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Abstract—We present an overview of approaches to self-
validating one-dimensional integration quadrature formulas and
a verified numerical integration algorithm with an adaptive
strategy. The new interval integration adaptive algorithm delivers
a desired integral enclosure with an error bounded by a specified
error bound. The adaptive technique is usually much more
efficient than Simpson’s rule and narrow interval results can
be reached.

Index Terms—Interval computing, self-validating methods,
numerical integration & interval arithmetic.

I. INTRODUCTION

Numerical integration (quadrature) formulas are of the form

I =
∫ b

a
f (x)dx =

n

∑
i=0

w(n)
i f (xi)+E,

with a = x0 < x1 < x2 < · · · < xn = b and weights w(n)
i , it is

possible to derive a formula for the local error of the method
based on a higher derivative of f (x) at an intermediate point
ξ as

E =C · f (k)(ξ ),where ξ ∈ [a, b],

the factor C depends on the method and usually is a power of
the width b−a.

Automatic integration programs may print out the ‘theo-
retical’ error which has been achieved and which is used to
provide shutoff. Exist some pitfalls of practical working of
automatic integration programs. The tolerance requested may
be impossible to meet. When more and more points are called
the roundoff error enter to worsen progressively the result. On
theoretical side, the estimate of accuracy validity depends on
theoretical information about the function such as theoretically
accurate bounds on derivatives, monotonicity, convexity, etc.

With interval analyses, it is possible to determine veri-
fied bounding of analytically derived quadrature formulas for
integration rules. The evaluation code derivative f (k) may
be obtained from automatic differentiation. Different from
classical schemes, they do not require an a-priory derivation
of analytical error bounds, furthermore the rigorous bounds
are calculated automatically in parallel to integral computation
allowing better error control.

Adaptive quadrature is another area in which interval meth-
ods is useful. This is because, due to the form of the error
term, meaningful interval enclosures for the actual integral
can easily be computed. Replacing heuristic error estimates by
these rigorous enclosures results in a quadrature algorithm that

produces guaranteed bounds on the actual integral. A common
interval algorithm is to integrate, with automatic differentiation
software, high-order and variable degree Taylor polynomial
approximations to f [1], [2], [3].

The next section briefly introduces interval arithmetics.
Section 3 describes the interval integration and presents the
approach adopted to the respective interval integrations. Sec-
tion 4 presents numerical experiments and the related analysis
results. Section 5 concludes.

II. INTERVAL ARITHMETIC

A form of interval arithmetic perhaps first appeared in 1924
and 1931 in [4], [5], then later in [6]. Modern development of
interval arithmetic began with R. E. Moore’s dissertation [7] as
a method for determining absolute errors of an algorithm, con-
sidering all data errors and rounding, after R.E. Moore intro-
duced interval analysis [8]. Interval arithmetic is an arithmetic
defined on sets of intervals, rather than sets of real numbers.
The power of interval arithmetic lies in its implementation
on computers. In particular, outwardly rounded computations
allows rigorous enclosures for the ranges of operations and
functions.

A. Notation
Throughout this paper, all scalar variables is denoted by

ordinary lowercase letters (a). Interval variables are enclosed in
square brackets [a]. Underscores and overscores denote lower
and upper bounds, respectively. Angle brackets 〈 , 〉 are used
for defining intervals by midpoints and radius.

A real interval [x] is a nonempty set of real numbers

[x] = [x,x] = {x̃ ∈ R : x ≤ x̃ ≤ x} (1)

where x and x are called the infimum (inf) and supremum
(sup), respectively, and x̃ is a point value belonging to an
interval variable [x].

The set of all intervals R is denoted by I(R) where

I(R) = {[x,x] : x,x ∈ R : x ≤ x} (2)

The midpoint of [x] is defined as,

mid[x] =
1
2
(x+ x), (3)

the width of [x] is defined as,

wid[x] = (x− x) (4)
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and the radius of [x] is defined as,

rad[x] =
1
2
(x− x) =

1
2

wid[x] (5)

The radius may also be used to define an interval [x] ∈ I(R).
Then 〈m, r〉 denotes an interval with midpoint m and radius
r. The [x, x] ≡ x is called point interval or thin interval. A
point or thin interval has zero radius and a thick interval has
a radius greater than zero.

