusion process in a variable 
domain is considered. The moving boundary problem 
is reduced to a fixed one by letting / ( )z x L t	 . Due 
to the complexity of the calculus of the fractional 
derivatives, a numerical method is used. To study the 
properties of the system, the steady state solution of 
the problem is also given. 
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