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Abstract — Two new Compton Scatter Tomography modalities, which are aimed at imaging hidden structures in bulk 
matter for industrial non-destructive control (or testing) and for medical diagnostics are shown to be based on the solutions 
of a special class of Chebyshev integral transforms. Besides their remarkable analytic properties, they can be inverted by 
existing methods which lend themselves nicely to numerical treatment and provide convergent, stable and fast computation 
algorithms. The existence of explicit inversion formulas implies that viable new imaging techniques can be developed, which 
may take over the current ones in a near future.  
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1. Introduction
Integral equations arise naturally in a wide range of 

fields as the proper way to represent a relevant phenomena 
to be exploited for applications. Examples are numerous in 
wave propagation, transport theory, optics, 
electromagnetism, acoustics, etc. Quite often, the 
conversion of differential processes into integral processes 
turns out to be beneficial in the sense that a solution can be 
worked out by integral operator techniques. This is in 
particular the case of aerodynamics, in which, for the first 
time an integral equation of the first kind appears with a 
Chebyshev integral kernel. Ta Li [1], who discovered this 
class of integral equations, has also realized that the 
equation he had discovered belongs to a much larger family 
with a hypergeometric function kernel, including numerous 
special cases involving Legendre, Jacobi, Gegenbauer 
polynomial kernels. What should be pointed out is the fact 
that their inversion, essential for applications, relies on a 
very peculiar property of the Gauss hypergeometric 
function, which was most elegantly derived by R. 
Buschman in [2]. 

In this paper, we show how the process of measuring 
energy flux densities of scattered gamma rays by bulk 
matter leads to the reconstruction its structure and 
composition without having to dismember it or take it apart. 
The image is called tomographic when such operation is 
done in a two-dimensional slice, perpendicular to some 
main axis of the object. A three-dimensional image can be 
then obtained by juxtaposition of a large number of 
tomographic images. To this end, in the next section, we 
recall the basic principle of Compton Scatter Tomography 
and introduce two recently suggested operating modalities. 
Section 3 handles the resulting integral transforms by 
describing the derivation of their inversion. The paper ends 

with a short conclusion and some perspectives for 
applications. 

2. Compton Scatter Tomography
     One of the most efficient way of probing the inner 
structure of an objects the use of penetrating radiation (X- 
or gamma-rays). Originally one exploits the phenomena of 
radiation attenuation inside matter from emission to 
detection along a straight line path. This has given rise to 
the widely known X-ray scanner, which is nowadays 
commonly used in hospitals and in industrial protocols. 
However as radiation propagates inside matter, scattering 
with distributed electric charges - or Compton effect - is the 
main cause for its attenuation. So a smart idea would be to 
collect information carried by scattered radiation to try to 
image the internal structure of matter. Of course there are 
many ways to put this idea to work. One of them is called 
Compton Scatter Tomography (or CST). 
 
    In CST the object is illuminated by a monochromatic 
source of penetrating radiation S, placed at some spatial 
position. An energy sensitive detector D will measure the 
radiation flux density for a given scattered energy at all 
accessible sites outside the object. If the totality of such 
measurements allows to reconstruct the electric charge 
density inside the object, a corresponding image of this 
object is therefore obtained. This is the principle of CST, 
when this is done in a plane containing the line SD.   As the 
object electric charge density is a smooth real-valued 
function f(x,y) with compact support in R2, the set of 
measurements is required to have two independent variables. 
One natural variable is the radiation scattered energy, which 
is directly related to the scattering angle � by the well-
known Compton relation. So when D registers scattered 
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radiation at fixed energy and position in space, this means 
that it collects the scattered radiation flux density from all 
the scattering sites lying on a circular arc subtending an 
angle ��-��� provided that selected collimators are set up so 
as to force the radiation rays to be inside a fixed plane. 
Hence the measurement at D is essentially an integral of 
f(x,y) along this circular arc starting from S and ending at D. 
The second natural variable to be taken is simply the 
angular position of SD with respect to a fixed reference 
direction. It may be labeled by an angle �, i.e. The data 
registered at D is thus a function ������� Omitting all
unnecessary quantities, the mathematical problem at hand 
may be formulated as 

    
                                                                                             (1) 
So for all allowable values of �����, how can one 
reconstruct the electric charge density f(x,y) of an object 
from the data ������? This is precisely the problem solved 
by J. Radon in 1917 for straight lines in a plane [3]. But 
here the same problem is posed for circular arcs C going 
from S to D. (1) has the structure of an integral equation of 
the first kind with a delta-function kernel ���� concentrated 
on C.  Such a problem is usually ill-posed and occurs 
recurrently in imaging theory.  
 
       +��
>p be a circle of radius p, centered at the coordinate 
system origin O. We suggest two ways of varying the 
relative positions of S  and of D ��
 >p, such that the 
inversion problem of this type of Radon transform can be 
solved exactly. 
 
       In modality 1, the circular arcs C1 �	�
��
���
>p, and the 
segment SD �

 �
 	�������
 �������	
 �\
 
 >p  [4].  Thus the 
radiation source and the detector move rigidly around the 
apparatus center O. This imposes some restrictions on the 
positioning of the object inside the scanning zone, unless 
the value of the parameter p is changed. 
 

 
         Fig.1 CST modality 1.  
 