III. INTERVAL INTEGRATION

From mean value theorem there exists a ξ ∈ [x] = [x, x]
such that ∫ x

x
f (x)dx = wid([x]) f (ξ ).

Splitting the interval [x] into n subinterval with break points
{xi}, a = x0 < x1 < · · ·< xn−1,xn = b, then

I =
n

∑
i=1

∫ xi

xi−1
f (x)dx =

n

∑
i=1

wid([x]i) f (ξi),

where [x]i = [xi−1, xi] and ξi ∈ [x]i.
Let [f]([x]) be an interval extension of f (x) on [x]. Then

Ii ≡ w([x]i) f (ξi)⊆ [R]i ≡ w([x]i)[ f ]([x]i),

and we have an interval inclusion of I,

I ⊆ [R]≡
n

∑
i=1

[R]i (6)

The width of [R] measures the quality of determined integral
given bounds to both rounding errors and truncation errors.

A. Interval Trapezium Rule

If f (x) is two times continuously differentiable, then

Ti ≡ wid([x]i)
2

( f (xi)+ f (xi))− wid([x]i)3

12
f (2)(ξi), (7)

where ξi ∈ [x]i. If we use interval arithmetic extension [ f ],
[ f ](2), then we use these to get

I ⊆ [T ]≡
n

∑
i=1

[T ]i (8)

with

[T ]i =
wid([x]i)

2
([ f ](xi)+ [ f ](xi))− wid([x]i)3

12
[ f ](2)([x]i).

(9)
Note that the call of [f] with thin interval arguments return
intervals that includes rounding errors.

B. Interval Simpson 1/3
If f(x) is four times continuously differentiable, then

Si =
wid([x]i)

6 ( f (xi)+4 f (mid([x]i)+ f (xi))

−wid([x]i)5

2880 f (4)(ξi)
(10)

where ξi ∈ [x]i. If we use interval arithmetic extension [ f ],
[ f ](4), then we use these to get

I ⊆ [S]≡
n

∑
i=1

[S]i (11)

with
[S]i = wid([x]i)

6 ([ f ](xi)+4[ f ](mid([x]i)+ [ f ](xi))

−wid([x]i)5

2880 [ f ](4)([x]i)
(12)

Note that the call of [f] with thin interval arguments return
intervals that includes rounding errors.
C. Adaptive quadrature

The drawback with any algorithm based on the composite
quadrature rules is that it makes no attempt to respond to
the local form of the integrand. The objective of an adaptive
scheme is to use an unequal mesh spacing and to determine the
size of each subinterval so as to satisfy the overall accuracy
requirement with the minimum number of subintervals (and
consequently the minimum number of evaluations of the
integrand).

Total approximate integral = Sum of approximate integrals
over subintervals.

Total estimated error = Sum of estimated errors over subin-
tervals:

• Locally Adaptive Quadrature:
Error for each subinterval ≤ global error target× length of subinterval

b−a
Note that locally adaptive quadrature is a natural example of recursion.

• Globally Adaptive Quadrature:
Error for all subintervals ≤ global error target

Adaptive algorithms are just as efficient and effective as
traditional algorithms for "well-behaved" integrands, but can
be also effective for "badly-behaved" integrands for which
traditional algorithms fail.
D. Adaptive Simpson’s method

Adaptive Simpson’s method, also called adaptive Kuncir’s
Simpson rule, was proposed by G.F. Kuncir in 1962 [9].
Adaptive Simpson’s method uses an estimate of the error we
get from calculating a definite integral using Simpson’s rule. If
the error exceeds a user-specified tolerance, the algorithm calls
for subdividing the interval of integration in two and applying
adaptive Simpson’s method to each subinterval in a recursive
manner. A criterion for determining when to stop subdividing
an interval, suggested by J.N. Lyness [10], is

|S(a,c)+S(c,b)−S(a,b)|/15 < τ (13)
where [a, b] is an interval with midpoint c, S(a,c), S(c,b),

and S(a,b) are the estimates given by Simpson’s rule on the
corresponding intervals and τ is the desired tolerance for the
interval.
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E. Adaptive Interval Simpson’s method

If we are using recursion, the implementation of an
interval algorithm is simple. The following Matlab with the
Intlab Toolbox [12] function is based on adaptsimp.m [13].

