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ABSTRACT 

Dominant frequency (DF) of electrophysiological da- 
ta is an effective approach to estimate the activation 
rate during Atrial Fibrillation (AF) and it is import- 
ant to understand the pathophysiology of AF and to 
help select candidate sites for ablation. Frequency 
analysis is used to find and track DF. It is important 
to minimize the catheter insertion time in the atria as 
it contributes to the risk for the patients during this 
procedure, so DF estimation needs to be obtained as 
quickly as possible. A comparison of computation tim- 
es taken for spectrum estimation analysis is present- 
ed in this paper. Fast Fourier Transform (FFT), Bla- 
ckman-Tukey (BT), Autoregressive (AR) and Multi-
ple Signal Classification (MUSIC) methods are used to 
obtain the frequency spectrum of the signals. The time 
to produce DF was measured for each method. The 
method which takes the shortest time for analysis is 
selected for real time application purpose. 
 
Keywords: Fast Fourier Transform; Blackman-Tukey; 
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1. INTRODUCTION 

During AF, atrial electrical activity is described as chao- 
tic and random [1]. Frequency domain analysis can help 
to interpret such activity. DF analysis has been used in 
several fields such as acoustic emission [2], speech perc- 
eption [3] and cardiac arrhythmias [4]. DF is defined as 
the frequency of the signal at the point where the frequ- 
ency spectrum has the maximum value. 

The current available treatment of AF consists of me- 
dication, electrical cardioversion and ablation. Typically, 

antiarrhythmic medications such as amiodarone, propa- 
fenone and flecainide are used for sinus rhythm control 
[5] but they are not effective to prevent irregular rhyt- 
hms. 

If medication is not suitable to control the sinus rhy- 
thms, electrical cardioversion is considered [6]. The pro- 
cedure is called defibrillation. It can be performed in 2 
different ways: at the hospital (electrical cardioversion) 
or using an implantable cardioverter-defibrillator device 
(ICD). 

When medication and electrical cardioversion control 
fail, ablation is usually the next step to be considered. 
Catheter-based radio frequency ablation therapies offer a 
chance to cure AF. The chances for people survival were 
98% and 95% in year 1 and year 2 respectively [5]. The 
ablation performed in early paroxysmal AF has the hig- 
hest chance for success compared to its use for persistent 
and permanent AF [7]. The success rate of ablation at 
DF site is shown by significant prolongation of the atrial 
fibrillation cycle length (AFCL) compared to the site 
with non-dominant frequency [8,9]. This result supports 
the use of DF mapping to identify suitable ablation tar-
gets. 

Catheter ablation of AF is a complex interventional el- 
ectrophysiologic procedure. Its risk is higher than that of 
ablation for other cardiac arrhythmias [10]. The worldw- 
ide survey of AF ablation reported that 6.0% complica-
tion was recorded (524/8745) [11]. Univariate analysis 
stated that sex, age, insertion difficulty, length of the ins- 
erted catheter, type of catheter and, term of insertion were 
among contributors for catheter related blood stream in- 
fection [12]. The risks include requiring prolonged hos-
pitalization, long-term disability or death [13]. 

Since the duration of the ablation and overall proce-
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dure is one of the contributors to blood stream infection, 
computation time is critical for any technique to be used 
during any surgical procedure. Shortening the analysis 
time can significantly influence the risk of overall surgi-
cal procedure. Our aim in this study is to compare the 
computation time for four different spectrum analysis 
techniques and compare the different techniques in their 
ability for producing accurate results. 

With current technology the data collection capability 
for non-contact mapping systems consists of catheter mo- 
unted multielectrode array allowing the recording up to 
3000 points of virtual electrophysiological data at 1200 
Hz. With this number of data points, it is important to 
identify an approach that could be used to produce DF 
with minimum computation time. 

This will in turn help electrophysiologist to identify 
the dangerous frequencies as target ablation sites and to 
apply ablation effectively in an expeditious manner. 
Frequencies between 6-15 Hz are classified as ‘danger-
ous’ as the atria fires in an irregular and chaotic fashion. 

The main objective of this study is to reduce the risk 
during catheter procedure by selecting the technique for 
estimation of DF with the shortest computation. 

2. FREQUENCY DOMAIN ANALYSIS 

2.1. Fast Fourier Transform (FFT) Technique 

The application of the Fast Fourier Transform (FFT) is 
important in signal processing computations using speci- 
ally in spectral analysis [13]. The discrete Fourier trans-
form of  x nT  is given by 
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The FFT algorithm is the main choice for obtaining 
the Discrete Fourier Transform (DFT) because of its sp- 
eed. 

