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ABSTRACT 

By using a method based upon the Briot-Bouquet differential subordination, we investigate some subordination proper-

ties of the generalized fractional integral operator , ,
0,z
  

 p  

 which was defined by Owa, Saigo and Srivastava [1]. Some 

interesting further consequences are also considered. 
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1. Introduction 

Let n  denote the class of functions f z

  : 1,2,3, , 

 of the 
form  

  , ,p p k
p k

k n

f z z a z p n







    (1.1) 

which are analytic in the open unit disk  
 :  and 1 .z 

0 
z z  




 Also let f and g be analytic in 
 with . Then we say that f is subordinate 

to g in , written 
 f  0g

f g  or    f z g z


, if there 
exists the Schwarz function w, analytic in  such that 

,  0 0w    1w z   and      g w z z f z . We 
also observe that  

    ing z 

   d f g  

f z  

if and only if  

   0 0 anf g  

whenever g  is univalent in . 
cLet a, b and c be complex numbers with . 

Then the Gaussian/classical hypergeometric function 
0, 1, 2,   

 , ; ;2 1F a b c z

   
 

 is defined by  

 2 1
0

, ; ;
k

F a b c z




  ,
!

k
k k

k

a b z

c k

 

        (1.2) 

where 
k

  is the Pochhammer symbol defined, in terms 
of the Gamma function, by  

   
 

 
  

1,

1 1k

k


  
          

0

, .

k

k k

 
  

 , ; ;

(1.3) 

The hypergeometric function 2 1F a b c z


1 1B A   

 

 is ana-
lytic in  and if a or b is a negative integer, then it 

reduces to a polynomial. 
For each A and B such that , let us de-

fine the function  

 1
, ; , .

1

Az
h A B z z

Bz


 

 , ;h A B z 1 1B  

          (1.4) 


It is well known that , for , is 
the conformal map of the unit disk onto the disk sym-
metrical respect to the real axis having the center  

   21 1AB B     21A B B  and the radius . The 
boundary circle cuts the real axis at the points  
   1 1A B   and    1 1A B .  

0

Many essentially equivalent definitions of fractional 
calculus have been given in the literature (cf., e.g. [2,3]). 
We state here the following definition due to Saigo [4] 
(see also [1,5]). 

Definition 1. For   ,,   
, ,

0,z

, the fractional in-
tegral operator     is defined by  

 

     

, ,
0,

1

12
0

, ; ;1 d ,

z

z

f z

z
z F f

z

  

 
       



 
         



(1.5) 

where 2 1F  is the Gaussian hypergeometric function de- 
fined by (1.2) and  f z

 

 is taken to be an analytic func-
tion in a simply-connected region of the z-plane contain-
ing the origin with the order  

  0f z z z   

for max 0, 1   
  1
z


, and the multiplicity of  

 log z
  is removed by requiring that   to 

be real when 0z  . 
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The definition (1.5) is an interesting extension of both 
the Riemann-Liouville and Erdélyi-Kober fractional op-
erators in terms of Gauss’s hypergeometric functions. 

With the aid of the above definition, Owa, Saigo and 
Srivastava [1] defined a modification of the fractional 
integral operator , ,

0,z
  



 by  

 
  
     , ,

0,zz f z   

 

, ,
0,

1 1

1 1

z f z

p p

p p

  

  
 

      


     



  (1.6) 

for  nf z p 1p and     . Then it is ob-
served that , ,

0,z
    also maps  onto itself as 

follows:  
 n p




 
  

  
  

, ,
0,

1 1

1 1

1; 1; .

z

,p p kk
p k
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z a z







, 0; 1 

k

k n

n

f z

p p

p p

p f p

  

 
 

  





  
 

    

    







 (1.7) 

We note that     ,0, 1
0,z f z f z  


      , 

where the operator 
  was introduced and studied by 

Jung, Kim and Srivastava [6] (see also [7]). 
It is easily verified from (1.7) that  

  
    

, ,
0,

1, ,
0,

zz f z

p f z

  

     



    



  , ,
0, .z z f z   

, ,

 (1.8) 

The identity (1.8) plays an important and significant 
role in obtaining our results. 