1. function int = Iadaptsmp(f,f4,X,tol,lev,fa,fm,fb)
2. global n
3. global D
4. %IADAPTSMP Interval Adaptive Simpson 1/3 rule
5. echo on
6. if nargin == 4
7. lev = 1;
8. a=inf(X);
9. b=sup(X);
10. D=diam(X);
11. fa = feval(f,a);
12. fm = feval(f,(a+b)/2);
13. fb = feval(f,b);
14. n=3;
15. end
16. % recursive calls start here
17. % checking for too many levels of recursion
18. if lev > 1000
19. disp(’1000 levels of recursion reached.’)
20. X=infsup(a,b);
21. wx=diam(X);
22. int = (b-a)*(fa+4*fm+fb)/6 -wx^5/2880*f4(X);
23. else
24. % Divide the interval in half and apply interval
25. % Simpson 1/3 rule on each half. As an verified
26. % error estimate: rad(int) > 2*tol*h/D;
27. a=inf(X);
28. b=sup(X);
29. h = b - a;
30. wx=h/2;
31. flm = feval(f,a+h/4);
32. frm = feval(f,b-h/4);
33. n=n+2;
34. X=infsup(a,a+h/2);
35. simpl = h*(fa + 4*flm + fm)/12 - wx^5/2880*f4(X);
36. X=infsup(a+h/2,b);
37. simpr = h*(fm + 4*frm + fb)/12 - wx^5/2880*f4(X);
38. int = simpl + simpr;
39. X=infsup(a,b);
40. % err = rad(int) > 2*tol*h/D
41. % tolerance not satisfied, recursively refine
42. if rad(int) > 2*tol*h/D;
43. m = (a + b)/2;
44. XL=infsup(a,m);
45. XR=infsup(m,b);
46. int = Iadaptsmp(f,f4,XL,tol,lev+1,fa,flm,fm) ...
47. + Iadaptsmp(f,f4,XR,tol,lev+1,fm,frm,fb);
48. end
49. end

Sample Matlab M-flle with the Intlab Toolboxthat calls the
above function is followed by running results:

1. format long
2. % intvalinit(’DisplayMidRad’)
3. global n
4. f = @(x) 23/25*cosh(x)-cos(x)
5. f4 = @(x) 23/25*cosh(x)-cos(x)
6. X=infsup(-1,1)
7. err=1.0E-12;
8. IADAPTSMP(f,f4,X,err)
9. n
10. err1=rad(ans)

>> ADAPTXI
intval ans =

< 0.47942822668878, 0.00000000000047>
n =

241
err1 =

4.607425552194400e-013
>>

IV. NUMERICAL EXPERIMENTS

In the following, we will use the “battery" test of functions
which are a subset of the set used by Gonnet [11]. The
battery of test functions are listed in Table I. The result has
been calculated using 20 digits of precision with the Mathcad
computer software.

The main mechanism for get a narrow interval results is
to increase the number of subdivisions. Next we consider the
progression of the discretization error as we increase n. Table
II shows that in the early stages increasing n improves the
discretization.

We observe however that if the number of subdivisions were
extremely large this might lead to significant round-of (more
terms in the sum, each with a round-off error to contribute).
Verified trapezoidal rule with 105 subdivisions is wider than
104 subdivisions and verified Simpson 1/3 rule with 104

subdivisions is wider than 103. A narrow interval implies high
precision; we can specify plausible values to within a tiny
range. Verified step rule interval results are narrowing (from
10 to 106 subdivisions), but intervals are wider, compared
with verified trapezoidal and Simpson 1/3 rules, implies poor
precision.

In Table III we present the results of numerical experiments
with interval adaptive Simpson 1/3 rule. The battery of
test functions are listed in Table I. For these test functions
we will consider the usual metrics of efficiency,i.e. number
of function evaluations required for a given accuracy. We
have tested the code on four radius interval tolerances τ =
10−3, 10−6, 10−9, 10−12.