Welch technique based on FFT algorithm is used to co- 
mpute the periodogram. This technique uses signal seg-
mentation and averaging to improve statistical properties 
of the spectral estimates [14]. The equation for comput-
ing the averaged periodogram is: 
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where  is the periodogram of the mth segment 
of data. 

 m̂ kP f

The ends of the data sequence are tapered to zero wh- 
en data is windowed. DF was obtained from the Welch/ 
FFT analysis. There are a few considerations to the use 
of DF analysis especially for the electrograms [4]: 

a) The estimation of the power spectrum uses the FFT 
because this is an efficient and widely available method. 

b) The maximum frequency is inversely proportional  

to the sampling interval t  as 
t2

1 . 

The frequency resolution in the power spectrum is inv- 

ersely proportional to the length of the signal 
T

f
1

  

where T is the length of the signal collected  T N t  . 
This has implications for the interpretation of the DF 
obtained. 

2.2. Blackman-Tukey (BT) Technique 

This method was proposed by Blackman and Tukey 
(1958) [13]. The estimator is based on the Wiener-Kh- 
inchin theorem, which states that the power spectrum 
density is the Fourier Transform of the autocorrelation 
function of the series [15,16]. 

If fewer data points are used, the variance of the aut- 
ocorrelation estimate increases and the estimate become 
less reliable [13]. The averaging associated with win-
dowing a series decreases the resolution of the method, 
from the frequency intervals of 1/N, to a windowed fre-
quency interval of about 1/M, where M is the length of 
the window. As a result, wider windows yield higher sp- 
ectral resolution, and vice versa. The drawbacks of Bla- 
ckman-Tukey are suppression of weak signal main-lobe 
responses by strong signal sidelobe and frequency reso-
lution limited by the available data record duration. 

This method involves 3 steps [13]: 
1) The autocorrelation sequence of the data is esti-

mated using the formula; 
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where: xn is the n-th value of the data series, N is the 
total number of points in the data series m is the auto-
correlation lag ^ signifies estimated value. 

2) Windowing the autocorrelation sequence. 
The windowing of the autocorrelation sequence is no- 

rmally carried out using a hamming window that has the 
following characteristics: 
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3) Finding the Fourier transform to yield the following 
PSD estimate [15]: 
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where: w (m) is a window function of length 2(M-1)-1, 
which is zero for |m|  M-1 

The PSD estimate is determined over the frequency  

range 1 1

2 2s s

f
f f

   where fs is the sampling fre-
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quency. 

2.3. Autoregressive (AR) Technique 

Autoregressive technique involves selection of model or- 
der and the estimation of model parameters from the co- 
llected data. This technique is widely used because it has 
a rational transfer function and the algorithm to estimate 
the parameters results in a system of linear equations 
[15]. In this model, the data xn are considered to be the 
output of a system with a random input un. The relation 
between input and output are described by the following 
difference equation which represents the auto-regressive 
moving average ARMA (pole-zero) model: 

1 0

p q

n pk n k qk n k
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where: p,q are model orders for the AR and the MA pa- 
rts, respectively a,b are model parameter (apk being the 
kth parameter of the pth-order model) 

The autoregressive (AR) part of this general equation 
is given by: 
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Knowing p past values of the series we can estimate 
the next output as: 
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Equation (8) defines the AR with all-pole model. Wh- 
ile, the MA model is given by: 
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The prediction error epn is defined as the difference 
between the actual sample value xn and its predicted 
value ˆnx . 
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The power spectrum of an AR process is: 
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where 2
e  is the variance of epn. 

2.4. Multiple Signal Classification (MUSIC) 

The multiple signal classification is the improvement of 
Pisarenko harmonic decomposition [17]. This is an ei-
gen-based subspace decomposition method and is best 
used to estimate the frequencies of complex sinusoids in 
additive white noise [18]. 

Assume that y(n) is a random process that consists of 

p complex exponentials in white noise, 
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The autocorrelation matrix of a noisy signal can be 
written as: 

yy xx nR R R n              (13) 

where: xx  is the autocorrelation matrix of the signal 
 is the autocorrelation matrix of the noise. 