Recently, by using the general theory of differential 
subordination, several authors (see, e.g. [7-9]) considered 
some interesting properties of multivalent functions as-
sociated with various integral operators. In this manu-
script, we shall derive some subordination properties of 
the fractional integral operator 0,z

    by using the 
technique of differential subordination. 

2. Main Results  

In order to establish our results, we shall need the fol-
lowing lemma due to Miller and Mocanu [10]. 

Lemma 1. Let h t


 be analytic and convex univalent 
in  with  0 1h  , and let  
  1

11 n n
n ng z b z b z 

   

 

 be analytic in . If  

   1
,g z zg z h z

c
 

0c

            (2.1) 

then for   and ,  Re 0c 

   1

0

d .
z

c n c nc
z z t h t t

n
 

1 1B A

g           (2.2) 

We begin by proving the following theorem. 
Theorem 1. Let    1,   p,     

1p
, 

    1 p,  0 1 and     

   p p k
p k n

k n

, and let  

z z a z p







    . Suppose that  f

1,k p k
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               (2.3) 

where  

     
    

1 1 11
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 and 
k

  is given by (1.3). 
1) If 1 0B  

 

, then  
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 (2.5) 
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The result is sharp. 
Proof. 1) If we set  

 1, , , ,
0, 0,1 ,z z

p p

f z f z
L

z z

     

 


  
 

 

then, from (1.7) we see that  
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For  and , it follows from (2.3) that  1 0B  

     
     

     
    

1 1 1
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1 1 1 1
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which implies that  

       1 , ; .h A B z
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2) Let  
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Then the function 1  1g z b zn nb z 
  


  is 

analytic in . Using (1.8) and (2.9), we have  
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f z
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From (2.5), (2.9) and (2.10) we obtain  
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Thus, by applying Lemma 1, we observe that  
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where  is analytic in  with    and 
  < 1 w z z 1 1B A . In view of    

p
 and  

    , we conclude from (2.11) that  
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Since    11Re Rew w
  0 1 for  and Re w   

   n

, 
from (2.12) we see that the inequality (2.6) holds. 

To prove sharpness, we take f z p  defined 
by  
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For this function we find that  
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Hence the proof of Theorem 1 is evidently completed. 

Theorem 2. Let    1,   p,     
1p

, 
    1 p,  1 and 0    

   p p k
p k n

k n

. Suppose that  

z z a z p
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p, f s z z
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 2.4  and satisfies the condition where k  is given by 
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Each of the bounds in (2.14) and (2.15) is best possible 
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. 
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where, for convenience,  
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It is easily seen from (2.4) and (2.13) that  and  
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which readily yields the inequality (2.14). 
If we take , then   f z

 

1p p n mz z    

 
11 n m

m

f z

s z
   0 as 1 .z z  

 p   

 

This show that the bound in (2.14) is best possible for 
each m, which proves Theorem 2. 

Finally, we consider the generalized Bernardi-Livera- 
Livingston integral operator  defined by 
(cf. [11-13])  
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The result is sharp. 
Proof. 1) If we put  
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Therefore, by using same techniques as in the proof of 
Theorem 1 1), we obtain the desired result. 

2) From (2.17) we have  

   

      

, ,
0,

, , , ,
0, 0, .

z

z z

p f z

f z z f z

  

     
 







 



   

 

   (2.21) 

Let  

    
, ,

0, .z

p

f z
g z z

z

  
 

  

 

       (2.22) 

Then, by virtue of (2.21), (2.22) and (2.19), we ob-
serve that  
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Hence, by applying the same argument as in the proof 
of Theorem 1 2), we obtain (2.20), which evidently 
proves Theorem 3. 
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