       In modality 2, the circular arcs C2 �	�
 �^
�
 ��
���
 >p,  
���
����
����	
�_�

>p  at right angles [5]. The source S and 
the detector D are no longer at a constant distance from 
each other. They are sepa	����
��
>p `�
��
���^�
��0 which 
is linked to the scattering angle � by ���� �0 + ����� This 
gives a larger flexibility for positioning objects inside the 
scanning zone as compared to the previous modality. 
 

 
           Fig. 2 CST modality 2 
 
 

3. Chebyshev Integral Transforms
Since there is no preferred physical orientation in the 

plane, it is advantageous to work in polar coordinates and 
decompose the unknown function and its transform into 
angular Fourier series 

 
                                                                                                  
(2)      

Then, for both modalities, (1) reduces to an ordinary 
integral equation of the first kind with a Chebyshev kernel 
for the Fourier components.  Let Tl(x) be the Chebyshev 
polynomial of the first kind or order l. Respectively we have 

 

 
                                                                                                  
(3) 

for modality 1, with ���������, and  

 

54 Copyright © 2012 SciRes.



                                                                                                  
(4) 

for modality 2, with ������� ���. 

To get their inverses we bring these equations to the 
form of the Chebyshev transform of A. M. Cormack [6] 
through the following change of variables  

 
                                                                                                  
(5)              

and functions 

 
                                                                                                  
(6) 

for modality 1, 

 
                                                                                                  
(7) 

 for modality 2.  

 

Then  (3,4) are rewritten as  

 
                                                                                                  
(8) 

which has the form of the Chebyshev transform in [6]. Here 
�
{
}��
\�	
����^���
���������

��
���
���
\�	��^�
���
��
 

 
                                                                                                  
(9) 

the inversion of (8) can be achieved by a clever application 
of (9). The resulting explicit inversion formula reads 

 
                                                                                                
(10) 

However (10), as such is still improper for setting up a 
computational algorithm. It needs to be regularized as 
indicated in [7]. This is so because the transforms Gl����have 

to verify the co-called consistency conditions, which consist 
of the vanishing of a finite number of moments of the data. 
Then the proper form of (10) is made up of two parts 

 

 
                                                                                                
(11) 

where Ul-1(x) is the Chebyshev polynomial of the second 
kind  and of order (l-1) ���
�{}��
\�	
����^���
���� 

Using  the Fourier series 

 
                                                                                                
(12) 

we reconstruct the functions 

  

 
                                                                                                
(13) 

Then (11) may be used to derive a close form for the 
inversion formula first for the intermediate functions given 
in  (12) 

 
                                                                                                
(14) 

 A final form of the inversion formula can be given in terms 
of the original functions (!�"�#��� the object electric charge 
density and ������� the measured radiation flux density on 
the detector) by “extracting”  !�"�#��and ������ from (13) 

 

 

Copyright © 2012 SciRes. 55



                                                                                                
(15) 

��
 ����
 
 ���
 �–integral should be understood as a Cauchy 
principal value. The structure of this formula is analogous 
to that of the classical Radon transform. Yet it belongs to 
two types of Radon transforms on finite circular arcs which 
have appeared for the first time in the literature of integral 
geometry in the sense of I. M. Gelfand. This is in contrast to 
other types of Radon transforms which are defined on 
closed (or unbounded open) curves in the plane. 

      Remark: 

      In practice a computing algorithm can be set up from 
(11) following the approach of Chapman and Carey [9].  It 
_��
�
�

 ��
 _������
 ���
 �-integration range into a finite 
number of integrals and then making the proper change of 
variables so that each term is represented by an exactly 
calculated indefinite integral. The derivative of Gl���� is 
simply calculated by linear interpolation. Of course the 
discretization steps must be optimized to save computing 
time. This way of reconstructing the unknown function 
turns out to be efficient, consistent with the data and give 
satisfactory results [10].  

4. Conclusion and Perspectives
The idea of CST goes back to the early 50’s. However 

the proposed scanning processes operate either point by 
point or line by line. Much later, to improve sensitivity, 
wide angle radiation collimators have been introduced. This 
has led naturally to the concept of integral measurements 
along arcs of circles. But no true inversion method was then 
at hand. 

In the mid 90’s, a first true CST modality was 
introduced by S. J. Norton [8].  It has a fixed source of 
radiation and a moving detector running on a straight line 
containing the source site. Such a CST scanner is, in 
particular appropriate for large objects which can only be 
studied from one side (such as a wall or a long metal beam). 
Here one may also formulate the problem in terms of 
circular harmonic components of the unknown electron 
density and end up with an integral equation with a 
Chebyshev kernel as shown independently by A. M. 
Cormack in [6]. The inversion procedure is thus simpler 
because one actually ends up with (14), in which q+ or  q- is 
replaced by q. 

Consequently the two CST scanning modalities 
proposed here appear to be complementary to Norton’s CST 
modality.  All three use Compton scattered radiation as 

imaging agent to probe the hidden parts of objects of 
interest in non-destructive control or in medical diagnostics. 
All three are based on the inversion of a Chebyshev integral 
transform with different degrees of complexity but share 
many common features which usher them into a near future 
as tomorrow imaging scanners for medical as well as 
industrial applications. 
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