R

nnR
Eigen-analysis is used to partition the eigenvectors 

and the eigenvalues of the autocorrelation matrix of a 
noisy signal into 2 subspaces, signal subspace and noise 
subspace. The eigenvector can be divided by two groups, 
the p signal eigenvector corresponding to the p largest 
eigenvalues and M – p noise eigenvector corresponding 
to the smallest eigenvalues [19]. 

Ideally, p of these roots will lie in the unit circle on 
the frequencies of the complex exponentials. The small-
est eigenvalue determines the noise variance and the 
corresponding eigenvector is the prediction polynomial 
for the clean signal [20]. 

In MUSIC, the effects of spurious peaks are reduced 
by averaging. The power spectrum estimate is defined as 
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where N is the dimension of the eigenvectors vk is the 
k-th eigenvector of the correlation matrix p is the dimen-
sion of the signal subspace. 

Since  xxP f  has its zeros at the frequencies of the 
sinusoids, hence the reciprocal of  xxP f  has its poles 
at these frequencies [18]. Then, the MUSIC spectrum 
can be written as 
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3. METHOD 

The spectrum estimation analysis was tested using sinu-
soid signals in noise to identify their DF using the 4 dif-
ferent approaches. In FFT analysis, Welch method esti-
mates the frequency spectrum of the signals. The Fourier 
transform was calculated separately for each of the seg-
ments. The analysis was performed by taking the aver-
age of the segments, each with 2048 points, using a 
4096-point FFT and an overlap of 50% with a hamming 
window. 

In Blackman-Tukey method, the autocorrelation was 
determined using 4096 points. This autocorrelation func-
tion was windowed with the same hamming window 
used for the FFT approach (4096-point). 

The autoregressive spectrum was determined based on 
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the finite linear aggregate of the previous value of the 
process and the current value of white noise. The model 
order used was p = 8. 

As for MUSIC, two complex exponentials with the 
same window are used to identify the spectrum. 

4. RESULTS 

The spectrum estimation was determined using several 
test frequencies: 8.0 Hz, 7.7 Hz, 7.0 Hz, 6.3 Hz, 5.5 Hz 
and 5.0 Hz. Figure 1 shows the graphical results of FFT, 
Blackman-Tukey, Autoregressive and MUSIC in which 
tested using sinusoidal wave of 8 Hz. DF is being con-
sistently estimated as 8Hz. 

Table 1 shows the DF value comparison for all tech-
niques against the base Frequency. 

The results show consistent value of DF produced by 
all techniques. 

Table 2 shows that, the percentage error is of the same 
order of magnitude for these 4 techniques. 
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Figure 1. Comparison of Fast Fourier Transform, Blackman- 
Tukey, Autoregressive and Multiple Signal Classification spec-
tral estimates. 

 
Table 1. DF value comparison for all technique against the ba- 
se Frequency. 

Base 
Frequency(Hz) 

8 7.7 7 6.3 5.5 5 

Frequency 
Estimation(Hz) 

8.06 7.81 7.08 6.35 5.62 4.88

 

Table 2. Calculation of error for FFT, Blackman-Tukey, Autore- 
gressive and Multiple Signal Classification spectral estimates. 

Frequency 8 7.7 7 6.3 5.5 5 

% error 0.71 1.47 1.14 0.76 2.09 2.34 

Table 3. Computation time for 3000 signals. 

Time calculated in seconds for 3000 signals 
Frequency

FFT BT AR MUSIC 

Average 22.8 340.9 206.4 10851.8 

 
For calculation purpose we are using 3000 data series 

to calculate total computation time. As mentioned before 
3000 points is the state-of-art for mapping atrial activa-
tion. 

Table 3 shows a significant difference in processing 
time between the 4 techniques tested. In summary, FFT 
takes 22.8 seconds to process 3000 signals compared to 
340.9 s for BT, 206.4 s for AR and 10851.8 s for MUSIC. 
As discussed before, all techniques produce the same 
estimation for DF. Therefore, the time taken to produce 
the estimation is the main factor for the choice of which 
technique should be used. 

5. CONCLUSIONS 

The study shows significant difference in computation 
time between the techniques while the estimated value 
for DF was the same for all four techniques. The choice 
of a particular technique contributes to the overall surgi-
cal procedure time. As discussed before the duration of 
catheter deployment is a factor that can contribute to 
blood stream infection. Therefore, the selection of the 
fastest technique will reduce the risk of the procedure. 

As shown by the result of this study, FFT is the best 
technique as it produces accurate estimates of DF in a 
speed compatible for quasi real-time analysis. 
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