Interval adaptive Simpson 1/3 algorithm was more efficient
than interval Simpson 1/3, the only exception is with f1 for
τ = 10−3. Should be stressed that interval tolerance τ = 10−12

is not reached, by the interval Simpson 1/3 algorithm, for
f9, f10, f11 test functions, with the used precision.

V. CONCLUSION

The design of interval iterative formulas for self-validating
one-dimensional integration quadrature formulas is very im-
portant and is also an interesting task in interval computing.
In this paper, we have proposed a new (supposed) one-
dimensional interval integration adaptive algorithm, to get
rigorous bounds of a desired integral. Numerical tests demon-
strate that interval adaptive technique is usually more efficient
than interval Simpson’s rule with narrow interval results.
Finding self-validating one-dimensional definite integration by
derivative-free interval methods should be considered in future
studies.
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TABLE I
THE FUNCTIONS USED FOR THE “BATTERY” TEST.

f1 =
∫ 1

0
exdx = 1.7182818284590452354

f2 =
∫ 1

−1

(
23
25

cosh(x)− cos(x)
)

dx = 0.47942822668880166736

f3 =

∫ 1

−1

(
x4 + x2 +0.9

)−1 dx = 1.5822329637296729331

f4 =
∫ 1

0

(
1+ x4)−1 dx = 0.86697298733991103757

f5 =

∫ 1

0
2(2+ sin(10πx))−1 dx = 1.154700538379251529

f6 =
∫ 1

0
(1+ x)−1 dx = 0.69314718055994530942

f7 =

∫ 1

0
(1+ ex)−1 dx = 0.37988549304172247537

f8 =
∫ 1

0.1
sin(100πx)/(πx)dx = 0.0090986375391668429156

f9 =
∫ 10

0

√
50 e−50πx2

dx = 0.5

f10 =

∫ 10

0
25 e−25xdx = 1.0

f11 =
∫ 10

0
50

(
π

(
2500x2 +1

))−1 dx = 0.49936338107645674464

f12 =

∫ 1

−1

(
1.005+ x2)−1 dx = 1.5643964440690497731

f13 =
∫ 1

0

(
1+(230x−30)2)−1 dx = 0.013492485649467772692

TABLE II

ESTIMATES OF
∫ 1

−1
cosh(x)

23
25

− cos(x)dx =
[

sinh(x)
23
25

− sin(x)
]1

−1
.

Analytical Answer Bounds = [0.47942822668880, 0.47942822668881]

Step Rule with Verification

Subdivisions Verified Result
10 〈 0.492244876649698, 0.191866375632378 〉

100 〈 0.479556403654468, 0.019186637563241 〉
1000 〈 0.479429508459513, 0.001918663756343 〉

10000 〈 0.479428239506509, 1.918663758142536e−004 〉
100000 〈 0.479428226816973, 1.918663937550136e−005 〉

1000000 〈 0.479428226690078, 1.918681864720995e−006 〉

Trapezoidal Rule with Verification

Subdivisions Verified Result
10 〈 0.479421870930105, 6.395545854416262e−004 〉

100 〈 0.479428226049601, 16.395545891768606e−007 〉
1000 〈 0.479428226688739, 6.395906027023557e−010 〉

10000 〈 0.479428226688802, 1.002808946992673e−012 〉
100000 〈 0.479428226687608, 3.629152534045943e−012 〉

1000000 〈 0.479428226671977, 3.620936883663717e−011 〉

Simpson 1/3 Rule with Verification

Subdivisions Verified Result
10 〈 0.479428217025575, 2.131848625963606e−007 〉

100 〈 0.479428226688792, 2.139066701545289e−012 〉
1000 〈 0.479428226688796, 7.244205235679146e−014 〉

10000 〈 0.479428226688723, 7.243095012654521e−013 〉
100000 〈 0.479428226688001, 7.241873767327434e−012 〉

1000000 〈 0.479428226680795, 7.241879318442557e−011 〉
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